Skip to main content

Detection of Resistance, Susceptibility, Tolerance, and Virulence in Plant–Nematode Interactions: Part II: Migratory and Semi-endoparasitic Nematodes

  • Protocol
  • First Online:
Plant-Nematode Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2756))

  • 172 Accesses

Abstract

This chapter is a continuation of Chap. 3. Initially, protocols for the screening of several host plants to their major migratory and semi-endoparasitic nematodes are presented. Then the problems related to assessment of tolerance to these nematodes are described, followed by the determination of nematode races. The main plant–nematode interactions considered are annuals and perennials to Pratylenchus spp.; banana to Radopholus similis; potato to Nacobbus aberrans; several crop plants, including onion, alfalfa, clovers, and potato, to Ditylenchus dipsaci; broad bean to D. giga; potato and sweet potato to D. destructor; peanut to D. africanus; rice to D. angustus and Aphelenchoides besseyi; wheat to Anguina tritici; different plants to Rotylenchulus reniformis; and citrus to Tylenchulus semipenetrans. Schemes to identify races or biotypes are only presented for D. dipsaci and T. semipenetrans. The occurrence of pathotypes in other nematode species is also discussed. Finally, comments are made on ectoparasitic nematodes.

Author Nicola Greco is now retired.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Peng Y, Moens M (2003) Host resistance and tolerance to migratory plant-parasitic nematodes. Nematology 5:145–177

    Article  Google Scholar 

  2. Roberts PA (1990) Resistance to nematodes: definitions, concepts, and consequences. In: Starr JL (ed) Methods for evaluating plant species for resistance to plant-parasitic nematodes. Society of Nematology Inc., Hyattsville, pp 1–15

    Google Scholar 

  3. Roberts PA (2002) In: Starr JL, Bridge J, Cook R (eds) Concept and consequence of resistance. Plant resistance to parasitic nematodes. CABI Publishing, Wallingford, pp 23–41

    Chapter  Google Scholar 

  4. Trudgill DL (1991) Resistance to and tolerance of plant parasitic nematodes in plants. Annu Rev Phytopathol 29:167–192

    Article  Google Scholar 

  5. Andrews M, Andrews ME (2017) Specificity in legume-rhizobia symbioses. Int J Mol Sci 18:705. https://doi.org/10.3390/ijms18040705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Reen RA, Mumford MH, Thomson JP (2019) Novel sources of resistance to root-lesion nematode (Pratylenchus thornei) in a new collection of wild Cicer species (C. reticulatum and C. echinospermum) to improve resistance in cultivated chickpea (C. arietinum). Phytopathology 109:1270–1279. https://doi.org/10.1094/PHYTO-02-19-0047-R

    Article  PubMed  Google Scholar 

  7. Thomson JP, Sheedy JG, Robinson NA (2020) Resistance of wheat genotypes to root-lesion nematode (Pratylenchus thornei) can be used to predict final nematode population densities, crop greenness, and grain yield in the field. Phytopathology 110:505–516. https://doi.org/10.1094/PHYTO-06-19-0203-R

    Article  Google Scholar 

  8. Rostad HE, Reen RA, Munford MH, Zuart RS, Thompson JP (2022) Resistance to root-lesion nematode Pratylenchus neglectus identified in a new collection of two wild chickpea species (Cicer reticulatum and C. echinospermum) from Turkey. Plant Pathol 71:1205–1219. https://doi.org/10.1111/ppa.13544

    Article  CAS  Google Scholar 

  9. Castillo P, Vovlas N (2007) In: Hunt DJ, Perry RN (eds) Pratylenchus (Nematoda: Pratylenchidae): diagnosis, biology, pathogenicity and management, Nematology monographs and perspectives No. 6. Brill, Leiden, p 529

    Chapter  Google Scholar 

  10. France RA, Brodie BB (1995) Differentiation of two New York isolates of Pratylenchus penetrans based on their reaction on potato. J Nematol 27:339–345

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Al-Khafaji RT, Troth EEG, Lambert KN, Jhonston JA, Dyer AT (2019) Pathotypes detected among populations of Pratylenchus neglectus collected from Montana. Plant Dis 103:3259–3264. https://doi.org/10.1094/PDIS-12-18-2234-RE

    Article  CAS  PubMed  Google Scholar 

  12. Thompson AL, Smiley RW, Paulitz TC, Garland-Campbell K (2016) Identification of resistance to Pratylenchus neglectus and Pratylenchus thornei in Iranian landrace accessions of wheat. Crop Sci 56:654–672. https://doi.org/10.2135/cropsci2015.07.0438

    Article  CAS  Google Scholar 

  13. Hollaway K, Knights S (2022) NVT harvest report – Southern Queensland. GRDC-National Variety Trials. ISSN: 2652-5771 (online)

    Google Scholar 

  14. Figueiredo J, Vieira P, Abrantes I, Esteves I (2022) Potato commercial cultivars exhibit distinct susceptibility to root lesion nematode Pratylenchus penetrans. Horticulturae 8:244. https://doi.org/10.3390/horticulturae8030244

    Article  Google Scholar 

  15. Colen WA (1979) Methods for the extraction of Meloidogyne spp. and other nematodes from roots and soil. In: Lamberti F, Taylor CE (eds) Root-knot nematodes (Meloidogyne spp.) – systematics, biology and control. Academic, London, pp 317–329

    Google Scholar 

  16. Marul J, Pinochet J (1991) Host suitability of Prunus rootstocks to four Meloidogyne species and Pratylenchus vulnus in Spain. Nematropica 21:185–195

    Google Scholar 

  17. Stalin N, Salesses G, Pinochet J, Minot JC, Voisin R, Esmenjaud D (1998) Comparative host suitability to Meloidogyne spp. and Pratylenchus vulnus in Myrobalan plums (Prunus cerasifera). Plant Path 47:211–215

    Article  Google Scholar 

  18. Nyczepir AP, Pinochet J (2001) Assessment of Guardian peach rootstock for resistance to two isolates of Pratylenchus vulnus. J Nematol 33:302–305

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bhuiyan SA, Croft BJ, Stirling GR, Wong E, Jackson P, Cox M (2016) Assessment of resistance to root-lesion and root-knot nematodes in Australian hybrid clones of sugarcane and its wild relatives. Australas Plant Pathol 45:166–173

    Article  Google Scholar 

  20. Dos Santos PR, Viana AP, Gomes VM, da Preisigke SC, Santos EA, Cavalcante NR, De Almeida OF, Walker MA (2018) Clonal selection in interspecific Vitis spp. hybrids resistant to the root-lesion nematode Pratylenchus brachyurus by REML/BLUP. Fruits 73:191–197. https://doi.org/10.17660/th2018/73.3.6

    Article  Google Scholar 

  21. Elsen A, Stoffelen R, Tuyet NT, Bamey H, de Boulois HD, De Waele D (2002) In vitro screening for resistance to Radopholus similis in Musa spp. Plant Sci 163:407–416

    Article  CAS  Google Scholar 

  22. Dochez C, Dusabe J, Tenkouano A, Ortiz R, White J, De Waele D (2013) Screening Musa germplasm for resistance to borrowing nematode populations from Uganda. Genet Resour Crop Evol 60:367–337. https://doi.org/10.1007/s10722-012-9841-7

    Article  Google Scholar 

  23. Sarah JL (1996) A laboratory method for early varietal screening of banana for resistance to nematodes. In: New frontiers in resistance breeding for nematode, Fusarium and Sigatoka. IPGRI, Rome, pp 58–61

    Google Scholar 

  24. Stoffelen R, Verlinden R, Pinochet J, Swennen RL, De Waele D (2000) Host plant response of Fusarium wilt resistant Musa genotype to Radopholus similis and Pratylenchus coffeae. Int J Pest Manag 46:289–293

    Article  Google Scholar 

  25. Manzanilla-Lopez RH, Costilla MA, Doucet M, Franco J, Inserra RN, Lehman PS, Cid Del Prado-Vera I, Souza RM, Evans K (2002) The genus Nacobbus Thorne et Allen, 1944 (Nematoda: Pratylenchidae) systematics, distribution, biology and management. Nematropica 32:149–227

    Google Scholar 

  26. Lax P, Dueñas JCR, Coronel NB, Cardenal CG, Bima P, Doucet ME (2011) Host range of Argentine Nacobbus aberrans sensu Sher populations and comments on the differential host test. Crop Prot 30:1414–1420

    Article  Google Scholar 

  27. Hussey RS, Barker KR (1973) A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Dis Rep 57:1025–1028

    Google Scholar 

  28. Suárez SI, Chavez EJ, Clausen AM, Franco J (2009) Solanum tuber-bearing species behavior against Nacobbus aberrans. J Nematol 41:5–10

    PubMed  PubMed Central  Google Scholar 

  29. Cazarez-Álvarez AA, Mendéz-Inocenzio Zepeda-Jazo I, Fernández-Herrera E, Medina-Medrano JR, Villar-Luna E (2019) Host suitability of five populations of wild tomato (Solanum lycopersicum var. cerasiforme) for nematode Nacobbus aberrans sensu lato. Rev Mex Fitopatol 37:10.18781/r.mex.fit.1905-1

    Google Scholar 

  30. Greco N, Vovlas N (2007) The stem and bulb nematode Ditylenchus dipsaci: a worldwide severe parasite of many crop plants. Fitopatologia Venezuelana 20:2–14

    Google Scholar 

  31. Dijkstra J (1956) Experience with breeding of red clover resistant to the stem eelworm. Euphytica 5:298–307

    Article  Google Scholar 

  32. Williams WM (1972) Laboratory screening of white clover for resistance to stem nematode. N Z J Agric 15:363–370

    Article  Google Scholar 

  33. Whithehead AG, Fraser JE, Nichols AJF (1987) Variation in the development of stem nematode, Ditylenchus dipsaci, in susceptible and resistant crop plants. Ann Appl Biol 111:373–383

    Article  Google Scholar 

  34. Cook R, Evans DR (1988) Observation on resistance in white clover (Trifolium repens L.) to the stem nematode (Ditylenchus dipsaci (Kühn) Filipjev). J Agric Sci 110:145–154

    Article  Google Scholar 

  35. Storelli A, Kiewnick S, Daub M, Malhein A-K, Schumann M, Beyer W, Keiser A (2021) Virulence and pathogenicity of four Ditylenchus dipsaci populations on sugar beet. Eur J Plant Pathol 161:63–71. https://doi.org/10.1007/s10658-021-22304-w

    Article  CAS  Google Scholar 

  36. Vovlas N, Troccoli A, Palomares-Rius JE, De Luca F, Liébanas G, Landa BB, Subbotin SA, Castillo P (2011) Ditylenchus gigas n. sp. parasitizing broad bean: a new stem nematode singled out from the Ditylenchus dipsaci species complex using a polyphasic approach with molecular phylogeny. Plant Pathol 60:762–775. https://doi.org/10.1111/j.1365-3059.2011.02430.x

    Article  CAS  Google Scholar 

  37. Caubel G, Leclercq D (1989) Estimation de la resistance à la race geant de Ditylenchus dipsaci par les symptoms chez la feverole (Vicia Faba L.). Nematologica 35:216–224

    Article  Google Scholar 

  38. Plowright RA, Caubel G, Mizen KA (2002) Ditylenchus species. In: Starr JL, Cook R, Bridge J (eds) Plant resistance to parasitic nematodes. CAB International, Wallingford, pp 107–139

    Chapter  Google Scholar 

  39. Abbad Andaloussi F (2001) Screening of Vicia faba for resistance to the “giant race” of Ditylenchus dipsaci in Morocco. Nematol Mediterr 29:29–33

    Google Scholar 

  40. Mwaura P, Niere B, Vidal S (2015) Effect of initial population densities of Ditylenchus destructor and D. dipsaci on potato tuber damage and nematode reproduction. Nematology 17:193–202

    Article  Google Scholar 

  41. Smaliev H, Markova D (2015) Resistance of potato cultivars to Ditylenchus dipsaci and Ditylenchus destructor. Sci Technol 5:1–7

    Google Scholar 

  42. De Waele D, Jones BL, Bolton C, van den Berg E (1989) Ditylenchus destructor in hulls and seeds of peanut. J Nematol 21:10–15

    PubMed  PubMed Central  Google Scholar 

  43. Steenkamp S, McDonald AH, De Waele D (2010) Resistance to Ditylenchus africanus present in peanut breeding lines. J Nematol 42:159–165

    PubMed  PubMed Central  Google Scholar 

  44. Haque A, Latif MA (2011) Screening of ufra (Ditylenchus angustus) resistant rice genotypes. Eco-Friendly Agric J 4:527–530

    Google Scholar 

  45. Khanam S, Akanda AM, Ali MA, Kyndt T, Gheisan G (2015) Identification of Bangladeshi rice varieties resistant to ufra disease caused by the nematode Ditylenchus angustus. Crop Prot 79:162–169. https://doi.org/10.1016/j.cropro.2015.09.009

    Article  Google Scholar 

  46. Hui F, Li-hui W, Mao-song L, Yi-jung Z (2014) Assessment of rice cultivars in China for resistance to Aphelenchoides besseyi. J Integr Agric 13:2221–2228

    Article  Google Scholar 

  47. Azizah N, Indarti S, Widiastuti A, Trisyomo YA (2019) Detection and development rate of Aphelenchoides besseyi on various rice seed varieties. Jurnal Perlindungan Tanaman Indonesia 23:305–310

    Article  Google Scholar 

  48. Subbotin SA, Oliveira CJ, Alvarez-Ortega S, Desaeger JA, Row WC, Oversyreet C, Leahy R, Vau S, Inserra RN (2021) The taxonomic status of Aphelenchoides besseyi Christie, 1942 (Nematoda: Aphelenchoididae) populations from the southeastern USA, and description of Aphelenchoides pseudobesseyi sp. n. Nematology 23:381–413

    Article  Google Scholar 

  49. Latif MA, Rahman ML, Bakr MA (1997) Evaluation of inoculation method for white tip disease of rice. J Bangladesh Agric Univ 7:15–19

    Google Scholar 

  50. Xie J, Yang F, Wang Y, Peng Y, Ji H (2019) Studies on the efficiency of different inoculation methods of rice white-tip nematode, Aphelenchoides besseyi. Nematology 21:673–678

    Article  CAS  Google Scholar 

  51. Godoy FMC, Overstreet C, McGawley EC, Hollier CA, Kularathna MT, Khanal C, McInnes B (2019) Incidence of Aphelenchoides besseyi in rice in Louisiana and host status of the most widely planted cultivars. Nematropica 49:107–123

    Google Scholar 

  52. Jamali S, Mousanejad S (2011) Resistance of rice cultivars to white tip disease caused by Aphelenchoides besseyi Christie. J Agric Technol 7:441–447

    Google Scholar 

  53. Parveen R, Khan AA, Imran M, Ansari AA (2003) Response of wheat varieties to the seed gall nematode, Anguina tritici. Nematol Mediterr 31:103–104

    Google Scholar 

  54. Qassem NE, Al-Taae HHW, Thanoon (2021) Screening of varieties of wheat for infestation by the seed gall nematode Anguina tritici. Plant Cell Biotechnol Mol Biol 22:94–105

    Google Scholar 

  55. Tülek A, Kepenekci I, Tülek B, Sakin A (2021) Determination of the reaction of some bread and durum wheat varieties to the wheat seed gall nematode [Anguina tritici (Steinbuch) Filipjev]. Plant Prot Bull 61:13–18. https://doi.org/10.16955/bitkorb.822783

    Article  Google Scholar 

  56. Stetina SR, Smith JR, Ray JD (2014) Identification of Rotylenchulus reniformis resistant Glycine lines. J Nematol 46:1–7

    PubMed  PubMed Central  Google Scholar 

  57. Han J, Locke SP, Herman TK, Schroeder NE, Hartman GL (2022) Evaluation of perennial Glycines species for response to Meloidogyne incognita, Rotylenchulus reniformis, and Pratylenchus penetrans. J Nematol 54. https://doi.org/10.21307/jofnem-2022-001

  58. Thies JA, Merril SB, Corley EL (2002) Red food coloring stain: new safer procedures for staining nematodes in roots and egg masses on root surface. J Nematol 34:179–181

    PubMed  PubMed Central  Google Scholar 

  59. Robinson AF, Bridges AC, Oercival AE (2004) New sources of resistance to reniform (Rotylenchulus reniformis Linford and Oliveira) and root-knot (Meloidogyne incognita Kofoid &White) Chitwood in upland (Gossypium hirsutum L) and Sea Island (G. barbadense L.) cotton. J Cotton Sci 8:191–197

    Google Scholar 

  60. Sipes BS, Schmitt DP (1994) Evaluation of pineapple (Ananas comosus) for host plant resistance and tolerance to Rotylenchulus reniformis and Meloidogyne javanica. Nematropica 24:113–121

    Google Scholar 

  61. Sharma SB, Jain KC, Lingaraju S (2000) Tolerance to reniform nematode (Rotylenchulus reniformis) race A in pigeonpea (Cajanus cajan). Ann Appl Biol 136:247–252

    Article  Google Scholar 

  62. Konan NO, De Proft M, Ruano O, Baduoin J-P, Mergeai G (2014) A screening procedure for evaluating cotton for Rotylenchulus reniformis resistance in controlled conditions. Tropicoltura 32:3–9

    Google Scholar 

  63. Sacks EJ, Robinson AF (2009) Introgression of resistance to reniform nematode (Rotylenchulus reniformis) into upland cotton (Gossypium hirsutum) from Gossypium arboreum and a Gossypium/Gossypium aridum bridging line. Field Crop Res 112:1–6

    Article  Google Scholar 

  64. Ferris H, Zheng L, Walker MA (2012) Resistance of grape rootstock to plant-parasitic nematodes. J Nematol 44:377–386

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Aballay E, Navarro A (2005) Tolerance of some grapevine root-stock to Tylenchulus semipenetrans Cobb 1914 in Chile. Agricultura Técnica (Chile) 65:319–322

    Google Scholar 

  66. Inserra RN, Duncan LW, O’Bannon JH, Fuller SA (1994) Citrus nematode biotypes and resistant citrus rootstocks in Florida. Nematology Circular 205. Gaineswille, FL, USA, Florida Department of Agriculture and Consumer Service, Division of Plant Industry, 4 pp

    Google Scholar 

  67. Walker A (2006) New nematode-resistant rootstocks are nearing release. Foundation Plant Service, FPS Grape Programme Newsletter, November: 8–10

    Google Scholar 

  68. Young TW (1954) An incubation method for collecting endo-parasitic migratory nematodes. Plant Dis Rep 38:794–795

    Google Scholar 

  69. Greco N, D’Addabbo T (1990) Efficient procedure for extracting Tylenchulus semipenetrans from citrus roots. J Nematol 22:590–593

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Galeano M, Verdejo-Lucas S, Sorribas FJ, Ornat C, Forner JB, Alcade A (2003) New citrus selection from Cleopatra mandarin × Poncirus trifoliata with resistance to Tylenchulus semipenetrans Cobb. Nematology 5:227–234

    Article  Google Scholar 

  71. Owen K (2022) A triumph of tolerance: managing the threat to wheat production by the root lesion nematode Pratylenchus thornei in the subtropical grain region of eastern Australia. In: Sikora RA, Desaeger J, Molendijk LPG (eds) Integrated nematode management: state-of-the-art and vision for the future. CABI, Wallingford, pp 13–19

    Google Scholar 

  72. Mwaura P, Niere B, Vidal S (2015) Resistance and tolerance of potato varieties to potato rot nematode (Ditylenchus destructor) and stem nematode (Ditylenchus dipsaci). Ann Appl Biol 166:257–270

    Article  Google Scholar 

  73. Seinhorst JW (1957) Some aspect of the biology and ecology of stem eelworm. Nematologica 2(Suppl):355–361

    Google Scholar 

  74. Dasgupta DR, Seshadri AR (1971) Races of the reniform nematode, Rotylenchulus reniformis Linford and Oliveira, 1940. Indian J Nematol 1:21–24

    Google Scholar 

  75. Rao GMVP, Ganguly S (1996) Host preference of six geographical isolates of reniform nematode, Rotylenchulus reniformis. Indian J Nematol 26:19–22

    Google Scholar 

  76. Agudelo P, Robbins RT, Steward JMCD, Szalanski AL (2005) Intraspecific variability of Rotylenchulus reniformis from cotton-growing regions in the United States. J Nematol 37:105–114

    PubMed  PubMed Central  Google Scholar 

  77. Arias RS, Stetina SR, Tonos JL, Scheffler JA, Scheffler BE (2009) Microsatellites reveal genetic diversity in Rotylenchulus reniformis populations. J Nematol 41:146–156

    CAS  PubMed  PubMed Central  Google Scholar 

  78. McGawley ED, Overstreet C, Pontif MJ (2011) Variation in reproduction and pathogenicity of geographic isolates of Rotylenchulus reniformis on soybean. Nematropica 41:12–22

    Google Scholar 

  79. Khanal C, McGawley EC, Overstreet C, Stetina SR, Myers GO, Kularathna MT, McInnes B, Godoy FMC (2018) Reproduction and pathogenicity of endemic populations of Rotylenchulus reniformis in cotton. Nematropica 48:68–81

    Google Scholar 

  80. Khanal C, Khularathna MT, Ray GD, Stetina SR, McGawley EC, Overstreet C (2019) Single nucleotide polymorphism analysis using KASP reveals genetic variability in Rotylenchulus reniformis. Plant Dis 103:1835–1842. https://doi.org/10.1094/PDIS-11-18-1975

    Article  CAS  PubMed  Google Scholar 

  81. Inserra RN, Vovlas N, O’Bannon JH (1980) A classification of Tylenchulus semipenetrans biotypes. J Nematol 12:283–287

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Toktay H, Imren M, Nicol JM, Dadabat A, Elekçioğlu IH (2012) Improved methodology for resistance screening in spring wheat against the root lesion nematode, Pratylenchus thornei (Sher et Allen) (Tylenchida: Pratylenchidae). Türk Entomol Derg 36:533–540

    Google Scholar 

  83. Yavuzaslanoglu E (2019) Resistance and tolerance of commercial onion cultivars to stem and bulb nematode, Ditylenchus dipsaci. J Agric Sci 25:409–416. https://doi.org/10.15832/ankutbd.440179

    Article  Google Scholar 

  84. Cook DA (1989) Damage to sugar-beet crops by ectoparasitic nematodes, and its control by soil-applied granular pesticides. Crop Prot 8:63–70

    Article  Google Scholar 

  85. Simon ACM, Lopez-Nicora HD, Niblack TL (2022) Impact of plant parasitic nematodes on maize in mid-western USA: an unrecognized or ignored treat to production. In: Sikora RA, Desaeger J, Molendijk LPG (eds) Integrated nematode management: state-of-the art and vision for the future. CABI, Wallingford, pp 34–40

    Google Scholar 

  86. Mueller J (2022) Hoplolaimus columbus: a prime candidate for site-specific management in cotton and soybean production. In: Sikora RA, Desaeger J, Molendijk LPG (eds) Integrated nematode management: state-of-the art and vision for the future. CABI, Wallingford, pp 80–86

    Google Scholar 

  87. Gowen SR, Quénéhervé P, Fogain R (2005) Nematode parasites of bananas and plantains. In: Luc M, Sikora RA, Bridge J (eds) Plant parasitic nematodes in subtropical and tropical agriculture, 2nd edn. CABI Publishing, Wallingford, pp 611–643

    Chapter  Google Scholar 

  88. Zasada I, Forge T (2022) Ectoparasitic nematodes: emerging challenge to wine grape production in the Pacific northwest of North America. In: Sikora RA, Desaeger J, Molendijk LPG (eds) Integrated nematode management: state-of-the art and vision for the future. CABI, Wallingford, pp 192–198

    Google Scholar 

  89. Holgado R, Oppen Skau KA, Magnusson C (2009) Field damage in potato by lesion nematode Pratylenchus penetrans, its association with tuber symptoms and its survival in storage. Nematol Medit 37:25–29

    Google Scholar 

  90. EFSA Panel on Plant Health (PLH) (2014) Scientific opinion on the pest categorization of Ditylenchus destructor Thorne. EFSA J 12:3834

    Google Scholar 

  91. Lamberti F, Greco N (1974) Piante coltivate ospiti di Ditylenchus dipsaci (Kühn) Filipjev. Nematol Meditrr 2:159–164

    Google Scholar 

  92. Greco N, Brandonisio A, Boncoraglio P (2002) Investigations on Ditylenchus dipsaci damaging carrot in Italy. Nematol Meditrr 30:139–146

    Google Scholar 

  93. Hanna MR, Hawn EJ (1965) Seedling inoculation studies with alfalfa stem nematode. Can J Plant Sci 45:357–363

    Article  Google Scholar 

Download references

Acknowledgments

I wish to thank all journals and colleagues who have granted permissions to reuse their figures; Dr. Graham Stirling, Australia, for the useful suggestions; and Dr. Alberto Troccoli, Italy, for the great work done with figures.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Greco, N. (2024). Detection of Resistance, Susceptibility, Tolerance, and Virulence in Plant–Nematode Interactions: Part II: Migratory and Semi-endoparasitic Nematodes. In: Molinari, S. (eds) Plant-Nematode Interactions. Methods in Molecular Biology, vol 2756. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3638-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3638-1_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3637-4

  • Online ISBN: 978-1-0716-3638-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics