Skip to main content

Targeting Mitochondrial Dynamics as a Restorative Approach in the Treatment of Alzheimer’s Disease

  • Chapter
  • First Online:
Deciphering Drug Targets for Alzheimer’s Disease

Abstract

The progressive damage and deprivation of neuronal cholinergic neurons lead to critical loss of learning and memory-based brain function, characterized as Alzheimer’s disease (AD). This disorder is associated with two main hall marker proteins in neurofibrillary tangles, i.e. amyloid-beta (Aβ) plaques and hyperphosphorylated tau along with α-synuclein, but none of them explains the complete aetiology of AD. Various attempts have been made to relate the complex interlinkage of tau and Aβ proteins with many other proteins to understand the pathophysiology of AD. Mitochondrial dynamics—a fusion and fission balance—has been linked to AD as its imbalance leads to elevated fragmentation of mitochondria and irregular mitochondrial distribution resulting in neuronal apoptosis and decline of cognitive function leading to AD. Aβ plaque formation in neuronal mitochondria imbalances the mitochondrial dynamic process by increasing the fission and reducing the fusion phenomenon. In this chapter, we tried to explore the role of different proteins such as Drp1, Fis1, Mff, MiD49, MiD51, and endophilin-B1 (mitochondrial fission proteins) and Mfn1/2, Opa1, Oma1, HDAC6, AIM2, and cAMP/PKA (mitochondrial fusion proteins) in the progression of AD, which would be targeted as potential targets for the treatment of AD in future.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

AIM2:

Absent in melanoma 2

APP:

Amyloid precursor protein

Aẞ:

Amyloid-beta

Ca2+:

Calcium

CL:

Cardiolipin

Drp1:

Dynamin-related protein 1

ER:

Endoplasmic reticulum

ETC:

Electron transport chain

Fis1:

Mitochondrial fission protein 1

HDAC6:

Histone deacetylase 6

IMM:

Inner mitochondrial membrane

l-OPA1:

Long-type optic atrophy protein 1

MAPT:

Microtubule-associated protein tau

Mff:

Mitochondrial fission factor

Mfn1/2:

Mitofusins 1 and 2

MiD49 and MiD51:

Mitochondrial dynamics proteins of 49 and 51 kDa

Oma1:

Overlapping with the M-AAA protease homolog

OMM:

Outer mitochondrial membrane

Opa1:

Optic atrophy protein 1

PS1:

Presenilin 1

PS2:

Presenilin 2

s-OPA1:

Short-type optic atrophy protein 1

SPs:

Senile plaques

YME1L:

Yeast mitochondrial AAA metalloprotease like 1 ATPase

References

  • Anand R, Wai T, Baker MJ, Kladt N, Schauss AC, Rugarli E, Langer T (2014) The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J Cell Biol 204(6):919–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anand A, Patience AA, Sharma N, Khurana N (2017) The present and future of pharmacotherapy of Alzheimer’s disease: a comprehensive review. Eur J Pharmacol 815:364–375

    Article  CAS  PubMed  Google Scholar 

  • Atkins K, Dasgupta A, Chen K-H, Mewburn J, Archer SL (2016) The role of Drp1 adaptor proteins MiD49 and MiD51 in mitochondrial fission: implications for human disease. Clin Sci 130(21):1861–1874

    Article  CAS  Google Scholar 

  • Binder LI, Guillozet-Bongaarts AL, Garcia-Sierra F, Berry RW (2005) Tau, tangles, and Alzheimer’s disease. Biochim Biophys Acta 1739(2-3):216–223

    Article  CAS  PubMed  Google Scholar 

  • Bird TD (2018) Alzheimer disease overview. GeneReviews® [Internet]

    Google Scholar 

  • Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 3(3):186–191

    Article  PubMed  Google Scholar 

  • Brunette RL, Young JM, Whitley DG, Brodsky IE, Malik HS, Stetson DB (2012) Extensive evolutionary and functional diversity among mammalian AIM2-like receptors. J Exp Med 209(11):1969–1983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calabrò M, Rinaldi C, Santoro G, Crisafulli C (2021) The biological pathways of Alzheimer disease: a review. AIMS Neurosci 8(1):86

    Article  PubMed  Google Scholar 

  • Caspersen C, Wang N, Yao J, Sosunov A, Chen X, Lustbader JW, Xu HW, Stern D, McKhann G, Du Yan S (2005) Mitochondrial Aβ: a potential focal point for neuronal metabolic dysfunction in Alzheimer’s disease. FASEB J 19(14):2040–2041

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Huang X, Zhang Y-W, Rockenstein E, Bu G, Golde TE, Masliah E, Xu H (2012) Alzheimer’s β-secretase (BACE1) regulates the cAMP/PKA/CREB pathway independently of β-amyloid. J Neurosci 32(33):11390–11395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choubey D (2012) DNA-responsive inflammasomes and their regulators in autoimmunity. Clin Immunol 142(3):223–231

    Article  CAS  PubMed  Google Scholar 

  • Choubey D (2019) Type I interferon (IFN)-inducible absent in Melanoma 2 proteins in neuroinflammation: implications for Alzheimer’s disease. J Neuroinflammation 16(1):1–10

    Article  Google Scholar 

  • Connolly DJ, Bowie AG (2014) The emerging role of human PYHIN proteins in innate immunity: implications for health and disease. Biochem Pharmacol 92(3):405–414

    Article  CAS  PubMed  Google Scholar 

  • Coyle JT, Price DL, DeLong MR (1983) Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science 219(4589):1184–1190

    Article  CAS  PubMed  Google Scholar 

  • Cuddeback SM, Yamaguchi H, Komatsu K, Miyashita T, Yamada M, Wu C, Singh S, Wang H-G (2001) Molecular cloning and characterization of Bif-1: a novel Src homology 3 domain-containing protein that associates with Bax. J Biol Chem 276(23):20559–20565

    Article  CAS  PubMed  Google Scholar 

  • D’Mello SR (2009) Histone deacetylases as targets for the treatment of human neurodegenerative diseases. Drug News Perspect 22(9):513

    Article  PubMed  PubMed Central  Google Scholar 

  • Dickson D, Weller RO (2011) Neurodegeneration: the molecular pathology of dementia and movement disorders. Wiley, Hoboken

    Book  Google Scholar 

  • Du H, Guo L, Yan S, Sosunov AA, McKhann GM, Yan SS (2010) Early deficits in synaptic mitochondria in an Alzheimer’s disease mouse model. Proc Natl Acad Sci 107(43):18670–18675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DuBoff B, Feany M, Götz J (2013) Why size matters–balancing mitochondrial dynamics in Alzheimer’s disease. Trends Neurosci 36(6):325–335

    Article  CAS  PubMed  Google Scholar 

  • Duvezin-Caubet S, Jagasia R, Wagener J, Hofmann S, Trifunovic A, Hansson A, Chomyn A, Bauer MF, Attardi G, Larsson N-G (2006) Proteolytic processing of OPA1 links mitochondrial dysfunction to alterations in mitochondrial morphology. J Biol Chem 281(49):37972–37979

    Article  CAS  PubMed  Google Scholar 

  • Fischer A, Sananbenesi F, Mungenast A, Tsai L-H (2010) Targeting the correct HDAC (s) to treat cognitive disorders. Trends Pharmacol Sci 31(12):605–617

    Article  CAS  PubMed  Google Scholar 

  • Fitzmaurice C, Allen C, Barber RM, Barregard L, Bhutta ZA, Brenner H, Dicker DJ, Chimed-Orchir O, Dandona R, Dandona L (2017) Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. JAMA Oncol 3(4):524–548

    Article  PubMed  Google Scholar 

  • Fröhlich C, Grabiger S, Schwefel D, Faelber K, Rosenbaum E, Mears J, Rocks O, Daumke O (2013) Structural insights into oligomerization and mitochondrial remodelling of dynamin 1-like protein. EMBO J 32(9):1280–1292

    Article  PubMed  PubMed Central  Google Scholar 

  • Fülöp L, Rajki A, Katona D, Szanda G, Spät A (2013) Extramitochondrial OPA1 and adrenocortical function. Mol Cell Endocrinol 381(1-2):70–79

    Article  PubMed  Google Scholar 

  • Gandre-Babbe S, van der Bliek AM (2008) The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells. Mol Biol Cell 19(6):2402–2412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guedes-Dias P, de Proença J, Soares TR, Leitão-Rocha A, Pinho BR, Duchen MR, Oliveira JM (2015) HDAC6 inhibition induces mitochondrial fusion, autophagic flux and reduces diffuse mutant huntingtin in striatal neurons. Biochim Biophys Acta 1852(11):2484–2493

    Article  CAS  PubMed  Google Scholar 

  • Hiltunen M, Mannermaa A, Thompson D, Easton D, Pirskanen M, Helisalmi S, Koivisto A, Lehtovirta M, Ryynänen M, Soininen H (2001) Genome-wide linkage disequilibrium mapping of late-onset Alzheimer’s disease in Finland. Neurology 57(9):1663–1668

    Article  CAS  PubMed  Google Scholar 

  • Ishihara N, Fujita Y, Oka T, Mihara K (2006) Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO J 25(13):2966–2977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James DI, Parone PA, Mattenberger Y, Martinou J-C (2003) hFis1, a novel component of the mammalian mitochondrial fission machinery. J Biol Chem 278(38):36373–36379

    Article  CAS  PubMed  Google Scholar 

  • Ju W-K, Shim MS, Kim K-Y, Park TL, Ahn S, Edwards G, Weinreb RN (2019) Inhibition of cAMP/PKA pathway protects optic nerve head astrocytes against oxidative stress by Akt/Bax phosphorylation-mediated Mfn1/2 oligomerization. Oxidative Med Cell Longev 2019:8060962

    Article  Google Scholar 

  • Kandimalla R, Manczak M, Pradeepkiran JA, Morton H, Reddy PH (2021) A partial reduction of Drp1 improves cognitive behavior and enhances mitophagy, autophagy and dendritic spines in a transgenic tau mouse model of Alzheimer disease. Hum Mol Genet 31(11):1788–1805

    Article  PubMed Central  Google Scholar 

  • Käser M, Kambacheld M, Kisters-Woike B, Langer T (2003) Oma1, a novel membrane-bound metallopeptidase in mitochondria with activities overlapping with the m-AAA protease. J Biol Chem 278(47):46414–46423

    Article  PubMed  Google Scholar 

  • Kumar A, Tsao J (2018) Alzheimer disease. StatPearls, Treasure Island

    Google Scholar 

  • Leboucher GP, Tsai YC, Yang M, Shaw KC, Zhou M, Veenstra TD, Glickman MH, Weissman AM (2012) Stress-induced phosphorylation and proteasomal degradation of mitofusin 2 facilitates mitochondrial fragmentation and apoptosis. Mol Cell 47(4):547–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lees JP, Manlandro CM, Picton LK, Tan AZE, Casares S, Flanagan JM, Fleming KG, Hill RB (2012) A designed point mutant in Fis1 disrupts dimerization and mitochondrial fission. J Mol Biol 423(2):143–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Jiang H, Chang M, Xie H, Hu L (2011) HDAC6 α-tubulin deacetylase: a potential therapeutic target in neurodegenerative diseases. J Neurol Sci 304(1-2):1–8

    Article  CAS  PubMed  Google Scholar 

  • Manczak M, Calkins MJ, Reddy PH (2011) Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer's disease: implications for neuronal damage. Hum Mol Genet 20(13):2495–2509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meeusen S, McCaffery JM, Nunnari J (2004) Mitochondrial fusion intermediates revealed in vitro. Science 305(5691):1747–1752

    Article  CAS  PubMed  Google Scholar 

  • Noh S, Phorl S, Naskar R, Oeum K, Seo Y, Kim E, Kweon H-S, Lee J-Y (2020) p32/C1QBP regulates OMA1-dependent proteolytic processing of OPA1 to maintain mitochondrial connectivity related to mitochondrial dysfunction and apoptosis. Sci Rep 10(1):1–16

    Article  Google Scholar 

  • Nunnari J, Marshall WF, Straight A, Murray A, Sedat JW, Walter P (1997) Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA. Mol Biol Cell 8(7):1233–1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olichon A, Baricault L, Gas N, Guillou E, Valette A, Belenguer P, Lenaers G (2003) Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem 278(10):7743–7746

    Article  CAS  PubMed  Google Scholar 

  • Otera H, Wang C, Cleland MM, Setoguchi K, Yokota S, Youle RJ, Mihara K (2010) Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J Cell Biol 191(6):1141–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Overly CC, Rieff HI, Hollenbeck PJ (1996) Organelle motility and metabolism in axons vs dendrites of cultured hippocampal neurons. J Cell Sci 109(5):971–980

    Article  CAS  PubMed  Google Scholar 

  • Palmer CS, Osellame LD, Laine D, Koutsopoulos OS, Frazier AE, Ryan MT (2011a) MiD49 and MiD51, new components of the mitochondrial fission machinery. EMBO Rep 12(6):565–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer CS, Osellame LD, Stojanovski D, Ryan MT (2011b) The regulation of mitochondrial morphology: intricate mechanisms and dynamic machinery. Cell Signal 23(10):1534–1545

    Article  CAS  PubMed  Google Scholar 

  • Palmer CS, Elgass KD, Parton RG, Osellame LD, Stojanovski D, Ryan MT (2013) Adaptor proteins MiD49 and MiD51 can act independently of Mff and Fis1 in Drp1 recruitment and are specific for mitochondrial fission. J Biol Chem 288(38):27584–27593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez MJ, Vergara-Pulgar K, Jara C, Cabezas-Opazo F, Quintanilla RA (2018) Caspase-cleaved tau impairs mitochondrial dynamics in Alzheimer’s disease. Mol Neurobiol 55(2):1004–1018

    Article  PubMed  Google Scholar 

  • Pham AH, Meng S, Chu QN, Chan DC (2012) Loss of Mfn2 results in progressive, retrograde degeneration of dopaminergic neurons in the nigrostriatal circuit. Hum Mol Genet 21(22):4817–4826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierrat B, Simonen M, Cueto M, Mestan J, Ferrigno P, Heim J (2001) SH3GLB, a new endophilin-related protein family featuring an SH3 domain. Genomics 71(2):222–234

    Article  CAS  PubMed  Google Scholar 

  • Pigino G, Morfini G, Atagi Y, Deshpande A, Yu C, Jungbauer L, LaDu M, Busciglio J, Brady S (2009) Disruption of fast axonal transport is a pathogenic mechanism for intraneuronal amyloid beta. Proc Natl Acad Sci 106(14):5907–5912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popov V, Medvedev NI, Davies HA, Stewart MG (2005) Mitochondria form a filamentous reticular network in hippocampal dendrites but are present as discrete bodies in axons: a three-dimensional ultrastructural study. J Comp Neurol 492(1):50–65

    Article  PubMed  Google Scholar 

  • Qi M, Dai D, Liu J, Li Z, Liang P, Wang Y, Cheng L, Zhan Y, An Z, Song Y (2020) AIM2 promotes the development of non-small cell lung cancer by modulating mitochondrial dynamics. Oncogene 39(13):2707–2723

    Article  CAS  PubMed  Google Scholar 

  • Qiu C, Kivipelto M, Von Strauss E (2009) Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci 11(2):111

    Article  PubMed  PubMed Central  Google Scholar 

  • Quintanilla RA, Tapia-Monsalves C, Vergara EH, Pérez MJ, Aranguiz A (2020) Truncated tau induces mitochondrial transport failure through the impairment of TRAK2 protein and bioenergetics decline in neuronal cells. Front Cell Neurosci 14:175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saha R, Pahan K (2006) HATs and HDACs in neurodegeneration: a tale of disconcerted acetylation homeostasis. Cell Death Differ 13(4):539–550

    Article  CAS  PubMed  Google Scholar 

  • Santarelli R, Rossi R, Scimemi P, Cama E, Valentino ML, La Morgia C, Caporali L, Liguori R, Magnavita V, Monteleone A (2015) OPA1-related auditory neuropathy: site of lesion and outcome of cochlear implantation. Brain 138(3):563–576

    Article  PubMed  PubMed Central  Google Scholar 

  • Saxton WM, Hollenbeck PJ (2012) The axonal transport of mitochondria. J Cell Sci 125(9):2095–2104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sheppard O, Coleman M (2020) Alzheimer’s disease: etiology, neuropathology and pathogenesis. Exon Publications, Brisbane, pp 1–21

    Google Scholar 

  • Sita G, Hrelia P, Graziosi A, Morroni F (2020) Back to the fusion: mitofusin-2 in Alzheimer’s disease. J Clin Med 9(1):126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smirnova E, Griparic L, Shurland D-L, Van Der Bliek AM (2001) Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 12(8):2245–2256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka A, Cleland MM, Xu S, Narendra DP, Suen D-F, Karbowski M, Youle RJ (2010) Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol 191(7):1367–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tilokani L, Nagashima S, Paupe V, Prudent J (2018) Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem 62(3):341–360

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Su B, Perry G, Smith MA, Zhu X (2007) Insights into amyloid-β-induced mitochondrial dysfunction in Alzheimer disease. Free Radic Biol Med 43(12):1569–1573

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Su B, Siedlak SL, Moreira PI, Fujioka H, Wang Y, Casadesus G, Zhu X (2008) Amyloid-β overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc Natl Acad Sci 105(49):19318–19323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Su B, Lee H-G, Li X, Perry G, Smith MA, Zhu X (2009) Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J Neurosci 29(28):9090–9103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Perry G, Smith MA, Zhu X (2010) Amyloid-β-derived diffusible ligands cause impaired axonal transport of mitochondria in neurons. Neurodegener Dis 7(1-3):56–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang DB, Kinoshita Y, Kinoshita C, Uo T, Sopher BL, Cudaback E, Keene CD, Bilousova T, Gylys K, Case A (2015) Loss of endophilin-B1 exacerbates Alzheimer’s disease pathology. Brain 138(7):2005–2019

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang W, Zhao F, Ma X, Perry G, Zhu X (2020) Mitochondria dysfunction in the pathogenesis of Alzheimer’s disease: recent advances. Mol Neurodegener 15(1):1–22

    Article  Google Scholar 

  • Yang D, Ying J, Wang X, Zhao T, Yoon S, Fang Y, Zheng Q, Liu X, Yu W, Hua F (2021) Mitochondrial dynamics: a key role in neurodegeneration and a potential target for neurodegenerative disease. Front Neurosci 15:359

    Article  Google Scholar 

  • Yiannopoulou K, Papageorgiou S (2013) Current and future treatments for Alzheimer’s disease. Ther Adv Neurol Disord 6:19–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Wang R, Hu D, Sun X, Fujioka H, Lundberg K, Chan ER, Wang Q, Xu R, Flanagan ME (2020) Oligodendroglial glycolytic stress triggers inflammasome activation and neuropathology in Alzheimer’s disease. Sci Adv 6(49):eabb8680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Perry G, Smith MA, Wang X (2013) Abnormal mitochondrial dynamics in the pathogenesis of Alzheimer’s disease. J Alzheimers Dis 33(1):253–262

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandey, R., Bisht, P., Kumari, A., Ray, A., Ravichandiran, V., Kumar, N. (2023). Targeting Mitochondrial Dynamics as a Restorative Approach in the Treatment of Alzheimer’s Disease. In: Kumar, D., Patil, V.M., Wu, D., Thorat, N. (eds) Deciphering Drug Targets for Alzheimer’s Disease. Springer, Singapore. https://doi.org/10.1007/978-981-99-2657-2_9

Download citation

Publish with us

Policies and ethics