Skip to main content

Advertisement

Log in

The Role of Cdk5 in Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is known as the most fatal chronic neurodegenerative disease in adults along with progressive loss of memory and other cognitive function disorders. Cyclin-dependent kinase 5 (Cdk5), a unique member of the cyclin-dependent kinases (Cdks), is reported to intimately associate with the process of the pathogenesis of AD. Cdk5 is of vital importance in the development of CNS and neuron movements such as neuronal migration and differentiation, synaptic functions, and memory consolidation. However, when neurons suffer from pathological stimuli, Cdk5 activity becomes hyperactive and causes aberrant hyperphosphorylation of various substrates of Cdk5 like amyloid precursor protein (APP), tau and neurofilament, resulting in neurodegenerative diseases like AD. Deregulation of Cdk5 contributes to an array of pathological events in AD, ranging from formation of senile plaques and neurofibrillary tangles, synaptic damage, mitochondrial dysfunction to cell cycle reactivation as well as neuronal cell apoptosis. More importantly, an inhibition of Cdk5 activity with inhibitors such as RNA inference (RNAi) could protect from memory decline and neuronal cell loss through suppressing β-amyloid (Aβ)-induced neurotoxicity and tauopathies. This review will briefly describe the above-mentioned possible roles of Cdk5 in the physiological and pathological mechanisms of AD, further discussing recent advances and challenges in Cdk5 as a therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jiang T, Chang RC et al (2015) Advances in Alzheimer’s disease: from bench to bedside. Biomed Res Int 2015:202676

    PubMed  PubMed Central  Google Scholar 

  2. Blennow K, de Leon MJ et al (2006) Alzheimer’s disease. Lancet 368(9533):387–403

    Article  CAS  PubMed  Google Scholar 

  3. Papon MA, Whittington RA et al (2011) Alzheimer’s disease and anesthesia. Front Neurosci 4:272

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wimo A, Prince M (2010) World Alzheimer Report 2010: the global economic impact of dementia (London: Alzheimer’s Disease International). Alzheimers Dis Int: 1–56. doi:10.3389/fnins.2010.00272

  5. Asada A, Saito T et al (2012) Phosphorylation of p35 and p39 by Cdk5 determines the subcellular location of the holokinase in a phosphorylation-site-specific manner. J Cell Sci 125(Pt 14):3421–3429

    Article  CAS  PubMed  Google Scholar 

  6. Lee J, Yun N et al (2014) Acetylation of cyclin-dependent kinase 5 is mediated by GCN5. Biochem Biophys Res Commun 447(1):121–127

    Article  CAS  PubMed  Google Scholar 

  7. Kobayashi H, Saito T et al (2014) Phosphorylation of cyclin-dependent kinase 5 (Cdk5) at Tyr-15 is inhibited by Cdk5 activators and does not contribute to the activation of Cdk5. J Biol Chem 289(28):19627–19636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Qu J, Nakamura T et al (2012) S-nitrosylation of Cdk5: potential implications in amyloid-beta-related neurotoxicity in Alzheimer disease. Prion 6(4):364–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sun KH, Chang KH et al (2011) Glutathione-S-transferase P1 is a critical regulator of Cdk5 kinase activity. J Neurochem 118(5):902–914

    Article  CAS  PubMed  Google Scholar 

  10. Takahashi M, Ishida M et al (2014) Valproic acid downregulates Cdk5 activity via the transcription of the p35 mRNA. Biochem Biophys Res Commun 447(4):678–682

    Article  CAS  PubMed  Google Scholar 

  11. Lew J (2013) CDK5: a new lead to survival. Cell Cycle 12(13):1981–1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shah K, Lahiri DK (2014) Cdk5 activity in the brain—multiple paths of regulation. J Cell Sci 127(Pt 11):2391–2400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hisanaga S, Endo R (2010) Regulation and role of cyclin-dependent kinase activity in neuronal survival and death. J Neurochem 115(6):1309–1321

    Article  CAS  PubMed  Google Scholar 

  14. Patrick GN, Zukerberg L et al (1999) Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402(6762):615–622

    Article  CAS  PubMed  Google Scholar 

  15. Quan H, Wu X et al (2014) Overexpression of CDK5 in neural stem cells facilitates maturation of embryonic neurocytes derived from rats in vitro. Cell Biochem Biophys 69(3):445–453

    Article  CAS  PubMed  Google Scholar 

  16. Duhr F, Deleris P et al (2014) Cdk5 induces constitutive activation of 5-HT6 receptors to promote neurite growth. Nat Chem Biol 10(7):590–597

    Article  CAS  PubMed  Google Scholar 

  17. Petrik D, Yun S et al (2013) Early postnatal in vivo gliogenesis from nestin-lineage progenitors requires cdk5. PLoS One 8(8):e72819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. He X, Ishizeki M et al (2014) Cdk5/p35 is required for motor coordination and cerebellar plasticity. J Neurochem 131(1):53–64

    Article  CAS  PubMed  Google Scholar 

  19. Kumazawa A, Mita N et al (2013) Cyclin-dependent kinase 5 is required for normal cerebellar development. Mol Cell Neurosci 52:97–105

    Article  CAS  PubMed  Google Scholar 

  20. Buchner A, Krumova P et al (2015) Sumoylation of p35 modulates p35/cyclin-dependent kinase (Cdk) 5 complex activity. Neuromol Med 17(1):12–23 

  21. Ye T, Ip JP et al (2014) Cdk5-mediated phosphorylation of RapGEF2 controls neuronal migration in the developing cerebral cortex. Nat Commun 5:4826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nishimura YV, Sekine K et al (2010) Dissecting the factors involved in the locomotion mode of neuronal migration in the developing cerebral cortex. J Biol Chem 285(8):5878–5887

    Article  CAS  PubMed  Google Scholar 

  23. Tanabe K, Yamazaki H et al (2014) Phosphorylation of drebrin by cyclin-dependent kinase 5 and its role in neuronal migration. PLoS One 9(3):e92291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Worth DC, Daly CN et al (2013) Drebrin contains a cryptic F-actin-bundling activity regulated by Cdk5 phosphorylation. J Cell Biol 202(5):793–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Contreras-Vallejos E, Utreras E et al (2014) Searching for novel Cdk5 substrates in brain by comparative phosphoproteomics of wild type and Cdk5-/- mice. PLoS One 9(3):e90363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Utreras E, Henriquez D et al (2013) Cdk5 regulates Rap1 activity. Neurochem Int 62(6):848–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Takahashi S, Ohshima T et al (2010) Conditional deletion of neuronal cyclin-dependent kinase 5 in developing forebrain results in microglial activation and neurodegeneration. Am J Pathol 176(1):320–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wong AS, Lee RH et al (2011) Cdk5-mediated phosphorylation of endophilin B1 is required for induced autophagy in models of Parkinson’s disease. Nat Cell Biol 13(5):568–579

    Article  CAS  PubMed  Google Scholar 

  29. Yang Y, Wang H et al (2013) Cyclin dependent kinase 5 is required for the normal development of oligodendrocytes and myelin formation. Dev Biol 378(2):94–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mita N, He X et al (2014) Cyclin-dependent kinase 5 regulates dendritic spine formation and maintenance of cortical neuron in the mouse brain. Cereb Cortex. doi:10.1093/cercor/bhu264

  31. Nishimura YV, Shikanai M et al (2014) Cdk5 and its substrates, Dcx and p27kip1, regulate cytoplasmic dilation formation and nuclear elongation in migrating neurons. Development 141(18):3540–3550

    Article  CAS  PubMed  Google Scholar 

  32. Antoniou X, Gassmann M et al (2011) Cdk5 interacts with Hif-1alpha in neurons: a new hypoxic signalling mechanism? Brain Res 1381:1–10

    Article  CAS  PubMed  Google Scholar 

  33. Jeong J, Park YU et al (2013) Cdk5 phosphorylates dopamine D2 receptor and attenuates downstream signaling. PLoS One 8(12):e84482

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Lee MS, Kwon YT et al (2000) Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405(6784):360–364

    Article  CAS  PubMed  Google Scholar 

  35. Tseng HC, Zhou Y et al (2002) A survey of Cdk5 activator p35 and p25 levels in Alzheimer’s disease brains. FEBS Lett 523(1-3):58–62

    Article  CAS  PubMed  Google Scholar 

  36. Taniguchi S, Fujita Y et al (2001) Calpain-mediated degradation of p35 to p25 in postmortem human and rat brains. FEBS Lett 489(1):46–50

    Article  CAS  PubMed  Google Scholar 

  37. Zhou J, Li H et al (2015) The roles of Cdk5-mediated subcellular localization of FOXO1 in neuronal death. J Neurosci 35(6):2624–2635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chang KH, Multani PS et al (2011) Nuclear envelope dispersion triggered by deregulated Cdk5 precedes neuronal death. Mol Biol Cell 22(9):1452–1462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Wen Z, Shu Y et al (2014) CDK5-mediated phosphorylation and autophagy of RKIP regulate neuronal death in Parkinson’s disease. Neurobiol Aging 35(12):2870–2880

    Article  CAS  PubMed  Google Scholar 

  40. Guan JS, Su SC et al (2011) Cdk5 is required for memory function and hippocampal plasticity via the cAMP signaling pathway. PLoS One 6(9):e25735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Huang E, Qu D et al (2010) The role of Cdk5-mediated apurinic/apyrimidinic endonuclease 1 phosphorylation in neuronal death. Nat Cell Biol 12(6):563–571

    Article  CAS  PubMed  Google Scholar 

  42. Zhong P, Liu X et al (2014) Cyclin-dependent kinase 5 in the ventral tegmental area regulates depression-related behaviors. J Neurosci 34(18):6352–6366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Su SC, Rudenko A et al (2013) Forebrain-specific deletion of Cdk5 in pyramidal neurons results in mania-like behavior and cognitive impairment. Neurobiol Learn Mem 105:54–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Crews L, Patrick C et al (2011) Modulation of aberrant CDK5 signaling rescues impaired neurogenesis in models of Alzheimer’s disease. Cell Death Dis 2:e120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Barucker C, Sommer A et al (2015) Alzheimer amyloid peptide Abeta42 regulates gene expression of transcription and growth factors. J Alzheimers Dis 44(2):613–624

  46. Mawuenyega KG, Sigurdson W et al (2010) Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 330(6012):1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bergmans BA, De Strooper B (2010) Gamma-secretases: from cell biology to therapeutic strategies. Lancet Neurol 9(2):215–226

    Article  CAS  PubMed  Google Scholar 

  48. Esler WP, Wolfe MS (2001) A portrait of Alzheimer secretases—new features and familiar faces. Science 293(5534):1449–1454

    Article  CAS  PubMed  Google Scholar 

  49. Palop JJ, Mucke L (2010) Amyloid-beta-induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat Neurosci 13(7):812–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bertram L, Lill CM et al (2010) The genetics of Alzheimer disease: back to the future. Neuron 68(2):270–281

    Article  CAS  PubMed  Google Scholar 

  51. Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362(4):329–344

    Article  CAS  PubMed  Google Scholar 

  52. Zempel H, Thies E et al (2010) Abeta oligomers cause localized Ca(2+) elevation, missorting of endogenous Tau into dendrites, Tau phosphorylation, and destruction of microtubules and spines. J Neurosci 30(36):11938–11950

    Article  CAS  PubMed  Google Scholar 

  53. Liu F, Su Y et al (2003) Regulation of amyloid precursor protein (APP) phosphorylation and processing by p35/Cdk5 and p25/Cdk5. FEBS Lett 547(1-3):193–196

    Article  CAS  PubMed  Google Scholar 

  54. Zheng YL, Kesavapany S et al (2005) A Cdk5 inhibitory peptide reduces tau hyperphosphorylation and apoptosis in neurons. EMBO J 24(1):209–220

    Article  CAS  PubMed  Google Scholar 

  55. Cruz JC, Tseng HC et al (2003) Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Neuron 40(3):471–483

    Article  CAS  PubMed  Google Scholar 

  56. Lau KF, Howlett DR et al (2002) Cyclin-dependent kinase-5/p35 phosphorylates Presenilin 1 to regulate carboxy-terminal fragment stability. Mol Cell Neurosci 20(1):13–20

    Article  CAS  PubMed  Google Scholar 

  57. Matrone C, Marolda R et al (2009) Tyrosine kinase nerve growth factor receptor switches from prosurvival to proapoptotic activity via Abeta-mediated phosphorylation. Proc Natl Acad Sci U S A 106(27):11358–11363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cruz JC, Tsai LH (2004) Cdk5 deregulation in the pathogenesis of Alzheimer’s disease. Trends Mol Med 10(9):452–458

    Article  CAS  PubMed  Google Scholar 

  59. Holsinger RM, McLean CA et al (2002) Increased expression of the amyloid precursor beta-secretase in Alzheimer’s disease. Ann Neurol 51(6):783–786

    Article  CAS  PubMed  Google Scholar 

  60. Shukla V, Skuntz S et al (2012) Deregulated Cdk5 activity is involved in inducing Alzheimer’s disease. Arch Med Res 43(8):655–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mandelkow EM, Mandelkow E (2012) Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb Perspect Med 2(7):a006247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Castro-Alvarez JF, Uribe-Arias SA et al (2014) Long- and short-term CDK5 knockdown prevents spatial memory dysfunction and tau pathology of triple transgenic Alzheimer’s mice. Front Aging Neurosci 6:243

    PubMed  PubMed Central  Google Scholar 

  63. Kimura T, Tsutsumi K et al (2013) Isomerase Pin1 stimulates dephosphorylation of tau protein at cyclin-dependent kinase (Cdk5)-dependent Alzheimer phosphorylation sites. J Biol Chem 288(11):7968–7977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Piedrahita D, Hernandez I et al (2010) Silencing of CDK5 reduces neurofibrillary tangles in transgenic Alzheimer’s mice. J Neurosci 30(42):13966–13976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Castro-Alvarez JF, Uribe-Arias SA et al (2014) Cyclin-dependent kinase 5, a node protein in diminished tauopathy: a systems biology approach. Front Aging Neurosci 6:232

    PubMed  PubMed Central  Google Scholar 

  66. Lopes JP, Oliveira CR et al (2010) Neurodegeneration in an Abeta-induced model of Alzheimer’s disease: the role of Cdk5. Aging Cell 9(1):64–77

    Article  CAS  PubMed  Google Scholar 

  67. Kimura T, Ishiguro K et al (2014) Physiological and pathological phosphorylation of tau by Cdk5. Front Mol Neurosci 7:65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Takashima A, Murayama M et al (2001) Involvement of cyclin dependent kinase5 activator p25 on tau phosphorylation in mouse brain. Neurosci Lett 306(1-2):37–40

    Article  CAS  PubMed  Google Scholar 

  69. Lee S, Hall GF et al (2011) Potentiation of tau aggregation by cdk5 and GSK3beta. J Alzheimers Dis 26(2):355–364

    CAS  PubMed  Google Scholar 

  70. Li X, Wang X et al (2014) Structural basis of valmerins as dual inhibitors of GSK3beta/CDK5. J Mol Model 20(9):2407

    Article  PubMed  CAS  Google Scholar 

  71. Jayapalan S, Natarajan J (2013) The role of CDK5 and GSK3B kinases in hyperphosphorylation of microtubule associated protein tau (MAPT) in Alzheimer’s disease. Bioinformation 9(20):1023–1030

    Article  PubMed  PubMed Central  Google Scholar 

  72. Cuadrado-Tejedor M, Ricobaraza A et al (2011) Chronic mild stress in mice promotes cognitive impairment and CDK5-dependent tau hyperphosphorylation. Behav Brain Res 220(2):338–343

    Article  CAS  PubMed  Google Scholar 

  73. Cancino GI, Perez de Arce K et al (2011) c-Abl tyrosine kinase modulates tau pathology and Cdk5 phosphorylation in AD transgenic mice. Neurobiol Aging 32(7):1249–1261

    Article  CAS  PubMed  Google Scholar 

  74. Lee MS, Tsai LH (2003) Cdk5: one of the links between senile plaques and neurofibrillary tangles? J Alzheimers Dis 5(2):127–137

    CAS  PubMed  Google Scholar 

  75. Chu J, Pratico D (2013) 5-Lipoxygenase pharmacological blockade decreases tau phosphorylation in vivo: involvement of the cyclin-dependent kinase-5. Neurobiol Aging 34(6):1549–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li L, Zhang C et al (2015) Epigenetic modulation of Cdk5 contributes to memory deficiency induced by amyloid fibrils. Exp Brain Res 233(1):165–173

  77. Mota SI, Ferreira IL et al (2014) Dysfunctional synapse in Alzheimer’s disease—a focus on NMDA receptors. Neuropharmacology 76 Pt A:16–26

    Article  PubMed  CAS  Google Scholar 

  78. Price KA, Varghese M et al (2014) Altered synaptic structure in the hippocampus in a mouse model of Alzheimer’s disease with soluble amyloid-beta oligomers and no plaque pathology. Mol Neurodegener 9:41

    Article  PubMed  PubMed Central  Google Scholar 

  79. Su SC, Seo J et al (2012) Regulation of N-type voltage-gated calcium channels and presynaptic function by cyclin-dependent kinase 5. Neuron 75(4):675–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mishiba T, Tanaka M et al (2014) Cdk5/p35 functions as a crucial regulator of spatial learning and memory. Mol Brain 7(1):82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Maeder CI, Shen K et al (2014) Axon and dendritic trafficking. Curr Opin Neurobiol 27:165–170

    Article  CAS  PubMed  Google Scholar 

  82. Kim SH, Ryan TA (2010) CDK5 serves as a major control point in neurotransmitter release. Neuron 67(5):797–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Marra V, Burden JJ et al (2012) A preferentially segregated recycling vesicle pool of limited size supports neurotransmission in native central synapses. Neuron 76(3):579–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Xin X, Ferraro F et al (2004) Cdk5 and Trio modulate endocrine cell exocytosis. J Cell Sci 117(Pt 20):4739–4748

    Article  CAS  PubMed  Google Scholar 

  85. Peng YR, Hou ZH et al (2013) The kinase activity of EphA4 mediates homeostatic scaling-down of synaptic strength via activation of Cdk5. Neuropharmacology 65:232–243

    Article  CAS  PubMed  Google Scholar 

  86. Tan TC, Valova VA et al (2003) Cdk5 is essential for synaptic vesicle endocytosis. Nat Cell Biol 5(8):701–710

    Article  CAS  PubMed  Google Scholar 

  87. Goodwin PR, Sasaki JM et al (2012) Cyclin-dependent kinase 5 regulates the polarized trafficking of neuropeptide-containing dense-core vesicles in Caenorhabditis elegans motor neurons. J Neurosci 32(24):8158–8172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ou CY, Poon VY et al (2010) Two cyclin-dependent kinase pathways are essential for polarized trafficking of presynaptic components. Cell 141(5):846–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Easley-Neal C, Fierro J Jr et al (2013) Late recruitment of synapsin to nascent synapses is regulated by Cdk5. Cell Rep 3(4):1199–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Plattner F, Hernandez A et al (2014) Memory enhancement by targeting Cdk5 regulation of NR2B. Neuron 81(5):1070–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bianchetta MJ, Lam TT et al (2011) Cyclin-dependent kinase 5 regulates PSD-95 ubiquitination in neurons. J Neurosci 31(33):12029–12035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yang L, Gu X et al (2014) Cdk5 inhibitor roscovitine alleviates neuropathic pain in the dorsal root ganglia by downregulating N-methyl-D-aspartate receptor subunit 2A. Neurol Sci 35(9):1365–1371

    Article  PubMed  Google Scholar 

  93. Brittain JM, Wang Y et al (2012) Cdk5-mediated phosphorylation of CRMP-2 enhances its interaction with CaV2.2. FEBS Lett 586(21):3813–3818

    Article  CAS  PubMed  Google Scholar 

  94. Fu AK, Fu WY et al (2001) Cdk5 is involved in neuregulin-induced AChR expression at the neuromuscular junction. Nat Neurosci 4(4):374–381

    Article  CAS  PubMed  Google Scholar 

  95. Higuchi O, Yamanashi Y (2011) Molecular mechanisms underlying the formation of neuromuscular junction. Brain Nerve 63(7):649–655

    CAS  PubMed  Google Scholar 

  96. Fu AK, Fu WY et al (2004) Cyclin-dependent kinase 5 phosphorylates signal transducer and activator of transcription 3 and regulates its transcriptional activity. Proc Natl Acad Sci U S A 101(17):6728–6733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hou H, Sun L et al (2013) Synaptic NMDA receptor stimulation activates PP1 by inhibiting its phosphorylation by Cdk5. J Cell Biol 203(3):521–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lai KO, Wong AS et al (2012) TrkB phosphorylation by Cdk5 is required for activity-dependent structural plasticity and spatial memory. Nat Neurosci 15(11):1506–1515

    Article  CAS  PubMed  Google Scholar 

  99. Kim Y, Sung JY et al (2006) Phosphorylation of WAVE1 regulates actin polymerization and dendritic spine morphology. Nature 442(7104):814–817

    Article  CAS  PubMed  Google Scholar 

  100. Barros-Minones L, Martin-de-Saavedra D et al (2013) Inhibition of calpain-regulated p35/cdk5 plays a central role in sildenafil-induced protection against chemical hypoxia produced by malonate. Biochim Biophys Acta 1832(6):705–717

    Article  CAS  PubMed  Google Scholar 

  101. Gong X, Tang X et al (2003) Cdk5-mediated inhibition of the protective effects of transcription factor MEF2 in neurotoxicity-induced apoptosis. Neuron 38(1):33–46

    Article  CAS  PubMed  Google Scholar 

  102. Fang WQ, Ip JP et al (2011) Cdk5-mediated phosphorylation of Axin directs axon formation during cerebral cortex development. J Neurosci 31(38):13613–13624

    Article  CAS  PubMed  Google Scholar 

  103. Takano T, Tomomura M et al (2012) LMTK1/AATYK1 is a novel regulator of axonal outgrowth that acts via Rab11 in a Cdk5-dependent manner. J Neurosci 32(19):6587–6599

    Article  CAS  PubMed  Google Scholar 

  104. Qu J, Nakamura T et al (2011) S-Nitrosylation activates Cdk5 and contributes to synaptic spine loss induced by beta-amyloid peptide. Proc Natl Acad Sci U S A 108(34):14330–14335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhang P, Yu PC et al (2010) S-nitrosylation of cyclin-dependent kinase 5 (cdk5) regulates its kinase activity and dendrite growth during neuronal development. J Neurosci 30(43):14366–14370

    Article  CAS  PubMed  Google Scholar 

  106. van der Zee EA (2015) Synapses, spines and kinases in mammalian learning and memory, and the impact of aging. Neurosci Biobehav Rev 50:77–85 

  107. Yuzaki M (2011) Cbln1 and its family proteins in synapse formation and maintenance. Curr Opin Neurobiol 21(2):215–220

    Article  CAS  PubMed  Google Scholar 

  108. Samuels BA, Hsueh YP et al (2007) Cdk5 promotes synaptogenesis by regulating the subcellular distribution of the MAGUK family member CASK. Neuron 56(5):823–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Liu W, Zhang Y et al (2012) Nestin protects mouse podocytes against high glucose-induced apoptosis by a Cdk5-dependent mechanism. J Cell Biochem 113(10):3186–3196

    Article  CAS  PubMed  Google Scholar 

  110. Chang KH, de Pablo Y et al (2010) Cdk5 is a major regulator of p38 cascade: relevance to neurotoxicity in Alzheimer’s disease. J Neurochem 113(5):1221–1229

    CAS  PubMed  Google Scholar 

  111. Li X, Zhang HM et al (2012) Changes of cdk5, p35 and p53 gene expression levels in arsenic-induced neural cell apoptosis. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 30(2):85–88

    PubMed  Google Scholar 

  112. Tian B, Yang Q et al (2009) Phosphorylation of ATM by Cdk5 mediates DNA damage signalling and regulates neuronal death. Nat Cell Biol 11(2):211–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Li BS, Zhang L et al (2002) Cyclin-dependent kinase 5 prevents neuronal apoptosis by negative regulation of c-Jun N-terminal kinase 3. EMBO J 21(3):324–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kim D, Frank CL et al (2008) Deregulation of HDAC1 by p25/Cdk5 in neurotoxicity. Neuron 60(5):803–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Brambrink AM, Evers AS et al (2010) Isoflurane-induced neuroapoptosis in the neonatal rhesus macaque brain. Anesthesiology 112(4):834–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Jiang H, Huang Y et al (2012) Hypoxia inducible factor-1alpha is involved in the neurodegeneration induced by isoflurane in the brain of neonatal rats. J Neurochem 120(3):453–460

    Article  CAS  PubMed  Google Scholar 

  117. Wang WY, Luo Y et al (2014) Inhibition of aberrant cyclin-dependent kinase 5 activity attenuates isoflurane neurotoxicity in the developing brain. Neuropharmacology 77:90–99

    Article  CAS  PubMed  Google Scholar 

  118. Ke K, Shen J et al (2015) CDK5 contributes to neuronal apoptosis via promoting MEF2D phosphorylation in rat model of intracerebral hemorrhage. J Mol Neurosci 56(1):48–59

  119. Kawauchi T, Shikanai M et al (2013) Extra-cell cycle regulatory functions of cyclin-dependent kinases (CDK) and CDK inhibitor proteins contribute to brain development and neurological disorders. Genes Cells 18(3):176–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lopes JP, Blurton-Jones M et al (2009) Activation of cell cycle proteins in transgenic mice in response to neuronal loss but not amyloid-beta and tau pathology. J Alzheimers Dis 16(3):541–549

    CAS  PubMed  Google Scholar 

  121. Lopes JP, Oliveira CR et al (2009) Cdk5 acts as a mediator of neuronal cell cycle re-entry triggered by amyloid-beta and prion peptides. Cell Cycle 8(1):97–104

    Article  CAS  PubMed  Google Scholar 

  122. Zhang J, Li H et al (2010) Cdk5 suppresses the neuronal cell cycle by disrupting the E2F1-DP1 complex. J Neurosci 30(15):5219–5228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Minegishi S, Asada A et al (2010) Membrane association facilitates degradation and cleavage of the cyclin-dependent kinase 5 activators p35 and p39. Biochemistry 49(26):5482–5493

    Article  CAS  PubMed  Google Scholar 

  124. Chang KH, Vincent F et al (2012) Deregulated Cdk5 triggers aberrant activation of cell cycle kinases and phosphatases inducing neuronal death. J Cell Sci 125(Pt 21):5124–5137

    Article  CAS  PubMed  Google Scholar 

  125. Park J, Choi H et al (2015) Loss of mitofusin 2 links beta-amyloid-mediated mitochondrial fragmentation and Cdk5-induced oxidative stress in neuron cells. J Neurochem 132(6):687–702

  126. Cho B, Cho HM et al (2014) CDK5-dependent inhibitory phosphorylation of Drp1 during neuronal maturation. Exp Mol Med 46:e105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Fitzgerald JC, Camprubi MD et al (2012) Phosphorylation of HtrA2 by cyclin-dependent kinase-5 is important for mitochondrial function. Cell Death Differ 19(2):257–266

    Article  CAS  PubMed  Google Scholar 

  128. Weishaupt JH, Kussmaul L et al (2003) Inhibition of CDK5 is protective in necrotic and apoptotic paradigms of neuronal cell death and prevents mitochondrial dysfunction. Mol Cell Neurosci 24(2):489–502

    Article  CAS  PubMed  Google Scholar 

  129. Wu S, Zhou F et al (2011) Mitochondrial oxidative stress causes mitochondrial fragmentation via differential modulation of mitochondrial fission-fusion proteins. FEBS J 278(6):941–954

    Article  CAS  PubMed  Google Scholar 

  130. Quintanilla RA, von Bernhardi R et al (2014) Phosphorylated tau potentiates Abeta-induced mitochondrial damage in mature neurons. Neurobiol Dis 71:260–269

    Article  CAS  PubMed  Google Scholar 

  131. Yoshida H, Kong YY et al (1998) Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94(6):739–750

    Article  CAS  PubMed  Google Scholar 

  132. Shi LL, Yang WN et al (2012) The protective effects of tanshinone IIA on neurotoxicity induced by beta-amyloid protein through calpain and the p35/Cdk5 pathway in primary cortical neurons. Neurochem Int 61(2):227–235

    Article  CAS  PubMed  Google Scholar 

  133. Zhang Z, Zhao R, Tang Y, Wen S, Wang D, Qi J (2012) Retraction note to: Fuzhisan, a Chinese herbal medicine, inhibits beta-amyloid-induced neurotoxicity and tau phosphorylation through calpain/Cdk5 pathway in cultured cortical neurons. Neurochem Res 37(4):902

    Article  CAS  Google Scholar 

  134. Tian F, Xu LH et al (2014) The neuroprotective mechanism of puerarin in the treatment of acute spinal ischemia-reperfusion injury is linked to cyclin-dependent kinase 5. Neurosci Lett 584C:50–55

    Google Scholar 

  135. Zheng YL, Amin ND et al (2010) A 24-residue peptide (p5), derived from p35, the Cdk5 neuronal activator, specifically inhibits Cdk5-p25 hyperactivity and tau hyperphosphorylation. J Biol Chem 285(44):34202–34212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (81471309, 81371406, 81171209), the Shandong Provincial Outstanding Medical Academic Professional Program, Qingdao Key Health Discipline Development Fund, Qingdao Outstanding Health Professional Development Fund, and Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lan Tan, Ang Xing or Jin-Tai Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, SL., Wang, C., Jiang, T. et al. The Role of Cdk5 in Alzheimer’s Disease. Mol Neurobiol 53, 4328–4342 (2016). https://doi.org/10.1007/s12035-015-9369-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9369-x

Keywords

Navigation