Skip to main content

Extracellular Vesicles and Fatty Liver

  • Chapter
  • First Online:
Extracellular Vesicles in Cardiovascular and Metabolic Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1418))

Abstract

Fatty liver is a complex pathological process caused by multiple etiologies. In recent years, the incidence of fatty liver has been increasing year by year, and it has developed into a common chronic disease that seriously affects people’s health around the world. It is an important risk factor for liver cirrhosis, liver cancer, and a variety of extrahepatic chronic diseases. Therefore, the early diagnosis and early therapy of fatty liver are important. Except for invasive liver biopsy, there is still a lack of reliable diagnosis and staging methods. Extracellular vesicles are small double-layer lipid membrane vesicles derived from most types of cells. They play an important role in intercellular communication and participate in the occurrence and development of many diseases. Since extracellular vesicles can carry a variety of biologically active substances after they are released by cells, they have received widespread attention. The occurrence and development of fatty liver are also closely related to extracellular vesicles. In addition, extracellular vesicles are expected to provide a new direction for the diagnosis of fatty liver. This article reviews the relationship between extracellular vesicles and fatty liver, laying a theoretical foundation for the development of new strategies for the diagnosis and therapy of fatty liver.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koch M, Nothlings U, Lieb W (2015) Dietary patterns and fatty liver disease. Curr Opin Lipidol 26(1):35–41

    Article  CAS  PubMed  Google Scholar 

  2. Eslam M, Valenti L, Romeo S (2018) Genetics and epigenetics of NAFLD and NASH: clinical impact. J Hepatol 68(2):268–279

    Article  CAS  PubMed  Google Scholar 

  3. Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, George J, Bugianesi E (2018) Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 15(1):11–20

    Article  PubMed  Google Scholar 

  4. Sayiner M, Arshad T, Golabi P, Paik J, Farhat F, Younossi ZM (2020) Extrahepatic manifestations and healthcare expenditures of non-alcoholic fatty liver disease in the medicare population. Hepatol Int 14(4):556–566

    Article  PubMed  Google Scholar 

  5. Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ (2018) Mechanisms of NAFLD development and therapeutic strategies. Nat Med 24(7):908–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rinella ME, Sanyal AJ (2016) Management of NAFLD: a stage-based approach. Nat Rev Gastroenterol Hepatol 13(4):196–205

    Article  CAS  PubMed  Google Scholar 

  7. Brunt EM (2012) Nonalcoholic fatty liver disease: what the pathologist can tell the clinician. Dig Dis 30(Suppl 1):61–68

    Article  PubMed  Google Scholar 

  8. Wang Y, Wong GL, He FP, Sun J, Chan AW, Yang J, Shu SS, Liang X, Tse YK, Fan XT, Hou J, Chan HL, Wong VW (2020) Quantifying and monitoring fibrosis in non-alcoholic fatty liver disease using dual-photon microscopy. Gut 69(6):1116–1126

    Article  PubMed  Google Scholar 

  9. Burt AD, Lackner C, Tiniakos DG (2015) Diagnosis and assessment of NAFLD: definitions and histopathological classification. Semin Liver Dis 35(3):207–220

    Article  PubMed  Google Scholar 

  10. Vilar-Gomez E, Martinez-Perez Y, Calzadilla-Bertot L, Torres-Gonzalez A, Gra-Oramas B, Gonzalez-Fabian L, Friedman SL, Diago M, Romero-Gomez M (2015) Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis. Gastroenterology 149(2):367–378.e365; quiz e314-365

    Article  PubMed  Google Scholar 

  11. Sung KC, Ryu S, Lee JY, Kim JY, Wild SH, Byrne CD (2016) Effect of exercise on the development of new fatty liver and the resolution of existing fatty liver. J Hepatol 65(4):791–797

    Article  CAS  PubMed  Google Scholar 

  12. O’Gorman P, Naimimohasses S, Monaghan A, Kennedy M, Melo AM, Ni Fhloinn D, Doherty DG, Beddy P, Finn SP, Moore JB, Gormley J, Norris S (2020) Improvement in histological endpoints of MAFLD following a 12-week aerobic exercise intervention. Aliment Pharmacol Ther 52(8):1387–1398

    PubMed  Google Scholar 

  13. Gjorgjieva M, Sobolewski C, Dolicka D, Correia de Sousa M, Foti M (2019) miRNAs and NAFLD: from pathophysiology to therapy. Gut 68(11):2065–2079

    Article  CAS  PubMed  Google Scholar 

  14. Guo XF, Wang C, Yang T, Li S, Li KL, Li D (2020) Vitamin D and non-alcoholic fatty liver disease: a meta-analysis of randomized controlled trials. Food Funct 11(9):7389–7399

    Article  CAS  PubMed  Google Scholar 

  15. Vilar-Gomez E, Vuppalanchi R, Gawrieh S, Ghabril M, Saxena R, Cummings OW, Chalasani N (2020) Vitamin E improves transplant-free survival and hepatic decompensation among patients with nonalcoholic steatohepatitis and advanced fibrosis. Hepatology 71(2):495–509

    Article  CAS  PubMed  Google Scholar 

  16. Rezaei S, Akhlaghi M, Sasani MR, Barati Boldaji R (2019) Olive oil lessened fatty liver severity independent of cardiometabolic correction in patients with non-alcoholic fatty liver disease: a randomized clinical trial. Nutrition 57:154–161

    Article  CAS  PubMed  Google Scholar 

  17. Chen LH, Wang YF, Xu QH, Chen SS (2018) Omega-3 fatty acids as a treatment for non-alcoholic fatty liver disease in children: a systematic review and meta-analysis of randomized controlled trials. Clin Nutr 37(2):516–521

    Article  CAS  PubMed  Google Scholar 

  18. Argo CK, Patrie JT, Lackner C, Henry TD, de Lange EE, Weltman AL, Shah NL, Al-Osaimi AM, Pramoonjago P, Jayakumar S, Binder LP, Simmons-Egolf WD, Burks SG, Bao Y, Taylor AG, Rodriguez J, Caldwell SH (2015) Effects of n-3 fish oil on metabolic and histological parameters in NASH: a double-blind, randomized, placebo-controlled trial. J Hepatol 62(1):190–197

    Article  CAS  PubMed  Google Scholar 

  19. Bril F, Portillo Sanchez P, Lomonaco R, Orsak B, Hecht J, Tio F, Cusi K (2017) Liver safety of statins in prediabetes or T2DM and nonalcoholic steatohepatitis: post hoc analysis of a randomized trial. J Clin Endocrinol Metab 102(8):2950–2961

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sanyal AJ, Chalasani N, Kowdley KV, McCullough A, Diehl AM, Bass NM, Neuschwander-Tetri BA, Lavine JE, Tonascia J, Unalp A, Van Natta M, Clark J, Brunt EM, Kleiner DE, Hoofnagle JH, Robuck PR, Nash CRN (2010) Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med 362(18):1675–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Maas SLN, Breakefield XO, Weaver AM (2017) Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol 27(3):172–188

    Article  CAS  PubMed  Google Scholar 

  22. van Niel G, D’Angelo G, Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19(4):213–228

    Article  PubMed  Google Scholar 

  23. Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H, Lyden D (2016) Extracellular vesicles in cancer: cell-to-cell mediators of metastasis. Cancer Cell 30(6):836–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Iraci N, Leonardi T, Gessler F, Vega B, Pluchino S (2016) Focus on extracellular vesicles: physiological role and signalling properties of extracellular membrane vesicles. Int J Mol Sci 17(2):171

    Article  PubMed  PubMed Central  Google Scholar 

  25. Urbanelli L, Buratta S, Tancini B, Sagini K, Delo F, Porcellati S, Emiliani C (2019) The role of extracellular vesicles in viral infection and transmission. Vaccines (Basel) 7(3):102

    Article  CAS  PubMed  Google Scholar 

  26. Huang-Doran I, Zhang CY, Vidal-Puig A (2017) Extracellular vesicles: novel mediators of cell communication in metabolic disease. Trends Endocrinol Metab 28(1):3–18

    Article  CAS  PubMed  Google Scholar 

  27. Colombo M, Raposo G, Thery C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289

    Article  CAS  PubMed  Google Scholar 

  28. Natasha G, Gundogan B, Tan A, Farhatnia Y, Wu W, Rajadas J, Seifalian AM (2014) Exosomes as immunotheranostic nanoparticles. Clin Ther 36(6):820–829

    Article  CAS  Google Scholar 

  29. Bebelman MP, Smit MJ, Pegtel DM, Baglio SR (2018) Biogenesis and function of extracellular vesicles in cancer. Pharmacol Ther 188:1–11

    Article  CAS  PubMed  Google Scholar 

  30. van der Pol E, Boing AN, Harrison P, Sturk A, Nieuwland R (2012) Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 64(3):676–705

    Article  PubMed  Google Scholar 

  31. Liu J, Ma J, Tang K, Huang B (2017) Therapeutic use of tumor cell-derived extracellular vesicles. Methods Mol Biol 1660:433–440

    Article  CAS  PubMed  Google Scholar 

  32. Martellucci S, Orefice NS, Angelucci A, Luce A, Caraglia M, Zappavigna S (2020) Extracellular vesicles: new endogenous shuttles for miRNAs in cancer diagnosis and therapy? Int J Mol Sci 21(18):6486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shao H, Im H, Castro CM, Breakefield X, Weissleder R, Lee H (2018) New technologies for analysis of extracellular vesicles. Chem Rev 118(4):1917–1950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Merchant ML, Rood IM, Deegens JKJ, Klein JB (2017) Isolation and characterization of urinary extracellular vesicles: implications for biomarker discovery. Nat Rev Nephrol 13(12):731–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shah R, Patel T, Freedman JE (2018) Circulating extracellular vesicles in human disease. N Engl J Med 379(10):958–966

    Article  CAS  PubMed  Google Scholar 

  36. Trams EG, Lauter CJ, Salem N Jr, Heine U (1981) Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim Biophys Acta 645(1):63–70

    Article  CAS  PubMed  Google Scholar 

  37. Zhang L, Zhang S, Yao J, Lowery FJ, Zhang Q, Huang WC, Li P, Li M, Wang X, Zhang C, Wang H, Ellis K, Cheerathodi M, McCarty JH, Palmieri D, Saunus J, Lakhani S, Huang S, Sahin AA, Aldape KD, Steeg PS, Yu D (2015) Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature 527(7576):100–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hadley EE, Sheller-Miller S, Saade G, Salomon C, Mesiano S, Taylor RN, Taylor BD, Menon R (2018) Amnion epithelial cell-derived exosomes induce inflammatory changes in uterine cells. Am J Obstet Gynecol 219(5):478.e471–478.e421

    Article  Google Scholar 

  39. Kobayashi E, Hwang D, Bheda-Malge A, Whitehurst CB, Kabanov AV, Kondo S, Aga M, Yoshizaki T, Pagano JS, Sokolsky M, Shakelford J (2019) Inhibition of UCH-L1 deubiquitinating activity with two forms of LDN-57444 has anti-invasive effects in metastatic carcinoma cells. Int J Mol Sci 20(15):3733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Conde-Vancells J, Gonzalez E, Lu SC, Mato JM, Falcon-Perez JM (2010) Overview of extracellular microvesicles in drug metabolism. Expert Opin Drug Metab Toxicol 6(5):543–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Conigliaro A, Costa V, Lo Dico A, Saieva L, Buccheri S, Dieli F, Manno M, Raccosta S, Mancone C, Tripodi M, De Leo G, Alessandro R (2015) CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA. Mol Cancer 14:155

    Article  PubMed  PubMed Central  Google Scholar 

  42. Huang A, Dong J, Li S, Wang C, Ding H, Li H, Su X, Ge X, Sun L, Bai C, Shen X, Fang T, Li J, Shao N (2015) Exosomal transfer of vasorin expressed in hepatocellular carcinoma cells promotes migration of human umbilical vein endothelial cells. Int J Biol Sci 11(8):961–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. He M, Qin H, Poon TC, Sze SC, Ding X, Co NN, Ngai SM, Chan TF, Wong N (2015) Hepatocellular carcinoma-derived exosomes promote motility of immortalized hepatocyte through transfer of oncogenic proteins and RNAs. Carcinogenesis 36(9):1008–1018

    Article  CAS  PubMed  Google Scholar 

  44. Qu Z, Wu J, Wu J, Luo D, Jiang C, Ding Y (2016) Exosomes derived from HCC cells induce sorafenib resistance in hepatocellular carcinoma both in vivo and in vitro. J Exp Clin Cancer Res 35(1):159

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kouwaki T, Fukushima Y, Daito T, Sanada T, Yamamoto N, Mifsud EJ, Leong CR, Tsukiyama-Kohara K, Kohara M, Matsumoto M, Seya T, Oshiumi H (2016) Extracellular vesicles including exosomes regulate innate immune responses to hepatitis B virus infection. Front Immunol 7:335

    Article  PubMed  PubMed Central  Google Scholar 

  46. Takahashi K, Yan IK, Haga H, Patel T (2014a) Modulation of hypoxia-signaling pathways by extracellular linc-RoR. J Cell Sci 127(Pt 7):1585–1594

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Takahashi K, Yan IK, Wood J, Haga H, Patel T (2014b) Involvement of extracellular vesicle long noncoding RNA (linc-VLDLR) in tumor cell responses to chemotherapy. Mol Cancer Res 12(10):1377–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Axley PD, Richardson CT, Singal AK (2019) Epidemiology of alcohol consumption and societal burden of alcoholism and alcoholic liver disease. Clin Liver Dis 23(1):39–50

    Article  PubMed  Google Scholar 

  49. Patel R, Mueller M (2021) Alcoholic liver disease. In: StatPearls. Treasure Island (FL)

    Google Scholar 

  50. Brandon-Warner E, Schrum LW, Schmidt CM, McKillop IH (2012) Rodent models of alcoholic liver disease: of mice and men. Alcohol 46(8):715–725

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gao B, Bataller R (2011) Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology 141(5):1572–1585

    Article  CAS  PubMed  Google Scholar 

  52. Cassard AM, Ciocan D (2018) Microbiota, a key player in alcoholic liver disease. Clin Mol Hepatol 24(2):100–107

    Article  PubMed  Google Scholar 

  53. Tang L, Yang F, Fang Z, Hu C (2016) Resveratrol ameliorates alcoholic fatty liver by inducing autophagy. Am J Chin Med 44(6):1207–1220

    Article  CAS  PubMed  Google Scholar 

  54. Osna NA, Donohue TM Jr, Kharbanda KK (2017) Alcoholic liver disease: pathogenesis and current management. Alcohol Res 38(2):147–161

    PubMed  PubMed Central  Google Scholar 

  55. Magdaleno F, Blajszczak CC, Nieto N (2017) Key events participating in the pathogenesis of alcoholic liver disease. Biomol Ther 7(1):9

    Google Scholar 

  56. Tacke F (2017) Targeting hepatic macrophages to treat liver diseases. J Hepatol 66(6):1300–1312

    Article  CAS  PubMed  Google Scholar 

  57. Saha B, Bruneau JC, Kodys K, Szabo G (2015) Alcohol-induced miR-27a regulates differentiation and M2 macrophage polarization of normal human monocytes. J Immunol 194(7):3079–3087

    Article  CAS  PubMed  Google Scholar 

  58. Saha B, Momen-Heravi F, Kodys K, Szabo G (2016) MicroRNA cargo of extracellular vesicles from alcohol-exposed monocytes signals naive monocytes to differentiate into M2 macrophages. J Biol Chem 291(1):149–159

    Article  CAS  PubMed  Google Scholar 

  59. Verma VK, Li H, Wang R, Hirsova P, Mushref M, Liu Y, Cao S, Contreras PC, Malhi H, Kamath PS, Gores GJ, Shah VH (2016) Alcohol stimulates macrophage activation through caspase-dependent hepatocyte derived release of CD40L containing extracellular vesicles. J Hepatol 64(3):651–660

    Article  CAS  PubMed  Google Scholar 

  60. Albillos A, de Gottardi A, Rescigno M (2020) The gut-liver axis in liver disease: pathophysiological basis for therapy. J Hepatol 72(3):558–577

    Article  CAS  PubMed  Google Scholar 

  61. Bajaj JS (2019) Alcohol, liver disease and the gut microbiota. Nat Rev Gastroenterol Hepatol 16(4):235–246

    Article  PubMed  Google Scholar 

  62. Duan Y, Llorente C, Lang S, Brandl K, Chu H, Jiang L, White RC, Clarke TH, Nguyen K, Torralba M, Shao Y, Liu J, Hernandez-Morales A, Lessor L, Rahman IR, Miyamoto Y, Ly M, Gao B, Sun W, Kiesel R, Hutmacher F, Lee S, Ventura-Cots M, Bosques-Padilla F, Verna EC, Abraldes JG, Brown RS Jr, Vargas V, Altamirano J, Caballeria J, Shawcross DL, Ho SB, Louvet A, Lucey MR, Mathurin P, Garcia-Tsao G, Bataller R, Tu XM, Eckmann L, van der Donk WA, Young R, Lawley TD, Starkel P, Pride D, Fouts DE, Schnabl B (2019) Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease. Nature 575(7783):505–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hirsova P, Ibrahim SH, Verma VK, Morton LA, Shah VH, LaRusso NF, Gores GJ, Malhi H (2016a) Extracellular vesicles in liver pathobiology: small particles with big impact. Hepatology 64(6):2219–2233

    Article  PubMed  Google Scholar 

  64. Peng ZX, Zou MY, Xu J, Guan WY, Li Y, Liu DR, Zhang SS, Hao Q, Yan SF, Wang W, Yu DM, Li FQ (2018) Antimicrobial susceptibility and drug-resistance genes of Yersinia spp. of retailed poultry in 4 provinces of China. Zhonghua Yu Fang Yi Xue Za Zhi 52(4):358–363

    CAS  PubMed  Google Scholar 

  65. Ibrahim SH, Hirsova P, Tomita K, Bronk SF, Werneburg NW, Harrison SA, Goodfellow VS, Malhi H, Gores GJ (2016) Mixed lineage kinase 3 mediates release of C-X-C motif ligand 10-bearing chemotactic extracellular vesicles from lipotoxic hepatocytes. Hepatology 63(3):731–744

    Article  CAS  PubMed  Google Scholar 

  66. Hirsova P, Ibrahim SH, Krishnan A, Verma VK, Bronk SF, Werneburg NW, Charlton MR, Shah VH, Malhi H, Gores GJ (2016b) Lipid-induced signaling causes release of inflammatory extracellular vesicles from hepatocytes. Gastroenterology 150(4):956–967

    Article  CAS  PubMed  Google Scholar 

  67. Chen X, Tan XR, Li SJ, Zhang XX (2019) LncRNA NEAT1 promotes hepatic lipid accumulation via regulating miR-146a-5p/ROCK1 in nonalcoholic fatty liver disease. Life Sci 235:116829

    Article  CAS  PubMed  Google Scholar 

  68. Huang H, Lee SH, Sousa-Lima I, Kim SS, Hwang WM, Dagon Y, Yang WM, Cho S, Kang MC, Seo JA, Shibata M, Cho H, Belew GD, Bhin J, Desai BN, Ryu MJ, Shong M, Li P, Meng H, Chung BH, Hwang D, Kim MS, Park KS, Macedo MP, White M, Jones J, Kim YB (2018) Rho-kinase/AMPK axis regulates hepatic lipogenesis during overnutrition. J Clin Invest 128(12):5335–5350

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kakazu E, Mauer AS, Yin M, Malhi H (2016) Hepatocytes release ceramide-enriched pro-inflammatory extracellular vesicles in an IRE1alpha-dependent manner. J Lipid Res 57(2):233–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Samuel VT, Petersen KF, Shulman GI (2010) Lipid-induced insulin resistance: unravelling the mechanism. Lancet 375(9733):2267–2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M (2016) Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 64(1):73–84

    Article  PubMed  Google Scholar 

  72. Anstee QM, Day CP (2013) The genetics of NAFLD. Nat Rev Gastroenterol Hepatol 10(11):645–655

    Article  CAS  PubMed  Google Scholar 

  73. Bedossa P (2013) Current histological classification of NAFLD: strength and limitations. Hepatol Int 7(Suppl 2):765–770

    Article  PubMed  Google Scholar 

  74. Li J, Zou B, Yeo YH, Feng Y, Xie X, Lee DH, Fujii H, Wu Y, Kam LY, Ji F, Li X, Chien N, Wei M, Ogawa E, Zhao C, Wu X, Stave CD, Henry L, Barnett S, Takahashi H, Furusyo N, Eguchi Y, Hsu YC, Lee TY, Ren W, Qin C, Jun DW, Toyoda H, Wong VW, Cheung R, Zhu Q, Nguyen MH (2019) Prevalence, incidence, and outcome of non-alcoholic fatty liver disease in Asia, 1999-2019: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol 4(5):389–398

    Article  PubMed  Google Scholar 

  75. Estes C, Razavi H, Loomba R, Younossi Z, Sanyal AJ (2018) Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology 67(1):123–133

    Article  CAS  PubMed  Google Scholar 

  76. Makker J, Tariq H, Bella JN, Kumar K, Chime C, Patel H, Kamal MU, Shaikh D, Vootla V, Bajantri B, Gomceli U, Alshelleh M, Peralta R, Zhang A, Chilimuri S (2019) Preclinical cardiac disease in nonalcoholic fatty liver disease with and without metabolic syndrome. Am J Cardiovasc Dis 9(5):65–77

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Fan JG, Kim SU, Wong VW (2017) New trends on obesity and NAFLD in Asia. J Hepatol 67(4):862–873

    Article  PubMed  Google Scholar 

  78. Kojima S, Watanabe N, Numata M, Ogawa T, Matsuzaki S (2003) Increase in the prevalence of fatty liver in Japan over the past 12 years: analysis of clinical background. J Gastroenterol 38(10):954–961

    Article  PubMed  Google Scholar 

  79. Zhou J, Zhou F, Wang W, Zhang XJ, Ji YX, Zhang P, She ZG, Zhu L, Cai J, Li H (2020) Epidemiological features of NAFLD from 1999 to 2018 in China. Hepatology 71(5):1851–1864

    Article  PubMed  Google Scholar 

  80. Marra F, Gastaldelli A, Svegliati Baroni G, Tell G, Tiribelli C (2008) Molecular basis and mechanisms of progression of non-alcoholic steatohepatitis. Trends Mol Med 14(2):72–81

    Article  CAS  PubMed  Google Scholar 

  81. Farrell GC, Larter CZ (2006) Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology 43(2 Suppl 1):S99–S112

    Article  CAS  PubMed  Google Scholar 

  82. Cai Y, Li H, Liu M, Pei Y, Zheng J, Zhou J, Luo X, Huang W, Ma L, Yang Q, Guo S, Xiao X, Li Q, Zeng T, Meng F, Francis H, Glaser S, Chen L, Huo Y, Alpini G, Wu C (2018) Disruption of adenosine 2A receptor exacerbates NAFLD through increasing inflammatory responses and SREBP1c activity. Hepatology 68(1):48–61

    Article  CAS  PubMed  Google Scholar 

  83. Blachier M, Leleu H, Peck-Radosavljevic M, Valla DC, Roudot-Thoraval F (2013) The burden of liver disease in Europe: a review of available epidemiological data. J Hepatol 58(3):593–608

    Article  PubMed  Google Scholar 

  84. Browning JD, Szczepaniak LS, Dobbins R, Nuremberg P, Horton JD, Cohen JC, Grundy SM, Hobbs HH (2004) Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology 40(6):1387–1395

    Article  PubMed  Google Scholar 

  85. Lonardo A, Sookoian S, Pirola CJ, Targher G (2016) Non-alcoholic fatty liver disease and risk of cardiovascular disease. Metabolism 65(8):1136–1150

    Article  CAS  PubMed  Google Scholar 

  86. Buzzetti E, Pinzani M, Tsochatzis EA (2016) The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 65(8):1038–1048

    Article  CAS  PubMed  Google Scholar 

  87. Povero D, Eguchi A, Niesman IR, Andronikou N, de Mollerat du Jeu X, Mulya A, Berk M, Lazic M, Thapaliya S, Parola M, Patel HH, Feldstein AE (2013) Lipid-induced toxicity stimulates hepatocytes to release angiogenic microparticles that require Vanin-1 for uptake by endothelial cells. Sci Signal 6(296):ra88

    Article  PubMed  PubMed Central  Google Scholar 

  88. Povero D, Panera N, Eguchi A, Johnson CD, Papouchado BG, de Araujo HL, Pinatel EM, Alisi A, Nobili V, Feldstein AE (2015) Lipid-induced hepatocyte-derived extracellular vesicles regulate hepatic stellate cell via microRNAs targeting PPAR-gamma. Cell Mol Gastroenterol Hepatol 1(6):646–663.e644

    Article  PubMed  PubMed Central  Google Scholar 

  89. Devhare PB, Ray RB (2018) Extracellular vesicles: novel mediator for cell to cell communications in liver pathogenesis. Mol Aspects Med 60:115–122

    Article  CAS  PubMed  Google Scholar 

  90. Kornek M, Lynch M, Mehta SH, Lai M, Exley M, Afdhal NH, Schuppan D (2012) Circulating microparticles as disease-specific biomarkers of severity of inflammation in patients with hepatitis C or nonalcoholic steatohepatitis. Gastroenterology 143(2):448–458

    Article  CAS  PubMed  Google Scholar 

  91. Povero D, Eguchi A, Li H, Johnson CD, Papouchado BG, Wree A, Messer K, Feldstein AE (2014) Circulating extracellular vesicles with specific proteome and liver microRNAs are potential biomarkers for liver injury in experimental fatty liver disease. PloS One 9(12):e113651

    Article  PubMed  PubMed Central  Google Scholar 

  92. Heinrich LF, Andersen DK, Cleasby ME, Lawson C (2015) Long-term high fat feeding of rats results in increased numbers of circulating microvesicles with pro-inflammatory effects on endothelial cells. Br J Nutr 113(11):1704–1711

    Article  CAS  PubMed  Google Scholar 

  93. Hirsova P, Ibrahim SH, Bronk SF, Yagita H, Gores GJ (2013) Vismodegib suppresses TRAIL-mediated liver injury in a mouse model of nonalcoholic steatohepatitis. PloS One 8(7):e70599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Povero D, Pinatel EM, Leszczynska A, Goyal NP, Nishio T, Kim J, Kneiber D, de Araujo HL, Eguchi A, Ordonez PM, Kisseleva T, Feldstein AE (2019) Human induced pluripotent stem cell-derived extracellular vesicles reduce hepatic stellate cell activation and liver fibrosis. JCI Insight 5:e125652

    Article  PubMed  Google Scholar 

  95. Dong L, Pu Y, Chen X, Qi X, Zhang L, Xu L, Li W, Ma Y, Zhou S, Zhu J, Li Y, Wang X, Su C (2020) hUCMSC-extracellular vesicles downregulated hepatic stellate cell activation and reduced liver injury in S. japonicum-infected mice. Stem Cell Res Ther 11(1):21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yamamura S, Eslam M, Kawaguchi T, Tsutsumi T, Nakano D, Yoshinaga S, Takahashi H, Anzai K, George J, Torimura T (2020) MAFLD identifies patients with significant hepatic fibrosis better than NAFLD. Liver Int 40(12):3018–3030

    Article  CAS  PubMed  Google Scholar 

  97. Wang R, Ding Q, Yaqoob U, de Assuncao TM, Verma VK, Hirsova P, Cao S, Mukhopadhyay D, Huebert RC, Shah VH (2015) Exosome adherence and internalization by hepatic stellate cells triggers sphingosine 1-phosphate-dependent migration. J Biol Chem 290(52):30684–30696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chen L, Chen R, Kemper S, Charrier A, Brigstock DR (2015) Suppression of fibrogenic signaling in hepatic stellate cells by Twist1-dependent microRNA-214 expression: role of exosomes in horizontal transfer of Twist1. Am J Physiol Gastrointest Liver Physiol 309(6):G491–G499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Shen J, Huang CK, Yu H, Shen B, Zhang Y, Liang Y, Li Z, Feng X, Zhao J, Duan L, Cai X (2017) The role of exosomes in hepatitis, liver cirrhosis and hepatocellular carcinoma. J Cell Mol Med 21(5):986–992

    Article  PubMed  PubMed Central  Google Scholar 

  100. Zhou L, Li Q, Chen A, Liu N, Chen N, Chen X, Zhu L, Xia B, Gong Y, Chen X (2019) KLF15-activating Twist2 ameliorated hepatic steatosis by inhibiting inflammation and improving mitochondrial dysfunction via NF-kappaB-FGF21 or SREBP1c-FGF21 pathway. FASEB J 33(12):14254–14269

    Article  CAS  PubMed  Google Scholar 

  101. Zhang Y, Ge X, Li Y, Zhang B, Wang P, Hao M, Gao P, Zhao Y, Sun T, Lu S, Ma W (2021) TWIST2 and the PPAR signaling pathway are important in the progression of nonalcoholic steatohepatitis. Lipids Health Dis 20(1):39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ban LA, Shackel NA, McLennan SV (2016) Extracellular vesicles: a new frontier in biomarker discovery for non-alcoholic fatty liver disease. Int J Mol Sci 17(3):376

    Article  PubMed  PubMed Central  Google Scholar 

  103. Wong VW, Adams LA, de Ledinghen V, Wong GL, Sookoian S (2018) Noninvasive biomarkers in NAFLD and NASH—current progress and future promise. Nat Rev Gastroenterol Hepatol 15(8):461–478

    Article  CAS  PubMed  Google Scholar 

  104. Gorden DL, Myers DS, Ivanova PT, Fahy E, Maurya MR, Gupta S, Min J, Spann NJ, McDonald JG, Kelly SL, Duan J, Sullards MC, Leiker TJ, Barkley RM, Quehenberger O, Armando AM, Milne SB, Mathews TP, Armstrong MD, Li C, Melvin WV, Clements RH, Washington MK, Mendonsa AM, Witztum JL, Guan Z, Glass CK, Murphy RC, Dennis EA, Merrill AH Jr, Russell DW, Subramaniam S, Brown HA (2015) Biomarkers of NAFLD progression: a lipidomics approach to an epidemic. J Lipid Res 56(3):722–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Vilar-Gomez E, Chalasani N (2018) Non-invasive assessment of non-alcoholic fatty liver disease: clinical prediction rules and blood-based biomarkers. J Hepatol 68(2):305–315

    Article  CAS  PubMed  Google Scholar 

  106. Mato JM, Alonso C, Noureddin M, Lu SC (2019) Biomarkers and subtypes of deranged lipid metabolism in non-alcoholic fatty liver disease. World J Gastroenterol 25(24):3009–3020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Murakami Y, Toyoda H, Tanahashi T, Tanaka J, Kumada T, Yoshioka Y, Kosaka N, Ochiya T, Taguchi YH (2012) Comprehensive miRNA expression analysis in peripheral blood can diagnose liver disease. PloS One 7(10):e48366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ajamieh H, Farrell GC, McCuskey RS, Yu J, Chu E, Wong HJ, Lam W, Teoh NC (2015) Acute atorvastatin is hepatoprotective against ischaemia-reperfusion injury in mice by modulating eNOS and microparticle formation. Liver Int 35(9):2174–2186

    Article  CAS  PubMed  Google Scholar 

  109. Bala S, Petrasek J, Mundkur S, Catalano D, Levin I, Ward J, Alao H, Kodys K, Szabo G (2012) Circulating microRNAs in exosomes indicate hepatocyte injury and inflammation in alcoholic, drug-induced, and inflammatory liver diseases. Hepatology 56(5):1946–1957

    Article  CAS  PubMed  Google Scholar 

  110. Csak T, Bala S, Lippai D, Satishchandran A, Catalano D, Kodys K, Szabo G (2015) microRNA-122 regulates hypoxia-inducible factor-1 and vimentin in hepatocytes and correlates with fibrosis in diet-induced steatohepatitis. Liver Int 35(2):532–541

    Article  CAS  PubMed  Google Scholar 

  111. Yamada H, Ohashi K, Suzuki K, Munetsuna E, Ando Y, Yamazaki M, Ishikawa H, Ichino N, Teradaira R, Hashimoto S (2015) Longitudinal study of circulating miR-122 in a rat model of non-alcoholic fatty liver disease. Clin Chim Acta 446:267–271

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meiyi Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lu, X., Song, M., Gao, N. (2023). Extracellular Vesicles and Fatty Liver. In: Xiao, J. (eds) Extracellular Vesicles in Cardiovascular and Metabolic Diseases. Advances in Experimental Medicine and Biology, vol 1418. Springer, Singapore. https://doi.org/10.1007/978-981-99-1443-2_9

Download citation

Publish with us

Policies and ethics