Skip to main content

Writing Research Protocols in Pharmacological Studies

  • Chapter
  • First Online:
The Quintessence of Basic and Clinical Research and Scientific Publishing

Abstract

The effects of drugs or chemicals are studied at every plausible level of complexity involving pure proteins, cells in tissue culture, intact isolated tissue, in situ perfused organs, and intact animals, including normal, surgically modified, and transgenic animals. Each of these models has its own protocols, methodologies, techniques, and data analyses. The research protocol is a roadmap for research that graduate students and early-career researchers can use to build track records and expertise in their fields. It is developed by integrating a multitude of ideas that emanate from the identification of a knowledge gap found while conducting a literature search. Next, it is processed into selection of a research topic of interest, followed by asking intriguing research questions, and the development of hypotheses and objectives. This chain of procedures described in the research protocol follows a well-organized plan of study that forms the basis of a clinical investigation or exploration of cellular mechanisms and molecular targets for potential new chemical entities. The protocol also describes the study background, rationale, and significance; design and methods; and data analysis using the right kinds of statistical tests, among others, within a clinical trial or an experimental study. It is designed to provide a satisfactory answer to the research question. In effect, the protocol is a written reminder of things to do when conducting the study. In this chapter, we describe a systematic and step-by-step approach to planning research protocols, including five examples at three levels of complexity in a hierarchical manner from cells to intact animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jagadeesh G (2010) Writing a research protocol in pharmacology and toxicology. In: Jagadeesh G, Murthy S, Gupta YK, Prakash A (eds) Biomedical research, from ideation to publication. Wolters Kluwer, New Delhi, pp 51–71

    Google Scholar 

  2. Al-Jundi A, Sakka S (2016) Protocol writing in clinical research. J Clin Diagn Res 10(11):ZE10–ZE13. https://doi.org/10.7860/JCDR/2016/21426.9316

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bordage G, Dawson B (2003) Experimental study design and grant writing in eight steps and 28 questions. Med Educ 37:376–385

    Article  PubMed  Google Scholar 

  4. Moorhead JE, Rao PV, Anusavice KJ (1994) Guidelines for experimental studies. Dent Mater 10:45–51

    Article  CAS  PubMed  Google Scholar 

  5. Nte AR, Awi DD (2006) Research proposal writing: breaking the myth. Niger J Med 15:373–381

    CAS  PubMed  Google Scholar 

  6. Boyle EM (2020) Writing a good research grant proposal. Pediatr Child Health 30(2):52–56. https://doi.org/10.1016/j.paed.2019.11.003

    Article  Google Scholar 

  7. Enarson DA, Kennedy SM, Miller DL (2004) Getting started in research: the research protocol. Int J Tuberc Lung Dis 8:1036–1040

    CAS  PubMed  Google Scholar 

  8. Reisman FK (2010) Creative and critical thinking in biomedical research. In: Jagadeesh G, Murthy S, Gupta YK, Prakash A (eds) Biomedical research, from ideation to publication. Wolters Kluwer, New Delhi, pp 3–17

    Google Scholar 

  9. Balakumar P, Srikumar BN, Ramesh B, Jagadeesh G (2022) The critical phases of effective research planning, scientific writing, and communication. Pharmacogn Mag 18:1–3

    Article  Google Scholar 

  10. Bodemer N, Ruggeri A (2012) Finding a good research question, in theory. Science 335:1439

    Article  CAS  PubMed  Google Scholar 

  11. Du XJ, Bathgate RA, Samuel CS et al (2010) Cardiovascular effects of relaxin: from basic science to clinical therapy. Nat Rev Cardiol 7:48–58

    Article  CAS  PubMed  Google Scholar 

  12. Conrad KP (2011) Maternal vasodilation in pregnancy: the emerging role of relaxin. Am J Physiol Regul Integr Comp Physiol 301(2):R267–R275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Devarakonda T, Salloum FN (2018) Heart disease and relaxin: new actions for an old hormone. Trends Endocrinol Metab 29(5):338–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Samuel CS, Royce SG, Hewitson TD et al (2017) Anti-fibrotic actions of relaxin. Br J Pharmacol 174:962–976. https://doi.org/10.1111/bph.13529

    Article  CAS  PubMed  Google Scholar 

  15. Halls ML, Bathgate RA, Summers RJ (2006) Relaxin family peptide receptors RXFP1 and RXFP2 modulate cAMP signaling by distinct mechanisms. Mol Pharmacol 70(1):214–226

    Article  CAS  PubMed  Google Scholar 

  16. Novak J, Parry LJ, Matthews JE et al (2006) Evidence for local relaxin ligand-receptor expression and function in arteries. FASEB J 20:2352–2362

    Article  CAS  PubMed  Google Scholar 

  17. Jelinic M, Leo CH, Uiterweer P et al (2014) Localization of relaxin receptors in arteries and veins, and region-specific increases in compliance and bradykinin-mediated relaxation after in vivo serelaxin treatment. FASEB J 28:275–287. https://doi.org/10.1096/fj.13-233429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bogzil AH, Ashton N (2009) Relaxin-induced changes in renal function and RXFP1 receptor expression in the female rat. Ann N Y Acad Sci 1160:313–316

    Article  CAS  PubMed  Google Scholar 

  19. Halls ML, Bathgate RA, Sutton SW et al (2015) International Union of Basic and Clinical Pharmacology. XCV. Recent advances in the understanding of the pharmacology and biological roles of relaxin family peptide receptors 1-4, the receptors for relaxin family peptides. Pharmacol Rev 67(2):389–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Valkovic AL, Bathgate RA, Samuel CS, Kocan M (2019) Understanding relaxin signalling at the cellular level. Mol Cell Endocrinol 487:24–33

    Article  CAS  PubMed  Google Scholar 

  21. Balakumar P, Handa S, Alqahtani A et al (2022) Unraveling the differentially articulated axes of the century-old renin-angiotensin-aldosterone system: potential therapeutic implications. Cardiovasc Toxicol 22(3):246–253

    Article  CAS  PubMed  Google Scholar 

  22. Balakumar P, Jagadeesh G (2021) The renin-angiotensin-aldosterone system: a century-old diversified system with several therapeutic avenues. Pharmacol Res 174:105929

    Article  CAS  PubMed  Google Scholar 

  23. Balakumar P, Jagadeesh G (2014) Structural determinants for binding, activation, and functional selectivity of the angiotensin AT1 receptor. J Mol Endocrinol 53(2):R71–R92

    Article  CAS  PubMed  Google Scholar 

  24. Balakumar P, Jagadeesh G (2015) Drugs targeting RAAS in the treatment of hypertension and other cardiovascular diseases. In: Jagadeesh G, Balakumar P, Maung-U K (eds) Pathophysiology and pharmacotherapy of cardiovascular disease. Springer, pp 751–806. https://doi.org/10.1007/978-3-319-15961-4_36

    Chapter  Google Scholar 

  25. Poduri R, Jagadeesh G (2021) The concept of receptor and molecule interaction in drug discovery and development. In: Poduri R (ed) Drug discovery and development, chap 3. Springer, Singapore, pp 67–102

    Chapter  Google Scholar 

  26. Jagadeesh G, Deth RC (1987) Different affinity states of alpha-1 adrenergic receptors defined by agonists and antagonists in bovine aorta plasma membranes. J Pharmacol Exp Ther 243:430–436

    CAS  PubMed  Google Scholar 

  27. Holmes CL, Landry DW, Granton JT (2003) Science review: vasopressin and the cardiovascular system part 1 – receptor physiology. Crit Care 7:427–434

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bankir L (2001) Antidiuretic action of vasopressin: quantitative aspects and interaction between V1a and V2 receptor-mediated effects. Cardiovasc Res 51:372–390

    Article  CAS  PubMed  Google Scholar 

  29. Gordon AC, Mason AJ, Thirunavukkarasu N et al (2016) Effect of early vasopressin vs norepinephrine on kidney failure in patients with septic shock: The VANISH Randomized Clinical Trial. JAMA 316(5):509–518

    Article  CAS  PubMed  Google Scholar 

  30. Koshimizu T, Nakamura K, Egashira N et al (2012) Vasopressin V1a and V1b receptors: from molecules to physiological systems. Physiol Rev 92:1813–1864

    Article  CAS  PubMed  Google Scholar 

  31. Bolignano D, Zoccali C (2010) Vasopressin beyond water: implications for renal diseases. Curr Opin Nephrol Hypertens 19:499–504

    Article  CAS  PubMed  Google Scholar 

  32. Higashiyama M et al (2001) Arginine vasopressin inhibits apoptosis of rat glomerular mesangial cells via V1a receptors. Life Sci 68:1485–1493

    Article  CAS  PubMed  Google Scholar 

  33. Holmes CL, Landry DW, Granton JT (2003) Science review: vasopressin and the cardiovascular system part 2 – clinical physiology. Crit Care 8:15–23

    Article  PubMed  PubMed Central  Google Scholar 

  34. Nakanishi K, Mattson DL, Gross V et al (1995) Control of renal medullary blood flow by vasopressin V1 and V2 receptors. Am J Physiol 269(1 pt 2):R193–R200

    CAS  PubMed  Google Scholar 

  35. Shu S, Wang Y, Zheng M et al (2019) Hypoxia and hypoxia-inducible factors in kidney injury and repair. Cell 8(3):207. https://doi.org/10.3390/cells8030207

    Article  CAS  Google Scholar 

  36. Bekersky I (1983) The isolated perfused kidney as a pharmacological tool. TIPS 4:6–7

    Google Scholar 

  37. Schurek HJ (1980) Application of the isolated perfused rat kidney in nephrology. Contrib Nephrol 19:176–190

    Article  CAS  PubMed  Google Scholar 

  38. Schweda F, Wagner C, Kraemer BK et al (2003) Preserved macula densa-dependent renin secretion in A1 adenosine receptor knockout mice. Am J Physiol Renal Physiol 284(4):F770–F777

    Article  CAS  PubMed  Google Scholar 

  39. Frey N, Luedde M, Katus HA (2012) Mechanisms of disease: hypertrophic cardiomyopathy. Nat Rev Cardiol 9(2):91–100

    Article  CAS  Google Scholar 

  40. Marian AJ, Braunwald E (2017) Hypertrophic cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ Res 121:749–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ho CY (2011) New paradigms in hypertrophic cardiomyopathy: insights from genetics. Prog Pediatr Cardiol 31:93–98

    Article  PubMed  PubMed Central  Google Scholar 

  42. Spudich JA (2019) Three perspectives on the molecular basis of hypercontractility caused by hypertrophic cardiomyopathy mutations. Pflügers Archiv 471:701–717. https://doi.org/10.1007/s00424-019-02259-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sarkar SS, Trivedi DV, Morck MM et al (2020) The hypertrophic cardiomyopathy mutations R403Q and R663H increase the number of myosin heads available to interact with actin. Sci Adv 6:eaax0069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nag S, Trivedi DV, Sarkar SS et al (2017) The myosin mesa and the basis of hypercontractility caused by hypertrophic cardiomyopathy mutations. Nat Struct Mol 24(7):570–577. https://doi.org/10.1038/nsmb.3417

    Article  CAS  Google Scholar 

  45. Sommese RF, Sung J, Nag S et al (2013) Molecular consequences of the R453C hypertrophic cardiomyopathy mutation on human beta-cardiac myosin motor function. Proc Natl Acad Sci U S A 110:12607–12612. https://doi.org/10.1073/pnas.1309493110

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gersh BJ, Maron BJ, Bonow RO et al (2011) 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 124(24):e783–e831

    PubMed  Google Scholar 

  47. FDA approval 2022. https://www.fda.gov/drugs/news-events-human-drugs/fda-approves-new-drug-improve-heart-function-adults-rare-heart-condition. Accessed 25 May 2022

  48. Mullard A (2022) FDA approves first cardiac myosin inhibitor. Nat Rev Drug Discov 21:406

    PubMed  Google Scholar 

  49. Hartman JC, del Rio CL, Reardon JE et al (2018) Intravenous infusion of the novel HNO donor BMS-986231 is associated with beneficial inotropic, lusitropic, and vasodilatory properties in 2 canine models of heart failure. JACC Basic Transl Sci 3:625–638

    Article  PubMed  PubMed Central  Google Scholar 

  50. Jama HA, Muralitharan RR, Xu C et al (2022) Rodent models of hypertension. Br J Pharmacol 179:918–937. https://doi.org/10.1111/bph.15650

    Article  CAS  PubMed  Google Scholar 

  51. Balakumar P, Jagadeesh G (2017) Editorial. Renin-angiotensin-aldosterone: an inclusive, an invigorative, an interactive and an interminable system. Pharmacol Res 125:1–3. https://doi.org/10.1016/j.phrs.2017.07.003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Joanne Berger, FDA Library, for having critically read and edited the draft of the manuscript.

Conflict of Interest

None.

Disclaimer

This article reflects the views of GJ and should not be construed to represent US FDA’s views or policies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gowraganahalli Jagadeesh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jagadeesh, G., Balakumar, P. (2023). Writing Research Protocols in Pharmacological Studies. In: Jagadeesh, G., Balakumar, P., Senatore, F. (eds) The Quintessence of Basic and Clinical Research and Scientific Publishing. Springer, Singapore. https://doi.org/10.1007/978-981-99-1284-1_4

Download citation

Publish with us

Policies and ethics