Skip to main content

Utility of Super-Absorbent Polymers in Biomedical Applications

  • Chapter
  • First Online:
Properties and Applications of Superabsorbent Polymers

Abstract

Super-absorbent polymers (SAPs) are used in various products across various industries, including medicine, agriculture and construction; they play an essential part in our day-to-day lives. Polysaccharides have been extensively used in synthesizing super-absorbent hydrogels due to their non-toxicity, hydrophilicity, biocompatibility, biodegradability, and natural origin. Furthermore, SAPs have been reviewed regarding their classifications, synthesis, cross-linking modification, and physicochemical characterization, including morphology, thermal and mechanical characteristics, biodegradability, etc. Consequently, they are a good candidate for many applications, including drug delivery, biosensing, anti-bacterial, and personal care. This chapter discusses some essential natural polymers and their use as SAPs in biomedicine, as well as their synthesis, characterization and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6:105–121. https://doi.org/10.1016/j.jare.2013.07.006

    Article  CAS  PubMed  Google Scholar 

  2. Zhang M, Cheng Z, Zhao T, Liu M, Hu M, Li J (2014) Synthesis, characterization, and swelling behaviors of salt-sensitive maize bran–poly(acrylic acid) superabsorbent hydrogel. J Agric Food Chem 62:8867–8874. https://doi.org/10.1021/jf5021279

    Article  CAS  PubMed  Google Scholar 

  3. Ramazani-Harandi MJJ, Zohuriaan-Mehr MJJ, Yousefi AAA, Ershad-Langroudi A, Kabiri K (2006) Rheological determination of the swollen gel strength of superabsorbent polymer hydrogels. Polym Test 25:470–474. https://doi.org/10.1016/j.polymertesting.2006.01.011

    Article  CAS  Google Scholar 

  4. Spinks GM, Lee CK, Wallace GG, Kim SI, Kim SJ (2006) Swelling behavior of chitosan hydrogels in ionic liquid−water binary systems. Langmuir 22:9375–9379. https://doi.org/10.1021/la061586r

    Article  CAS  PubMed  Google Scholar 

  5. Lee KM, Min JH, Oh S, Lee H, Koh W-G (2020) Preparation and characterization of superabsorbent polymers (SAPs) surface-crosslinked with polycations. React Funct Polym 157:104774. https://doi.org/10.1016/j.reactfunctpolym.2020.104774

    Article  CAS  Google Scholar 

  6. Sharma S, Dua A, Malik A (2014) Polyaspartic acid based superabsorbent polymers. https://doi.org/10.1016/j.eurpolymj.2014.07.043

  7. Fang S, Wang G, Xing R, Chen X, Liu S, Qin Y, Li K, Wang X, Li R, Li P (2019) Synthesis of superabsorbent polymers based on chitosan derivative graft acrylic acid-co-acrylamide and its property testing. Int J Biol Macromol 132:575–584. https://doi.org/10.1016/j.ijbiomac.2019.03.176

    Article  CAS  PubMed  Google Scholar 

  8. Benjamin SR, Dutra RF (2023) Polymer composites for immunosensors. In: Polymeric nanocomposite materials for sensor applications. Elsevier, pp 367–379. https://doi.org/10.1016/B978-0-323-98830-8.00003-5

  9. Benjamin SR, Júnior EJMR, de Andrade GM, Oriá RB (2023) Metal-organic framework–based electrochemical immunosensors for virus detection. https://doi.org/10.1201/9781003252061-12

  10. Bayer CL, Peppas NA (2008) Advances in recognitive, conductive and responsive delivery systems. J Control Release 132. https://doi.org/10.1016/j.jconrel.2008.06.021

  11. Benjamin SR, de Souza Nascimento T, Roque CR, de Andrade GM, Oriá RB (2022) Recent advances in the development of immunosensors for infectious diseases. In: Biosensors for emerging and re-emerging infectious diseases, pp 19–72. Elsevier. https://doi.org/10.1016/B978-0-323-88464-8.00006-3

  12. Oyama Y, Osaki T, Kamiya K, Sawai M, Sakai M, Takeuchi S (2017) A sensitive point-of-care testing chip utilizing superabsorbent polymer for the early diagnosis of infectious disease. Sens Actuators B Chem 240:881–886. https://doi.org/10.1016/j.snb.2016.09.046

    Article  CAS  Google Scholar 

  13. Kim SB, Zhang Y, Won SM, Bandodkar AJ, Sekine Y, Xue Y, Koo J, Harshman SW, Martin JA, Park JM, Ray TR, Crawford KE, Lee K, Choi J, Pitsch RL, Grigsby CC, Strang AJ, Chen Y, Xu S, Kim J, Koh A, Ha JS, Huang Y, Kim SW, Rogers JA (2018) Super-absorbent polymer valves and colorimetric chemistries for time-sequenced discrete sampling and chloride analysis of sweat via skin-mounted soft microfluidics. Small 14:1703334. https://doi.org/10.1002/smll.201703334

    Article  CAS  Google Scholar 

  14. You T, Jeong W, Lee H, Huh YS, Kim SM, Jeon T-J (2021) A simple strategy for signal enhancement in lateral flow assays using superabsorbent polymers. Microchim Acta 188:364. https://doi.org/10.1007/s00604-021-05026-2

    Article  CAS  Google Scholar 

  15. Biswas GC, Rana MM, Kazuhiro T, Suzuki H (2019) A simple micropump based on a freeze-dried superabsorbent polymer for multiplex solution processing in disposable devices. R Soc Open Sci 6:182213. https://doi.org/10.1098/rsos.182213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Khan H, Chaudhary JP, Meena R (2019) Anionic carboxymethylagarose-based pH-responsive smart superabsorbent hydrogels for controlled release of anticancer drug. Int J Biol Macromol 124:1220–1229. https://doi.org/10.1016/j.ijbiomac.2018.12.045

    Article  CAS  PubMed  Google Scholar 

  17. Jayrajsinh S, Shankar G, Agrawal YK, Bakre L (2017) Montmorillonite nanoclay as a multifaceted drug-delivery carrier: a review. https://doi.org/10.1016/j.jddst.2017.03.023

  18. Etemadi Baloch F, Afzali D, Fathirad F (2021) Design of acrylic acid/nanoclay grafted polysaccharide hydrogels as superabsorbent for controlled release of chlorpyrifos. Appl Clay Sci 211:106194. https://doi.org/10.1016/j.clay.2021.106194

    Article  CAS  Google Scholar 

  19. Das D, Ghosh P, Ghosh A, Haldar C, Dhara S, Panda AB, Pal S (2015) Stimulus-responsive, biodegradable, biocompatible, covalently cross-linked hydrogel based on dextrin and poly(N -isopropylacrylamide) for in vitro/in vivo controlled drug release. ACS Appl Mater Interfaces 7:14338–14351. https://doi.org/10.1021/acsami.5b02975

    Article  CAS  PubMed  Google Scholar 

  20. Hajikhani M, Khanghahi MM, Shahrousvand M, Mohammadi-Rovshandeh J, Babaei A, Khademi SMH (2019) Intelligent superabsorbents based on a xanthan gum/poly (acrylic acid) semi-interpenetrating polymer network for application in drug delivery systems. Int J Biol Macromol 139:509–520. https://doi.org/10.1016/j.ijbiomac.2019.07.221

    Article  CAS  PubMed  Google Scholar 

  21. Kulkarni RV, Sa B (2009) Electroresponsive polyacrylamide-grafted-xanthan hydrogels for drug delivery. J Bioact Compat Polym 24:368–384. https://doi.org/10.1177/0883911509104475

    Article  CAS  Google Scholar 

  22. Wang Y, Wang W, Shi X, Wang A (2013) A superabsorbent nanocomposite based on sodium alginate and illite/smectite mixed-layer clay. J Appl Polym Sci 130:161–167. https://doi.org/10.1002/app.39141

    Article  CAS  Google Scholar 

  23. Shin Y, Kim D, Hu Y, Kim Y, Hong IK, Kim MS, Jung S (2021) Ph‐responsive succinoglycan‐carboxymethyl cellulose hydrogels with highly improved mechanical strength for controlled drug delivery systems. Polymers (Basel) 13. https://doi.org/10.3390/polym13183197

  24. Jeong D, Joo SW, Hu Y, Shinde VV, Cho E, Jung S (2018) Carboxymethyl cellulose-based superabsorbent hydrogels containing carboxymehtyl β-cyclodextrin for enhanced mechanical strength and effective drug delivery. Eur Polym J 105. https://doi.org/10.1016/j.eurpolymj.2018.05.023

  25. Gauzit Amiel A, Palomino-Durand C, Maton M, Lopez M, Cazaux F, Chai F, Neut C, Foligné B, Martel B, Blanchemain N (2020) Designed sponges based on chitosan and cyclodextrin polymer for a local release of ciprofloxacin in diabetic foot infections. Int J Pharm 587. https://doi.org/10.1016/j.ijpharm.2020.119677

  26. Chen Y, Wu X, Wei J, Luo X (2019) Fabrication of speedy and super-water-absorbing non-woven cloth with hierarchical three-dimensional network structure. Polym Int 68:110–119. https://doi.org/10.1002/pi.5703

    Article  CAS  Google Scholar 

  27. Balasundaram G, Webster TJ (2007) An overview of nano-polymers for orthopedic applications. https://doi.org/10.1002/mabi.200600270

  28. Pham DC, Nguyen TH, Ngoc UTP, Le NTT, Tran TV, Nguyen DH (2018) Preparation, characterization and antifungal properties of chitosan-silver nanoparticles synergize fungicide against pyricularia oryzae. J Nanosci Nanotechnol 18:5299–5305. https://doi.org/10.1166/jnn.2018.15400

    Article  CAS  PubMed  Google Scholar 

  29. Hua S, Wang A (2009) Synthesis, characterization and swelling behaviors of sodium alginate-g-poly(acrylic acid)/sodium humate superabsorbent. Carbohydr Polym 75:79–84. https://doi.org/10.1016/j.carbpol.2008.06.013

    Article  CAS  Google Scholar 

  30. Zhanjun L, Hui C, Jing W, Xiaohong X, Hongbo L, Li Y (2018) Surface modification of short carbon fibers with carbon nanotubes to reinforce epoxy matrix composites. J Nanosci Nanotechnol 18:4940–4952. https://doi.org/10.1166/jnn.2018.15326

    Article  CAS  PubMed  Google Scholar 

  31. Ma X, Wei R, Cheng J, Cai J, Zhou J (2011) Synthesis and characterization of pectin/poly (sodium acrylate) hydrogels. Carbohydr Polym 86:313–319. https://doi.org/10.1016/j.carbpol.2011.04.089

    Article  CAS  Google Scholar 

  32. Czarnecka E, Nowaczyk J (2020) Semi-natural superabsorbents based on starch-g-poly(acrylic acid): modification, synthesis and application. Polymers (Basel) 12:1794. https://doi.org/10.3390/polym12081794

  33. Qian S, Zhang F, Liu B, Ren H, Tong G (2017) Polyacrylate-based water-absorbent hydrogels prepared with lignin-related compounds: process conditions and performance. BioResources 12. https://doi.org/10.15376/biores.12.3.6607-6617

  34. Raffi M, Rumaiz AK, Hasan MM, Shah SI (2007) Studies of the growth parameters for silver nanoparticle synthesis by inert gas condensation. J Mater Res 22:3378–3384. https://doi.org/10.1557/JMR.2007.0420

    Article  CAS  Google Scholar 

  35. Rodrigues M, Genç A, Arbiol J, Amabilino DB, Pérez-García L (2015) In situ template synthesis of gold nanoparticles using a bis-imidazolium amphiphile-based hydrogel. J Colloid Interface Sci 446:53–58. https://doi.org/10.1016/j.jcis.2015.01.026

    Article  CAS  PubMed  Google Scholar 

  36. Wei Y-S, Chen K-S, Wu L-T (2016) In situ synthesis of high swell ratio polyacrylic acid/silver nanocomposite hydrogels and their antimicrobial properties. J Inorg Biochem 164:17–25. https://doi.org/10.1016/j.jinorgbio.2016.08.007

    Article  CAS  PubMed  Google Scholar 

  37. Chi M, Liu C, Shen J, Dong Z, Yang Z, Wang L (2018) Antibacterial superabsorbent polymers from tara gum grafted poly(acrylic acid) embedded silver particles. Polymers (Basel) 10. https://doi.org/10.3390/polym10090945

  38. Naserian F, Mesgar AS (2022) Development of antibacterial and superabsorbent wound composite sponges containing carboxymethyl cellulose/gelatin/Cu-doped ZnO nanoparticles. Colloids Surf B Biointerfaces 218:112729. https://doi.org/10.1016/j.colsurfb.2022.112729

    Article  CAS  PubMed  Google Scholar 

  39. Ferfera-Harrar H, Aiouaz N, Dairi N, Hadj-Hamou AS (2014) Preparation of chitosan-g-poly(acrylamide)/montmorillonite superabsorbent polymer composites: studies on swelling, thermal, and antibacterial properties. J Appl Polym Sci 131. https://doi.org/10.1002/app.39747

  40. Sharma S, Dua A, Malik A (2016) Superabsorbent polymer gels based on polyaspartic acid and polyacrylic acid. J Mater Sci Eng 05. https://doi.org/10.4172/2169-0022.1000235

  41. Sadeghi M, Shafiei F, Mohammadinasab E, Mansouri L, Shasavar H (2014) Synthesis of biodegradable hydrogel based on H-alginate-g-poly(AMPS). Biosci Biotechnol Res Asia 11. https://doi.org/10.13005/bbra/1240

  42. Sharma S, Dua A, Malik A (2017) Biocompatible stimuli responsive superabsorbent polymer for controlled release of GHK-Cu peptide for wound dressing application. J Polym Res 24:104. https://doi.org/10.1007/s10965-017-1254-z

    Article  CAS  Google Scholar 

  43. Chen Y, Zhang Y, Wang F, Meng W, Yang X, Li P, Jiang J, Tan H, Zheng Y (2016) Preparation of porous carboxymethyl chitosan grafted poly (acrylic acid) superabsorbent by solvent precipitation and its application as a hemostatic wound dressing. Mater Sci Eng C 63:18–29. https://doi.org/10.1016/j.msec.2016.02.048

    Article  CAS  Google Scholar 

  44. Shitole AA, Raut PW, Khandwekar A, Sharma N, Baruah M (2019) Design and engineering of polyvinyl alcohol based biomimetic hydrogels for wound healing and repair. J Polym Res 26:201. https://doi.org/10.1007/s10965-019-1874-6

    Article  CAS  Google Scholar 

  45. Gaharwar AK, Arpanaei A, Andresen TL, Dolatshahi-Pirouz A (2016) 3D biomaterial microarrays for regenerative medicine: current state-of-the-art, emerging directions and future trends. Adv Mater 28:771–781. https://doi.org/10.1002/adma.201503918

    Article  CAS  PubMed  Google Scholar 

  46. Palem RR, Shimoga G, Rao KSVK, Lee S-H, Kang TJ (2020) Guar gum graft polymer-based silver nanocomposite hydrogels: synthesis, characterization and its biomedical applications. J Polym Res 27:68. https://doi.org/10.1007/s10965-020-2026-8

    Article  CAS  Google Scholar 

  47. Zhu T, Mao J, Cheng Y, Liu H, Lv L, Ge M, Li S, Huang J, Chen Z, Li H, Yang L, Lai Y (2019) Recent progress of polysaccharide-based hydrogel interfaces for wound healing and tissue engineering. Adv Mater Interfaces 6:1900761. https://doi.org/10.1002/admi.201900761

    Article  CAS  Google Scholar 

  48. Altomare L, Bonetti L, Campiglio CE, De Nardo L, Draghi L, Tana F, Farè S (2018) Biopolymer-based strategies in the design of smart medical devices and artificial organs. https://doi.org/10.1177/0391398818765323

  49. Lin D, Lei L, Shi S, Li X (2019) Stimulus-responsive hydrogel for ophthalmic drug delivery. Macromol Biosci 19:1900001. https://doi.org/10.1002/mabi.201900001

    Article  CAS  Google Scholar 

  50. Narayanaswamy R, Torchilin VP (2019) Hydrogels and their applications in targeted drug delivery. Molecules 24:603. https://doi.org/10.3390/molecules24030603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Puppi D, Chiellini F, Piras AM, Chiellini E (2010) Polymeric materials for bone and cartilage repair. Prog Polym Sci 35:403–440. https://doi.org/10.1016/j.progpolymsci.2010.01.006

    Article  CAS  Google Scholar 

  52. Sartore L, Inverardi N, Pandini S, Bignotti F, Chiellini F (2019) PLA/PCL-based foams as scaffolds for tissue engineering applications. In: Materials today: proceedings. https://doi.org/10.1016/j.matpr.2018.11.103

  53. Chen W, Ma J, Zhu L, Morsi Y, EI-Hamshary H, Al-Deyab SS, Mo X (2016) Superelastic, superabsorbent and 3D nanofiber-assembled scaffold for tissue engineering. Colloids Surf B Biointerfaces 142. https://doi.org/10.1016/j.colsurfb.2016.02.050.

  54. Meng Y, Cao J, Chen Y, Yu Y, Ye L (2020) 3D printing of a poly(vinyl alcohol)-based nano-composite hydrogel as an artificial cartilage replacement and the improvement mechanism of printing accuracy. J Mater Chem B 8:677–690. https://doi.org/10.1039/C9TB02278C

    Article  CAS  PubMed  Google Scholar 

  55. Priya Sharma AK, Kaith BS, Simran B, Arora S (2021) Synthesis of dextrin-polyacrylamide and boric acid based tough and transparent, self-healing, superabsorbent film. Int J Biol Macromol 182. https://doi.org/10.1016/j.ijbiomac.2021.04.028

Download references

Acknowledgements

The authors would like to thank the Coordination for the Improvement of Higher Education Personnel (CAPES)-Brazil and the Drug Research and Development Centre (NPDM) of the Federal University of Ceará (UFC) in Fortaleza, and the Faculty of CGESP, Goiânia, Brazil, for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Rathinaraj Benjamin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Benjamin, S.R., Júnior, E.J.M.R. (2023). Utility of Super-Absorbent Polymers in Biomedical Applications. In: Arpit, S., Jaya, T. (eds) Properties and Applications of Superabsorbent Polymers. Springer, Singapore. https://doi.org/10.1007/978-981-99-1102-8_9

Download citation

Publish with us

Policies and ethics