Skip to main content

Physical and Analytical Techniques Used for the Characterization of Polymeric Micelles

  • Chapter
  • First Online:
Polymeric Micelles: Principles, Perspectives and Practices
  • 288 Accesses

Abstract

Nanomedicines are notably the intriguing strategies for addressing diverse challenges allied with drug delivery. Polymeric micelles, a self-assembled nanocarrier of amphiphilic polymers, help in overcoming drug-related issues like poor solubility and permeability. Diminished size, enhanced solubilization properties, ease of fabrication and sterilization make polymeric micelles more fascinating than other nanocarriers. The first and most imperative step after micelle formation is their characterization which gives detailed information about its size, morphology, critical micellar concentration (CMC), chemical structure, and stability. Characterization is considered the backbone for developing stable, safe, and effective drug delivery systems (DDS). Instead, the benefits of one or more characterization techniques can be further clubbed in order to get better understanding of micelles behavior. This chapter will present a brief description of various physical and analytical characterization techniques for evaluating polymeric micelles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Su S, Kang PM (2020) Recent advances in nanocarrier-assisted therapeutics delivery systems. Pharmaceutics 12(9):1–27

    Article  Google Scholar 

  • Joseph M, Trinh HM, Mitra AK (2017) Peptide and protein-based therapeutic agents. In: Emerging nanotechnologies for diagnostics, drug delivery and medical devices, pp 145–167

    Google Scholar 

  • Deng C, Jiang Y, Cheng R, Meng F, Zhong Z (2012) Biodegradable polymeric micelles for targeted and controlled anticancer drug delivery: promises, progress and prospects. Nano Today 7(5):467–480

    Article  CAS  Google Scholar 

  • Bölgen N (2018) Biodegradable polymeric micelles for drug delivery applications. In: Stimuli responsive polymeric nanocarriers for drug delivery applications, vol 1. Types and Triggers, pp 635–651

    Chapter  Google Scholar 

  • Atanase LI (2021) Micellar drug delivery systems based on natural biopolymers. Polymers (Basel) 13(3):1–33

    Article  Google Scholar 

  • Nair HA, Rajawat GS, Nagarsenker MS. Stimuli-responsive micelles: a nanoplatform for therapeutic and diagnostic applications. Drug Target Stimuli Sensit Drug Deliver Syst. 2018. 303–342

    Google Scholar 

  • Rana S, Bhattacharjee J, Barick KC, Verma G, Hassan PA, Yakhmi JV (2017) Interfacial engineering of nanoparticles for cancer therapeutics. Nanostruct Cancer Therapy:177–209

    Google Scholar 

  • Kedar U, Phutane P, Shidhaye S, Kadam V (2010) Advances in polymeric micelles for drug delivery and tumor targeting. Nanomed Nanotechnol Biol Med 6(6):714–729

    Article  CAS  Google Scholar 

  • Tiwari AP, Rohiwal SS (2018) Synthesis and bioconjugation of hybrid nanostructures for biomedical applications. Hybrid Nanostruct Cancer Theranostics:1–10

    Google Scholar 

  • Yadav HKS, Almokdad AA, Shaluf SIM, Debe MS (2018) Polymer-Based Nanomaterials for Drug-Delivery Carriers. In: Nanocarriers for Drug Delivery: Nanoscience and Nanotechnology in Drug Delivery. Elsevier, Amsterdam, pp 531–556

    Google Scholar 

  • Tsuji JS, Maynard AD, Howard PC, James JT, Lam C, Warheit DB et al (2006) Research strategies for safety evaluation of nanomaterials, part IV: risk assessment of nanoparticles. Toxicol Sci 89(1):42–50

    Article  CAS  PubMed  Google Scholar 

  • Mahmoudi M (2021) The need for robust characterization of nanomaterials for nanomedicine applications. Nat Commun 12(1):5246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spyratou E, Mourelatou EA, Makropoulou M, Demetzos C (2009) Atomic force microscopy: a tool to study the structure, dynamics and stability of liposomal drug delivery systems. Expert Opin Drug Deliv 6(3):305–317

    Article  CAS  PubMed  Google Scholar 

  • Kim YM, Lee J, Jeon DJ, Oh SE, Yeo JS (2021) Advanced atomic force microscopy-based techniques for nanoscale characterization of switching devices for emerging neuromorphic applications. Appl Microsc 51(1):7

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghezzi M, Pescina S, Padula C, Santi P, Del Favero E, Cantù L et al (2021) Polymeric micelles in drug delivery: an insight of the techniques for their characterization and assessment in biorelevant conditions. J Control Release 332:312–336

    Article  CAS  PubMed  Google Scholar 

  • Kotta S, Aldawsari HM, Badr-Eldin SM, Nair AB, Kamal YT (2022) Progress in polymeric micelles for drug delivery applications. Pharmaceutics. 14(8):1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kheiri Manjili H, Ghasemi P, Malvandi H, Mousavi MS, Attari E, Danafar H (2017) Pharmacokinetics and in vivo delivery of curcumin by copolymeric mPEG-PCL micelles. Eur J Pharm Biopharm 116:17–30

    Article  CAS  PubMed  Google Scholar 

  • Liaw J, Aoyagi T, Kataoka K, Sakurai Y, Okano T (1998) Visualization of PEO-PBLA-pyrene polymeric micelles by atomic force microscopy. Pharm Res 15(11):1721–1726

    Article  CAS  PubMed  Google Scholar 

  • Venkateshaiah A, Padil VVT, Nagalakshmaiah M, Waclawek S, ÄŒerník M, Varma RS (2020) Microscopic techniques for the analysis of micro and nanostructures of biopolymers and their derivatives. Polymers (Basel) 12(3):512

    Article  CAS  PubMed  Google Scholar 

  • Yaneva Z, Georgieva N (2017) Physicochemical and morphological characterization of pharmaceutical nanocarriers and mathematical modeling of drug encapsulation/release mass transfer processes. In: Nanoscale Fabrication, Optimization, Scale-up and Biological Aspects of Pharmaceutical Nanotechnology. William Andrew, Norwich, NY, pp 173–218

    Google Scholar 

  • Marassi R, Nobili F (2009) Measurement methods|structural and chemical properties: transmission electron microscopy. In: Encyclopedia of Electrochemical Power Sources. Newnes, Oxford and Boston, pp 769–789

    Chapter  Google Scholar 

  • Birhan YS, Hailemeskel BZ, Mekonnen TW, Hanurry EY, Darge HF, Andrgie AT et al (2019) Fabrication of redox-responsive bi(mPEG-PLGA)-Se2 micelles for doxorubicin delivery. Int J Pharm 567:118486

    Article  CAS  PubMed  Google Scholar 

  • Gao M, Yang Y, Bergfel A, Huang L, Zheng L, Bowden TM (2020) Self-assembly of cholesterol end-capped polymer micelles for controlled drug delivery. J Nanobiotechnol 18(1):13

    Article  CAS  Google Scholar 

  • Rostamabadi H, Falsafi SR, Jafari SM (2020) Transmission electron microscopy (TEM) of nanoencapsulated food ingredients. In: Characterization of nanoencapsulated food ingredients. Elsevier, Amsterdam, pp 53–82

    Chapter  Google Scholar 

  • Malatesta M (2021) Transmission electron microscopy as a powerful tool to investigate the interaction of nanoparticles with subcellular structures. Int J Mol Sci 22(23)

    Google Scholar 

  • Glisoni RJ, Sosnik A (2014) Novel poly(ethylene oxide)-b-poly(propylene oxide) copolymer-glucose conjugate by the microwave-assisted ring opening of a sugar lactone. Macromol Biosci 14(11):1639–1651

    Article  CAS  PubMed  Google Scholar 

  • Long M, Xu J, Fang W, Mao J, Zhang J, Liu S et al (2021) Enhanced delivery of artesunate by stimuli-responsive polymeric micelles for lung tumor therapy. J Drug Deliv Sci Technol 66:102812

    Article  CAS  Google Scholar 

  • Yu W, Inam M, Jones JR, Dove AP, O’Reilly RK (2017) Understanding the CDSA of poly(lactide) containing triblock copolymers. Polym Chem 8(36):5504–5512

    Article  CAS  Google Scholar 

  • Alam MM, Zhao W, Zhai S, Yusa SI, Noguchi H, Nakashima K (2014) Fabrication of copper(II) oxide hollow nanosphere using ABC block copolymer templates and its application as anode materials in lithium ion batteries. Chem Lett 43(9):1426–1428

    Article  CAS  Google Scholar 

  • Justyna W (2017) Confocal microscopy: principles and modern practices. Curr Protoc Cytom 176(5):139–148

    Google Scholar 

  • Hovis DB, Heuer AH (2010) The use of laser scanning confocal microscopy (LSCM) in materials science. J Microsc 240(3):173–180

    Article  CAS  PubMed  Google Scholar 

  • Wang SW, Lin YK, Fang JY, Lee RS (2018) Photo-responsive polymeric micelles and prodrugs: synthesis and characterization. RSC Adv 8(51):29321–29337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim Y, Pourgholami MH, Morris DL, Lu H, Stenzel MH (2013) Effect of shell-crosslinking of micelles on endocytosis and exocytosis: acceleration of exocytosis by crosslinking. Biomater Sci 1(3):265–275

    Article  PubMed  Google Scholar 

  • Titus D, James Jebaseelan Samuel E, Roopan SM (2019) Nanoparticle characterization techniques. In: Green synthesis, characterization and applications of nanoparticles. Elsevier, Amsterdam, pp 303–319

    Chapter  Google Scholar 

  • Shabanian M, Hajibeygi M, Raeisi A (2020) FTIR characterization of layered double hydroxides and modified layered double hydroxides. In: Layered double hydroxide polymer nanocomposites. Woodhead Publishing, Sawston, pp 77–101

    Chapter  Google Scholar 

  • Singh KS, Majik MS, Tilvi S (2014) Vibrational spectroscopy for structural characterization of bioactive compounds. Compr Anal Chem 65:115–148

    Article  CAS  Google Scholar 

  • Dhakal S, Schmidt WF, Kim M, Tang X, Peng Y, Chao K (2019) Detection of additives and chemical contaminants in turmeric powder using FT-IR spectroscopy. Foods 8(5):143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patil S, Ujalambkar V, Rathore A, Rojatkar S, Pokharkar V (2019) Galangin loaded galactosylated pluronic F68 polymeric micelles for liver targeting. Biomed Pharmacother 112:108691

    Article  CAS  PubMed  Google Scholar 

  • Shankar G, Agrawal YK (2015) Formulation and evaluation of polymeric micelles for a poorly absorbed drug. Res J Pharm Biol Chem Sci 6(3):1314–1321

    CAS  Google Scholar 

  • Espina R, Yu L, Wang J, Tong Z, Vashishtha S, Talaat R et al (2009) Nuclear magnetic resonance spectroscopy as a quantitative tool to determine the concentrations of biologically produced metabolites: implications in metabolites in safety testing. Chem Res Toxicol 22(2):299–310

    Article  CAS  PubMed  Google Scholar 

  • Zia K, Siddiqui T, Ali S, Farooq I, Zafar MS, Khurshid Z (2019) Nuclear magnetic resonance spectroscopy for medical and dental applications: a comprehensive review. Eur J Dent 13(1):124–128

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Wang R, Lu X, Lu W, Zhang C, Liang W (2010) Pegylated phospholipids-based self-assembly with water-soluble drugs. Pharm Res 27(2):361–370

    Article  CAS  PubMed  Google Scholar 

  • Puig-Rigall J, Fernández-Rubio C, González-Benito J, Houston JE, Radulescu A, Nguewa P et al (2020) Structural characterization by scattering and spectroscopic methods and biological evaluation of polymeric micelles of poloxamines and TPGS as nanocarriers for miltefosine delivery. Int J Pharm 578:119057

    Article  CAS  PubMed  Google Scholar 

  • Das S, Mukherjee A, Sengupta G, Singh VK (2019) Overview of nanomaterials synthesis methods, characterization techniques and effect on seed germination. In: Nano-Materials as Photocatalysts for Degradation of Environmental Pollutants: Challenges and Possibilities. Elsevier, Amsterdam, pp 371–401

    Google Scholar 

  • Ullmann C, Babick F, Stintz M (2019) Microfiltration of submicron-sized and nano-sized suspensions for particle size determination by dynamic light scattering. Nano 9(6):829

    CAS  Google Scholar 

  • Caputo F, Clogston J, Calzolai L, Rösslein M, Prina-Mello A (2019) Measuring particle size distribution of nanoparticle enabled medicinal products, the joint view of EUNCL and NCI-NCL. A step by step approach combining orthogonal measurements with increasing complexity. J Control Release 299:31–43

    Article  CAS  PubMed  Google Scholar 

  • Falke S, Betzel C (2019) Dynamic Light Scattering (DLS) Principles, Perspectives, Applications to Biological Samples. Springer International Publishing, New York. https://doi.org/10.1007/978-3-030-28247-9_6

    Book  Google Scholar 

  • Honary S, Zahir F (2013) Effect of zeta potential on the properties of nano-drug delivery systems - a review (part 2). Trop J Pharm Res 12(2):265–273

    Google Scholar 

  • Zhang J, Jiang W, Zhao X, Wang Y (2007) Preparation and characterization of polymeric micelles from poly(D, L-lactide) and Methoxypolyethylene glycol block copolymers as potential drug carriers. Tsinghua Sci Technol 12(4):493–496

    Article  CAS  Google Scholar 

  • Huang X, Liao W, Zhang G, Kang S, Zhang CY (2017) pH-sensitive micelles self-assembled from polymer brush (PAE-g-cholesterol)-b-PEG-b-(PAE-g-cholesterol) for anticancer drug delivery and controlled release. Int J Nanomedicine 12:2215–2226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aji Alex MR, Veeranarayanan S, Poulose AC, Nehate C, Kumar DS, Koul V (2016) Click modified amphiphilic graft copolymeric micelles of poly(styrene-alt-maleic anhydride) for combinatorial delivery of doxorubicin and plk-1 siRNA in cancer therapy. J Mater Chem B 4(45):7303–7313

    Article  CAS  PubMed  Google Scholar 

  • Honecker D, Bersweiler M, Erokhin S, Berkov D, Chesnel K, Venero DA et al (2022) Using small-angle scattering to guide functional magnetic nanoparticle design. Nanoscale Adv 4(4):1026–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu M, Prenner E (2011) Differential scanning calorimetry: an invaluable tool for a detailed thermodynamic characterization of macromolecules and their interactions. J Pharm Bioallied Sci 3(1):39–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill P, Moghadam TT, Ranjbar B (2010) Differential scanning calorimetry techniques: applications in biology and nanoscience. J Biomol Tech 21(4):167–193

    PubMed  PubMed Central  Google Scholar 

  • Gaber NN, Darwis Y, Peh KK, Tan YTF (2006) Characterization of polymeric micelles for pulmonary delivery of beclomethasone dipropionate. J Nanosci Nanotechnol 6(9–10):3095–3101

    Article  CAS  PubMed  Google Scholar 

  • Salimi A, Makhmal Zadeh BS, Kazemi M (2019) Preparation and optimization of polymeric micelles as an oral drug delivery system for deferoxamine mesylate: in vitro and ex vivo studies. Res Pharm Sci 14(4):293–307

    Article  PubMed  PubMed Central  Google Scholar 

  • Streets J, Bhatt P, Bhatia D, Sutariya V (2020) Sunitinib-loaded MPEG-PCL micelles for the treatment of age-related macular degeneration. Sci Pharm 88(3):1–12

    Article  Google Scholar 

  • Bunaciu AA, UdriÅŸtioiu E, gabriela, Aboul-Enein HY. (2015) X-ray diffraction: instrumentation and applications. Crit Rev Anal Chem 45(4):289–299

    Article  CAS  PubMed  Google Scholar 

  • Liang N, Sun S, Gong X, Li Q, Yan P, Cui F (2018) Polymeric micelles based on modified glycol chitosan for paclitaxel delivery: preparation, characterization and evaluation. Int J Mol Sci 19(6)

    Google Scholar 

  • Wijiani N, Isadiartuti D, Agus Syamsur Rijal M, Yusuf H (2020) Characterization and dissolution study of micellar curcumin-spray dried powder for oral delivery. Int J Nanomedicine 15:1787–1796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mabrouk MM, Hamed NA, Mansour FR (2021) Spectroscopic methods for determination of critical micelle concentrations of surfactants; a comprehensive review. Appl Spectrosc Rev 58:1-29

    Google Scholar 

  • Kapse A, Anup N, Patel V, Saraogi GK, Mishra DK, Tekade RK (2019) Polymeric micelles: a ray of hope among new drug delivery systems. Drug Delivery Syst:235–289

    Google Scholar 

  • Anoune N, Nouiri M, Berrah Y, Gauvrit JY, Lanteri P (2002) Critical micelle concentrations of different classes of surfactants: a quantitative structure property relationship study. J Surfactant Deterg 5(1):45–53

    Article  CAS  Google Scholar 

  • Majumder N, Das NG, Das SK (2020) Polymeric micelles for anticancer drug delivery. Ther Deliv 11(10):613–635

    Article  CAS  PubMed  Google Scholar 

  • Ma W, Sun J, Xu J, Luo Z, Diao D, Zhang Z et al (2020) Sensitizing triple negative breast cancer to tamoxifen chemotherapy via a redox-responsive Vorinostat-containing polymeric prodrug nanocarrier. Theranostics 10(6):2463–2478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manjili HK, Malvandi H, Mousavi MS, Attari E, Danafar H (2018) In vitro and in vivo delivery of artemisinin loaded PCL–PEG–PCL micelles and its pharmacokinetic study. Artif Cells Nanomed Biotechnol 46(5):926–936

    Article  CAS  PubMed  Google Scholar 

  • Yu F, He C, Waddad AY, Munyendo WLL, Lv H, Zhou J et al (2014) N-octyl-N-arginine-chitosan (OACS) micelles for gambogic acid oral delivery: preparation, characterization and its study on in situ intestinal perfusion. Drug Dev Ind Pharm 40(6):774–782

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Fu S, Lin L, Cao Y, Xie X, Yu H et al (2017) Redox-sensitive Pluronic F127-tocopherol micelles: synthesis, characterization, and cytotoxicity evaluation. Int J Nanomedicine 12:2635–2644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran TQM, Hsieh MF, Chang KL, Pho QH, Nguyen VC, Cheng CY et al (2016) Bactericidal effect of lauric acid-loaded PCL-PEG-PCL nano-sized micelles on skin commensal propionibacterium acnes. Polymers (Basel) 8(9):321

    Article  PubMed  Google Scholar 

  • Li W, Xue J, Xu H (2019) Combined administration of PTX and S-HM-3 in TPGS/solutol micelle system for oncotarget therapy. Int J Nanomedicine 14:1011–1026

    PubMed  PubMed Central  Google Scholar 

  • Zhong P, Gu X, Cheng R, Deng C, Meng F, Zhong Z (2017) Αvβ3 integrin-targeted micellar Mertansine prodrug effectively inhibits triple-negative breast cancer in vivo. Int J Nanomedicine 12:7913–7921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Zhang Z, Li J, Sun S, Weng Y, Chen H (2012) Diclofenac/biodegradable polymer micelles for ocular applications. Nanoscale 4(15):4667–4673

    Article  CAS  PubMed  Google Scholar 

  • Gulfam M, Matini T, Monteiro PF, Riva R, Collins H, Spriggs K et al (2017) Bioreducible cross-linked core polymer micelles enhance: in vitro activity of methotrexate in breast cancer cells. Biomater Sci 5(3):532–550

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the research funding support by Department of Pharmaceuticals (DoP), Ministry of Chemicals and Fertilizers, Govt. of India to National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, INDIA.

Declaration of Interest

The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurabh Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Etikala, A., Nene, S., Singh, S.B., Srivastava, S. (2023). Physical and Analytical Techniques Used for the Characterization of Polymeric Micelles. In: Singh, S.K., Gulati, M., Mutalik, S., Dhanasekaran, M., Dua, K. (eds) Polymeric Micelles: Principles, Perspectives and Practices. Springer, Singapore. https://doi.org/10.1007/978-981-99-0361-0_6

Download citation

Publish with us

Policies and ethics