Skip to main content
Log in

Critical micelle concentrations of different classes of surfactants: A quantitative structure property relationship study

  • Published:
Journal of Surfactants and Detergents

Abstract

The critical micelle concentration (CMC) values of a 49-surfactant dataset, among them 30 derived from α-hydroxy acids or from gluconolactone synthesized and characterized in our laboratory, were subjected to Quantitative Structure Property Relationship (QSPR) studies. In this study, a principal component analysis (PCA) was used to compare the behavior of the synthesized surfactants to commercial ones that are used as detergents. The PCA shows the importance of the molecular structure of a surfactant in determining its activity (application field). We found that gluconolactone derivatives exhibited the same activity as those observed for glucopyranoside derivatives. A partial least squares regression was used to build a model that describes the CMC of diverse surfactants as a function of molecular descriptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rosen M.J., The Relationship of Structure to Properties in Surfactants IV—Effectiveness in Surface or Interfacial Tension Reduction, Colloid Interface Sci. 56:320 (1976).

    Article  CAS  Google Scholar 

  2. Ravey, J.C., A. Gherbi, and M. Stebe, Comparative Study of Fluorinated and Hydrogenated Nonionic Surfactants. I—Surface Activity Properties and Critical Concentration, Prog. Colloid Polym. Sci. 76:234 (1988).

    Article  CAS  Google Scholar 

  3. Becher, P., Hydrophile-Lipophile Balance: History and Recent Development, J. Dispersion Sci. Technol. 5:81 (1984).

    CAS  Google Scholar 

  4. Stanton, D.T., and P.C. Jurs, Development and Use of Charged Partial Surface Area Structural Descriptors in Computer-Assisted Quantitative Structure-Property Relationship Studies, Anal. Chem. 62:2323 (1990).

    Article  CAS  Google Scholar 

  5. Stanton, D.T., and P.C. Jurs Computer-Assisted Study of the Relationship Between Molecular Structure and Surface Tension of Organic Compounds, J. Chem. Inf. Comput. Sci. 32:109 (1992).

    Article  CAS  Google Scholar 

  6. Nelson, T.M., and P.C. Jurs, Prediction of Aqueous Solubility of Organic compounds, J. Chem. Inf. Comput. Sci. 34:601 (1994).

    Article  CAS  Google Scholar 

  7. Katrizky, A.R., V.S. Lobanov, and M. Karelson, QSPR, The Correlation and Quantitative Prediction of Chemical and Physical Properties from Structure, Chem. Soc. Rev. 24:279 (1995).

    Article  Google Scholar 

  8. Huibers, P.D.T., V.S. Lobanov, A.R. Katritzky, D.O. Shah, and M. Karelson, Prediction of Critical Micelle Concentration Using a Quantitative Structure-Property Relationship Approach. 1—Nonionic Surfactants, Langmuir 12:1462 (1996).

    Article  CAS  Google Scholar 

  9. Anoune, N., M. Nouiri, C. Arnaud, S. Petit, and P. Lanten, synthesis and Characterization of New Cationic Surfactants Derived from Lactic Acid, J. Surfact. Deterg. 3:381 (2000).

    Article  CAS  Google Scholar 

  10. Petit, S., N-(Dialkyamino) alkyl alpha carboxamides, compositions les contenant, procédés de préparation et utilisations, French patent 2 778 405-A1 (1999).

  11. Petit, S., 5,6-Alkylidènes gluconolactones-1 (4) et dérivés, procédés de préparation et utilisations, French patent 97,04471 (1997).

    Google Scholar 

  12. Campbell, P., R. Srinivasan, T. Knoell, D. Phipps, K. Ishida, J. Safarik, T. Cormack, and H. Ridgway, Quantitative Structure-Activity Relationship (QSAR) Analysis of Surfactants Influencing Attachment of a Mycobacterium sp. to Cellulose Acetate and Aromatic Polyamide Reverse Osmosis Membranes, Biotechnol. Bioeng. 64:527 (1999).

    Article  CAS  Google Scholar 

  13. Balaban, A.T., Highly Discriminating Distance-Based Topological Index, Chem. Phys. Lett. 89:399 (1982).

    Article  CAS  Google Scholar 

  14. Kier, L.B., and L.H. Hall, Molecular Connectivity in Structure Analysis, Researched Studies Press, Letchworth, United Kingdom, 1986, p. 262.

    Google Scholar 

  15. Hall, L.H., and L.B. Kier, The Molecular Connectivity Chi Indices and Kappa Shape Indices in Structure-Property Modeling, in Reviews in Computational Chemistry, edited by K.B. Lipkowditz and D.B. Boyd, VCH Publishers, New York, 1991, p. 367.

    Google Scholar 

  16. Hall, L.H., and L.B. Kier, The Nature of Structure-Activity Relationships and Their Relation to Molecular Connectivity, Eur. J. Med. Chem. Chim. Therapeut. 4:307 (1997).

    Google Scholar 

  17. Wiener, H. Structural Determination of Paraffin Boiling Points, J. Am. Chem. Soc. 69:17 (1947).

    Article  CAS  Google Scholar 

  18. Hansh, A Quantiative Approach to Biochemical Structure-Activity Relationships, Acc. Chem. Res. B2:232 (1969).

    Article  Google Scholar 

  19. Dupeyrat M., Propriétés physico-chiniques spécifiques des agents de surface, edited by M. Dupeyrat, Technique et Documentation Lavoisier, Paris, 1983, p. 66.

    Google Scholar 

  20. Malinowski, E.R., Mathematical Formulation of Target Factor Analysis, in Factor Analysis in Chemistry, 2nd edn., Wiley-Interscience, New York, 1991, p. 32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoual Anoune.

About this article

Cite this article

Anoune, N., Nouiri, M., Berrah, Y. et al. Critical micelle concentrations of different classes of surfactants: A quantitative structure property relationship study. J Surfact Deterg 5, 45–53 (2002). https://doi.org/10.1007/s11743-002-0204-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11743-002-0204-2

Key Words

Navigation