Skip to main content
Log in

Pegylated Phospholipids-Based Self-Assembly with Water-Soluble Drugs

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To investigate the self-assembly of polyethylene glycol (PEG)-phosphatidylethanolamine (PE) conjugate with water-soluble drugs (doxorubicin hydrochloride, vinorelbine tartrate and vincristine sulfate) and give insight into the mechanism of formation and mode of interaction of the drug with PEG-PE as well as the general principles of self-assembly using pegylated lipid micelles.

Methods

One-step self-assembly method to prepare drug-loaded micelles was developed. The micelles were characterized by dynamic light scattering, transmission electron microscopy, encapsulation efficiency, and release study. NMR was used to study molecular assembly of PEG-PE with doxorubicin.

Results

Doxorubicin hydrochloride and vinorelbine tartrate were entrapped into micelles with high efficiency of >99.0% at molar ratios of 1:1 and 2:1 of PEG-PE to drugs, respectively. Drug loading did not measurably perturb either the geometry or the size. It was found that electrostatic interaction and hydrophobic forces are responsible for the intercalation of drugs into PEG-PE micelles. NMR data revealed that the anthracycline ring of doxorubicin was inserted between PE phospholipids, and its amino sugar located in the outer shell of micelle between PEG chains.

Conclusion

Based on our results, the structure and self-assembly mechanism of water-soluble drugs encapsulated in PEG-PE micelles were proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65:271–84.

    Article  CAS  PubMed  Google Scholar 

  2. Kwon GS. Polymeric micelles for delivery of poorly water-soluble compounds. Crit Rev Ther Drug Carrier Syst. 2003;20:357–403.

    Article  CAS  PubMed  Google Scholar 

  3. Torchilin VP. Targeted polymeric micelles for delivery of poorly soluble drugs. Cell Mol Life Sci. 2004;61:2549–59.

    Article  CAS  PubMed  Google Scholar 

  4. Matsumura Y, Hamaguchi T, Ura T, Muro K, Yamada Y, Shimada Y, et al. Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br J Cancer. 2004;91:1775–81.

    Article  CAS  PubMed  Google Scholar 

  5. Kuroda J, Kuratsu J, Yasunaga M, Koga Y, Saito Y, Matsumura Y. Potent antitumor effect of SN-38-incorporating polymeric micelle, NK012, against malignant glioma. Int J Cancer. 2009;124:2505–11.

    Article  CAS  PubMed  Google Scholar 

  6. Matsumura Y. Poly (amino acid) micelle nanocarriers in preclinical and clinical studies. Adv Drug Deliv Rev. 2008;60:899–914.

    Article  CAS  PubMed  Google Scholar 

  7. Danson S, Ferry D, Alakhov V, Margison J, Kerr D, Jowle D, et al. Phase I dose escalation and pharmacokinetic study of pluronic polymer-bound doxorubicin (SP1049C) in patients with advanced cancer. Br J Cancer. 2004;90:2085–91.

    CAS  PubMed  Google Scholar 

  8. Lee KS, Chung HC, Im SA, Park YH, Kim CS, Kim SB, et al. Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res Treat. 2008;108:241–50.

    Article  CAS  PubMed  Google Scholar 

  9. Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4:145–60.

    Article  CAS  PubMed  Google Scholar 

  10. Lukyanov AN, Gao Z, Mazzola L, Torchilin VP. Polyethylene glycol-diacyllipid micelles demonstrate increased acculumation in subcutaneous tumors in mice. Pharm Res. 2002;19:1424–9.

    Article  CAS  PubMed  Google Scholar 

  11. Gao Z, Lukyanov AN, Singhal A, Torchilin VP. Diacyllipid-polymer micelles as nanocarriers for poorly soluble anticancer drugs. Nano Lett. 2002;2:979–82.

    Article  CAS  Google Scholar 

  12. Musacchio T, Laquintana V, Latrofa A, Trapani G, Torchilin VP. PEG-PE micelles loaded with paclitaxel and surface-modified by a PBR-ligand: synergistic anticancer effect. Mol Pharm. 2009;6:468–79.

    Article  CAS  PubMed  Google Scholar 

  13. Sawantand RR, Torchilin VP. Enhanced cytotoxicity of TATp-bearing paclitaxel-loaded micelles in vitro and in vivo. Int J Pharm. 2009;374:114–8.

    Article  CAS  Google Scholar 

  14. Noble RL. The discovery of the vinca alkaloids–chemotherapeutic agents against cancer. Biochem Cell Biol. 1990;68:1344–51.

    Article  CAS  PubMed  Google Scholar 

  15. Tritonand TR, Yee G. The anticancer agent adriamycin can be actively cytotoxic without entering cells. Science. 1982;217:248–50.

    Article  Google Scholar 

  16. Van Vleetand JF, Ferrans VJ. Myocardial diseases of animals. Am J Pathol. 1986;124:98–178.

    Google Scholar 

  17. Lobert S. Neurotoxicity in cancer chemotherapy: vinca alkaloids. Crit Care Nurse. 1997;17:71–9.

    CAS  PubMed  Google Scholar 

  18. Shenasa H, Calderone A, Vermeulen M, Paradis P, Stephens H, Cardinal R, et al. Chronic doxorubicin induced cardiomyopathy in rabbits: mechanical, intracellular action potential, and beta adrenergic characteristics of the failing myocardium. Cardiovasc Res. 1990;24:591–604.

    Article  CAS  PubMed  Google Scholar 

  19. Tang N, Du G, Wang N, Liu C, Hang H, Liang W. Improving penetration in tumors with nanoassemblies of phospholipids and doxorubicin. J Natl Cancer Inst. 2007;99:1004–15.

    Article  CAS  PubMed  Google Scholar 

  20. Vakiland R, Kwon GS. Effect of cholesterol on the release of amphotericin B from PEG-phospholipid micelles. Mol Pharm. 2008;5:98–104.

    Article  CAS  Google Scholar 

  21. Vernooij EA, Gentry CA, Herron JN, Crommelin DJ, Kettenes-van den Bosch JJ. 1H NMR quantification of poly(ethylene glycol)-phosphatidylethanolamine in phospholipid mixtures. Pharm Res. 1999;16:1658–61.

    Article  CAS  PubMed  Google Scholar 

  22. Lukyanovand AN, Torchilin VP. Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Adv Drug Deliv Rev. 2004;56:1273–89.

    Article  CAS  Google Scholar 

  23. Fournier E, Dufresne MH, Smith DC, Ranger M, Leroux JC. A novel one-step drug-loading procedure for water-soluble amphiphilic nanocarriers. Pharm Res. 2004;21:962–8.

    Article  CAS  PubMed  Google Scholar 

  24. Patel SK, Lavasanifar A, Choi P. Roles of nonpolar and polar intermolecular interactions in the improvement of the drug loading capacity of PEO-b-PCL with increasing PCL content for two hydrophobic Cucurbitacin drugs. Biomacromolecules. 2009;10:2584–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Nature Sciences Foundation of China (No. 90606019, 30901869), China Postdoctoral Science Foundation (No. 20090450598), State Key Development Plan Project (2006CB933305, 2007CB935801) and China-Finland Inter-Governmental S&T Cooperation Project (2008DFA01510).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunling Zhang or Wei Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Wang, R., Lu, X. et al. Pegylated Phospholipids-Based Self-Assembly with Water-Soluble Drugs. Pharm Res 27, 361–370 (2010). https://doi.org/10.1007/s11095-009-0029-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-0029-6

KEY WORDS

Navigation