Skip to main content

Hybrid Nanocomposites Based on Graphene and Zinc Oxide Biosensor Applications

  • Chapter
  • First Online:
Graphene and Nanoparticles Hybrid Nanocomposites

Part of the book series: Composites Science and Technology ((CST))

Abstract

Graphene is ideal reinforcing material today, has a unique 2D nanostructure with few nanometer gaps between particle layers. 130 GPa strength gain high thermal conductivity and electric conductivity. Apart from mechanical strength, high surface to volume ratio, ease of functionalization, and other physicochemical properties gain remarkable properties in sensing and biosensing applications. Graphene-based inorganic composite is gained new attention to various applications because of the synergic effect of the composite. Graphene-based ZnO gains new properties such as mechanical, thermal, electrical, and binding to the composite material. Graphene/ZnO reinforced composite gain high stability, sensitivity, rapidity, and selectivity and low LOD to the biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anand K, Singh O, Singh RC (2014) Different strategies for the synthesis of graphene/ZnO composite and its photocatalytic properties. Appl Phys A Mater Sci Process 116(3):1141–1148. https://doi.org/10.1007/s00339-013-8198-x

    Article  CAS  Google Scholar 

  2. Khan M et al (2015) Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications. J Mater Chem A 3(37):18753–18808. https://doi.org/10.1039/c5ta02240a

    Article  CAS  Google Scholar 

  3. Nieto A, Bisht A, Lahiri D, Zhang C, Agarwal A (2017) Graphene reinforced metal and ceramic matrix composites: a review. Int Mater Rev 62(5):241–302. https://doi.org/10.1080/09506608.2016.1219481

    Article  CAS  Google Scholar 

  4. Peña-Bahamonde J, Nguyen HN, Fanourakis SK, Rodrigues DF (2018) Recent advances in graphene-based biosensor technology with applications in life sciences. J Nanobiotechnol 16(1):1–17. https://doi.org/10.1186/s12951-018-0400-z

    Article  CAS  Google Scholar 

  5. Kou J, Nguyen EP, Merkoçi A, Guo Z (2020) 2-dimensional materials-based electrical/optical platforms for smart on-off diagnostics applications. 2D Mater 7(3). doi: https://doi.org/10.1088/2053-1583/ab896a

  6. Rajapaksha RDAA, Hashim U, Afnan Uda MN, Fernando CAN, De Silva SNT (2017) Target ssDNA detection of E.coli O157:H7 through electrical based DNA biosensor. Microsyst Technol 23(12):5771–5780. doi: https://doi.org/10.1007/s00542-017-3498-2

  7. Parmin NA et al (2019) Voltammetric determination of human papillomavirus 16 DNA by using interdigitated electrodes modified with titanium dioxide nanoparticles. Microchim Acta 2:2–10

    Google Scholar 

  8. Rajapaksha RDAA, Hashim U, Fernando CAN (2017) Design, fabrication and characterization of 1.0 μm Gap Al based interdigitated electrode for biosensors. Microsyst Technol 23(10):4501–4507. https://doi.org/10.1007/s00542-017-3373-1

    Article  CAS  Google Scholar 

  9. Fernando CAN, Liyanaarachchi US, Rajapaksha RDAA (2013) Explanation of the photocurrent quantum efficiency (Φ) enhancements through the CAN’s model equation for the p-CuI sensitized methylviolet-C 18 LB films in the photoelectrochemical cells (PECs) and Cu/n-Cu 2 O/M-C 18 /p-CuI solid-state photovoltaic cells. Semicond Sci Technol 28(4):045017. https://doi.org/10.1088/0268-1242/28/4/045017

    Article  CAS  Google Scholar 

  10. Rajapaksha RDAA, Hashim U, Gopinath SCB, Fernando CAN (2018) Sensitive pH detection on gold interdigitated electrodes as an electrochemical sensor. Microsyst Technol 24(4):1965–1974. https://doi.org/10.1007/s00542-017-3592-5

    Article  CAS  Google Scholar 

  11. Rajapaksha RDAA, Hashim U, Natasha NZ, Uda MNA, Thivina V, Fernando CAN (2017) Gold nano-particle based Al interdigitated electrode electrical biosensor for specific ssDNA target detection. IEEE Reg Symp Micro Nanoelectron 191–194

    Google Scholar 

  12. Rajapaksha RDAA, Hashim U, Uda MNA, Fernando CAN (2018) High-performance electrical variable resistor sensor for E. coli. J Telecommun Electron Comput Eng 10(1):61–64

    Google Scholar 

  13. Yahaya NAN, Rajapaksha RDAA, Uda MNA, Hashim U (2017) Ultra-low current biosensor output detection using portable electronic reader. AIP Conf Proc 1885. doi: https://doi.org/10.1063/1.5002430

  14. Rajapaksha RDAA (2020) Self-assembling smart materials for biomaterials applications. In: Polymer nanocomposite-based smart materials. Elsevier Ltd, pp 121–147

    Google Scholar 

  15. Rajapaksha RDAA, Hashim U, Gopinath SCB, Parmin NA, Fernando CAN (2021) Nanoparticles in electrochemical bioanalytical analysis. In: Nanoparticles in analytical and medical devices. Elsevier Ltd, pp 83–112

    Google Scholar 

  16. Letchumanan I, Md Arshad MK, Gopinath SCB, Rajapaksha RDAA, Balakrishnan SR (2020) Comparative analysis on dielectric gold and aluminium triangular junctions: impact of ionic strength and background electrolyte by pH variations. Sci Rep 10(1):1–10. doi: https://doi.org/10.1038/s41598-020-63831-w

  17. Marcano DC et al (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814. https://doi.org/10.1021/nn1006368

    Article  CAS  Google Scholar 

  18. Dékány I et al (2006) Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem Mater 18(11):2740–2749. https://doi.org/10.1021/cm060258

    Article  Google Scholar 

  19. Ghorai TK (2019) Graphene oxide-based nanocomposites and biomedical applications. Elsevier Ltd

    Google Scholar 

  20. Sun X et al (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1(3):203–212. https://doi.org/10.1007/s12274-008-8021-8

    Article  CAS  Google Scholar 

  21. Ray SC (2015) Application and uses of graphene oxide and reduced graphene oxide, no. ii. Elsevier Inc.

    Google Scholar 

  22. Ghanbari K, Moloudi M (2016) Flower-like ZnO decorated polyaniline/reduced graphene oxide nanocomposites for simultaneous determination of dopamine and uric acid. Anal Biochem 512:91–102. https://doi.org/10.1016/j.ab.2016.08.014

    Article  CAS  Google Scholar 

  23. Prasad K et al (2017) Synergic bactericidal effects of reduced graphene oxide and silver nanoparticles against Gram-positive and Gram-negative bacteria. Sci Rep 7(1):1–11. https://doi.org/10.1038/s41598-017-01669-5

    Article  CAS  Google Scholar 

  24. Lawal AT (2019) Graphene-based nano composites and their applications. A review. Biosens Bioelectron 141:111384. doi: https://doi.org/10.1016/j.bios.2019.111384

  25. George JM, Antony A, Mathew B (2018) Metal oxide nanoparticles in electrochemical sensing and biosensing: a review. Microchim Acta 185(7). doi: https://doi.org/10.1007/s00604-018-2894-3

  26. Saleh TA, Fadillah G (2019) Recent trends in the design of chemical sensors based on graphene–metal oxide nanocomposites for the analysis of toxic species and biomolecules. TrAC—Trends Anal Chem 120:115660. https://doi.org/10.1016/j.trac.2019.115660

    Article  CAS  Google Scholar 

  27. Li P, Zhang B, Cui T (2015) TiO2 and shrink induced tunable nano self-assembled graphene composites for label free biosensors. Sens Actuators B Chem 216:337–342. https://doi.org/10.1016/j.snb.2015.03.111

    Article  CAS  Google Scholar 

  28. Jang HD, Kim SK, Chang H, Roh KM, Choi JW, Huang J (2012) A glucose biosensor based on TiO2-Graphene composite. Biosens Bioelectron 38(1):184–188. https://doi.org/10.1016/j.bios.2012.05.033

    Article  CAS  Google Scholar 

  29. Shetti NP, Bukkitgar SD, Reddy KR, Reddy CV, Aminabhavi TM (2019) ZnO-based nanostructured electrodes for electrochemical sensors and biosensors in biomedical applications. Biosens Bioelectron 141:111417. doi: https://doi.org/10.1016/j.bios.2019.111417

  30. Yue HY et al (2020) Highly sensitive and selective dopamine biosensor using Au nanoparticles-ZnO nanocone arrays/graphene foam electrode. Mater Sci Eng C 108:110490. https://doi.org/10.1016/j.msec.2019.110490

    Article  CAS  Google Scholar 

  31. Low SS, Tan MTT, Loh HS, Khiew PS, Chiu WS (2016) Facile hydrothermal growth graphene/ZnO nanocomposite for development of enhanced biosensor. Anal Chim Acta 903:131–141. https://doi.org/10.1016/j.aca.2015.11.006

    Article  CAS  Google Scholar 

  32. Joshi BN, Yoon H, Na SH, Choi JY, Yoon SS (2014) Enhanced photocatalytic performance of graphene-ZnO nanoplatelet composite thin films prepared by electrostatic spray deposition. Ceram Int 40(2):3647–3654. https://doi.org/10.1016/j.ceramint.2013.09.060

    Article  CAS  Google Scholar 

  33. Rajeswari V, Jayavel R, Clara Dhanemozhi A (2017) Synthesis and characterization of graphene-zinc oxide nanocomposite electrode material for supercapacitor applications. Mater Today Proc 4(2):645–652. doi: https://doi.org/10.1016/j.matpr.2017.01.068

  34. Ding J, Zhu S, Zhu T, Sun W, Li Q (2015) RSC Advances Hydrothermal synthesis of zinc oxide-reduced graphene oxide nanocomposites for an electrochemical hydrazine sensor. RSC Adv 5:22935–22942. https://doi.org/10.1039/C5RA00884K

    Article  Google Scholar 

  35. Chang H et al (2011) A highly sensitive ultraviolet sensor based on a facile in situ solution-grown ZnO nanorod/graphene heterostructure. Nanoscale 3(1):258–264. https://doi.org/10.1039/c0nr00588f

    Article  CAS  Google Scholar 

  36. Saravanakumar B, Mohan R, Kim S (2013) Facile synthesis of graphene/ZnO nanocomposites by low temperature hydrothermal method. Mater Res Bull 48(2):878–883. https://doi.org/10.1016/j.materresbull.2012.11.048

    Article  CAS  Google Scholar 

  37. Ke Q, Wang J (2016) Graphene-based materials for supercapacitor electrodes—a review. J Mater 2(1):37–54. https://doi.org/10.1016/j.jmat.2016.01.001

    Article  Google Scholar 

  38. Demes T et al (2016) New insights in the structural and morphological properties of sol-gel deposited ZnO multilayer films. J Phys Chem Solids 95:43–55. https://doi.org/10.1016/j.jpcs.2016.03.017

    Article  CAS  Google Scholar 

  39. Zimmermann LM, Baldissera PV, Bechtold IH (2016) Stability of ZnO quantum dots tuned by controlled addition of ethylene glycol during their growth. Mater Res Express 3(7):1–9. https://doi.org/10.1088/2053-1591/3/7/075018

    Article  CAS  Google Scholar 

  40. Khalil AT et al (2017) Sageretia thea (Osbeck.) mediated synthesis of zinc oxide nanoparticles and its biological applications. Nanomedicine 12(15):1767–1789. https://doi.org/10.2217/nnm-2017-0124

    Article  CAS  Google Scholar 

  41. Fitzpatrick D (2015) Glucose biosensors. Implant Electron Med Devices, pp 37–51. doi: https://doi.org/10.1016/b978-0-12-416556-4.00004-8

  42. McIlwaine F, Gerogiorgis DI (2018) Dynamic modelling and simulation of reactive transport phenomena in an amperometric blood glucose biosensor, vol 43. Elsevier Masson SAS

    Google Scholar 

  43. Kavitha T, Gopalan AI, Lee KP, Park SY (2012) Glucose sensing, photocatalytic and antibacterial properties of graphene-ZnO nanoparticle hybrids. Carbon N. Y. 50(8):2994–3000. https://doi.org/10.1016/j.carbon.2012.02.082

    Article  CAS  Google Scholar 

  44. Hwa KY, Subramani B (2014) Synthesis of zinc oxide nanoparticles on graphene-carbon nanotube hybrid for glucose biosensor applications. Biosens Bioelectron 62:127–133. https://doi.org/10.1016/j.bios.2014.06.023

    Article  CAS  Google Scholar 

  45. Gu H, Yang Y, Zhou X, Zhou T, Shi G (2014) Online electrochemical method for continuous and simultaneous monitoring of glucose and l-lactate in vivo with graphene hybrids as the electrocatalyst. J Electroanal Chem 730:41–47. https://doi.org/10.1016/j.jelechem.2014.06.002

    Article  CAS  Google Scholar 

  46. Viswanathan P, Ramaraj R (2018) Functionalized graphene nanocomposites for electrochemical sensors. Elsevier Inc.

    Google Scholar 

  47. Vidal JC, Garcia-Ruiz E, Espuelas J, Aramendia T, Castillo JR (2003) Comparison of biosensors based on entrapment of cholesterol oxidase and cholesterol esterase in electropolymerized films of polypyrrole and diaminonaphthalene derivatives for amperometric determination of cholesterol. Anal Bioanal Chem 377(2):273–280. https://doi.org/10.1007/s00216-003-2120-x

    Article  CAS  Google Scholar 

  48. Lin X, Ni Y, Kokot S (2016) Electrochemical cholesterol sensor based on cholesterol oxidase and MoS2-AuNPs modified glassy carbon electrode. Sens Actuators B Chem 233:100–106. https://doi.org/10.1016/j.snb.2016.04.019

    Article  CAS  Google Scholar 

  49. Watanabe E, Spidle R, Caudle S, Manani G, Wanekaya AK, Mugweru A (2014) Electrochemical method for analysis of cholesterol based on in situ synthesized graphene decorated with zinc oxide nanoparticles. ECS Solid State Lett 3(1):5–9. https://doi.org/10.1149/2.001401ssl

    Article  CAS  Google Scholar 

  50. Wu Q et al (2016) Amperometric cholesterol biosensor based on zinc oxide films on a silver nanowire-graphene oxide modified electrode. Anal Methods 8(8):1806–1812. https://doi.org/10.1039/c6ay00158k

    Article  CAS  Google Scholar 

  51. Chirizzi D, Malitesta C (2011) Lecture notes in electrical engineering: foreword. Lect Notes Electr Eng LNEE 91:335–338. doi: https://doi.org/10.1007/978-94-007-1324-6

  52. Pundir CS, Jakhar S, Narwal V (2019) Determination of urea with special emphasis on biosensors: a review. Biosens Bioelectron 123:36–50. https://doi.org/10.1016/j.bios.2018.09.067

    Article  CAS  Google Scholar 

  53. Sarkara P, Dasa J (2013) Enzymatic electrochemical biosensor for urea with polyaniline grafted conducting hydrogel composite modified electrode. RSC Adv 6:7. https://doi.org/10.1039/C6RA12159D.This

    Article  Google Scholar 

  54. Lakard B et al (2011) Urea potentiometric enzymatic biosensor based on charged biopolymers and electrodeposited polyaniline. Biosens Bioelectron 26(10):4139–4145. https://doi.org/10.1016/j.bios.2011.04.009

    Article  CAS  Google Scholar 

  55. Dindar B, Karakuş E, Abasıyanık F (2011) New urea biosensor based on urease enzyme obtained from helycobacter pylori. Appl Biochem Biotechnol 165(5–6):1308–1321. https://doi.org/10.1007/s12010-011-9348-2

    Article  CAS  Google Scholar 

  56. Ghayedi Karimi K, Mozaffari SA, Ebrahimi M (2018) Spin-coated ZnO–graphene nanostructure thin film as a promising matrix for urease immobilization of impedimetric urea biosensor. J Chinese Chem Soc 65(11):1379–1388. doi: https://doi.org/10.1002/jccs.201800031

  57. Sun J et al (2019) Signal enhancement of electrochemical DNA biosensors for the detection of trace heavy metals. Curr Opin Electrochem 17:23–29. https://doi.org/10.1016/j.coelec.2019.04.007

    Article  CAS  Google Scholar 

  58. Hong KL (2019) An overview of DNA/RNA-based monitoring tools and biosensors: benefits and applications in the environmental toxicology. Elsevier Inc

    Google Scholar 

  59. Drummond TG, Hill MG, Barton JK (2003) Electrochemical DNA sensors. Nat Biotechnol 21(10):1192–1199. https://doi.org/10.1038/nbt873

    Article  CAS  Google Scholar 

  60. Low SS, Loh HS, Boey JS, Khiew PS, Chiu WS, Tan MTT (2016) Sensitivity enhancement of graphene/zinc oxide nanocomposite-based electrochemical impedance genosensor for single stranded RNA detection. Biosens Bioelectron 94:365–373. doi: https://doi.org/10.1016/j.bios.2017.02.038

  61. Zhang J, Han D, Yang R, Ji Y, Liu J, Yu X (2019) Electrochemical detection of DNA hybridization based on three-dimensional ZnO nanowires/graphite hybrid microfiber structure. Bioelectrochemistry 128:126–132. https://doi.org/10.1016/j.bioelechem.2019.04.003

    Article  CAS  Google Scholar 

  62. Ahmed MU, Zourob M, Tamiya E (2019) Detection science series editor-immunosensors. R Soc Chem

    Google Scholar 

  63. Patra S, Roy E, Madhuri R, Sharma PK (2017) A technique comes to life for security of life: the food contaminant sensors. Elsevier Inc.

    Google Scholar 

  64. Cheng Y et al (2012) Highly sensitive luminol electrochemiluminescence immunosensor based on ZnO nanoparticles and glucose oxidase decorated graphene for cancer biomarker detection. Anal Chim Acta 745:137–142. https://doi.org/10.1016/j.aca.2012.08.010

    Article  CAS  Google Scholar 

  65. Sun G et al (2015) Multiplexed enzyme-free electrochemical immunosensor based on ZnO nanorods modified reduced graphene oxide-paper electrode and silver deposition-induced signal amplification strategy. Biosens Bioelectron 71:30–36. https://doi.org/10.1016/j.bios.2015.04.007

    Article  CAS  Google Scholar 

  66. Fang X, Liu J, Wang J, Zhao H, Ren H, Li Z (2017) Dual signal amplification strategy of Au nanopaticles/ZnO nanorods hybridized reduced graphene nanosheet and multienzyme functionalized Au@ZnO composites for ultrasensitive electrochemical detection of tumor biomarker. Biosens Bioelectron 97:218–225. https://doi.org/10.1016/j.bios.2017.05.055

    Article  CAS  Google Scholar 

  67. Numnuam A, Thavarungkul P, Kanatharana P (2014) An amperometric uric acid biosensor based on chitosan-carbon nanotubes electrospun nanofiber on silver nanoparticles. Anal Bioanal Chem 406(15):3763–3772. https://doi.org/10.1007/s00216-014-7770-3

    Article  CAS  Google Scholar 

  68. Arslan F (2008) An amperometric biosensor for uric acid determination prepared from uricase immobilized in polyaniline-polypyrrole film. Sensors 8(9):5492–5500. https://doi.org/10.3390/s8095492

    Article  CAS  Google Scholar 

  69. Dussossoy D, Py ML, Pastor G, Boulenc X (1996) Development of a two-site immunoassay of recombinant urate oxidase (SR 29142) and its use for determination of pharmacokinetic parameters in rats and baboons. J Pharm Sci 85(9):955–959. https://doi.org/10.1021/js960009s

    Article  CAS  Google Scholar 

  70. Özcan A, Şahin Y (2010) Preparation of selective and sensitive electrochemically treated pencil graphite electrodes for the determination of uric acid in urine and blood serum. Biosens Bioelectron 25(11):2497–2502. https://doi.org/10.1016/j.bios.2010.04.020

    Article  CAS  Google Scholar 

  71. Zhang X, Zhang YC, Ma LX (2016) One-pot facile fabrication of graphene-zinc oxide composite and its enhanced sensitivity for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Sens Actuators B Chem 227:488–496. https://doi.org/10.1016/j.snb.2015.12.073

    Article  CAS  Google Scholar 

  72. Fu L, Zheng Y, Wang A, Cai W, Deng B, Zhang Z (2016) An electrochemical sensor based on reduced graphene oxide and Zno nanorods-modified glassy carbon electrode for uric acid detection. Arab J Sci Eng 41(1):135–141. https://doi.org/10.1007/s13369-015-1621-1

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. D. A. A. Rajapaksha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajapaksha, R.D.A.A. (2021). Hybrid Nanocomposites Based on Graphene and Zinc Oxide Biosensor Applications. In: Qaiss, A.e.K., Bouhfid, R., Jawaid, M. (eds) Graphene and Nanoparticles Hybrid Nanocomposites. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-33-4988-9_9

Download citation

Publish with us

Policies and ethics