Skip to main content
Log in

New Urea Biosensor Based on Urease Enzyme Obtained from Helycobacter pylori

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The urease enzyme of Helicobacter pylori was isolated from biopsy sample obtained from antrum big curvature cell extracts. A new urea biosensor was prepared by immobilizing urease enzyme isolated from Helicobacter pylori on poly(vinylchloride) (PVC) ammonium membrane electrode by using nonactine as an ammonium ionophore. The effect of pH, buffer concentration, and temperature for the biosensor prepared with urease from H. pylori were obtained as 6.0, 5 mM, and 25 °C, respectively. We also investigated urease concentration, stirring rate, and enzyme immobilization procedures in response to urea of the enzyme electrode. The linear working range of the biosensor extends from 1 × 10−5 to 1 × 10−2 M and they showed an apparent Nernstian response within this range. Urea enzyme electrodes prepared with urease enzymes obtained from H. pylori and Jack bean based on PVC membrane ammonium-selective electrode showed very good analytical parameters: high sensitivity, dynamic stability over 2 months with less decrease of sensitivity, response time 1–2 min. The analytical characteristics were investigated and were compared those of the urea biosensor prepared with urease enzyme isolated from Jack bean prepared at the same conditions. It was observed that rapid determinations of human serum urea amounts were also made possible with both biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dunn, B. E., Campbell, G. P., Perez-Perez, G. I., & Blaser, M. J. (1990). Purification and characterization of urease from Helicobacter pylori. The Journal of Biological Chemistry, 265(16), 9464–9469.

    CAS  Google Scholar 

  2. McGee, D. J., May, C. A., Garner, R. M., Himpsl, J. M., & Mobley, H. L. T. (1999). Isolation of Helicobacter pylori genes that modulate urease activity. Journal of Bacteriology, 181(8), 2477–2484.

    CAS  Google Scholar 

  3. Karakus, E., Pekyardımci, S., & Kılıc, E. (2005). Urea biosensor based on PVC membrane containing palmitic acid. Artificial Cells Blood Substitutes and Biotechnology, 33, 329.

    Article  CAS  Google Scholar 

  4. Eggenstein, C., Borchardt, M., Diekmann, C., Grundig, B., Dumschat, C., Cammann, K., et al. (1999). A disposable biosensor for urea determination in blood based on an ammonium-sensitive transducer. Biosensors and Bioelectronics, 14, 33.

    Article  CAS  Google Scholar 

  5. Liu, D., Ge, K., Cheng, K., Nie, L., & Yao, S. (1995). Clinical analysis of urea in human blood by coupling a surface acoustic wave sensor with urease extracted from pumpkin seeds. Analytical Chimica Acta, 307, 61.

    Article  CAS  Google Scholar 

  6. Xie, X., Suleiman, A. A., & Guilbault, G. G. (1991). Determination of urea in serum by a fiber-optic fluorescence biosensor. Talanta, 38, 1197.

    Article  CAS  Google Scholar 

  7. Adeloju, S. B., Shaw, S. J., & Wallace, G. G. (1993). Polypyrrole-based potentiometric biosensor for urea part 1. Incorporation of urease. Analytical Chimica Acta, 281, 611.

    Article  CAS  Google Scholar 

  8. Liu, D., Meyerhoff, M. E., Goldberg, H. D., & Brown, R. B. (1993). Potentiometric ion and bioselective electrodes based on asymmetric polyurethane membranes. Analytical Chimica Acta, 274, 37.

    Article  CAS  Google Scholar 

  9. Chen, K., Liu, D., Nie, L., & Yao, S. (1994). Determination of urea in urine using a conductivity cell with surface acoustic wave resonator-based measurement circuit. Talanta, 41, 2195.

    Article  CAS  Google Scholar 

  10. Sangodkar, H., Sukeerthi, S., Srinivasa, R. S., Lal, R., & Contractor, A. Q. A. (1996). Biosensor array based on polyaniline. Analytical Chemistry, 68, 779.

    Article  CAS  Google Scholar 

  11. Adams, R. E., & Carr, P. W. (1978). Coulometric flow analyzer for use with immobilized enzyme reactors. Analytical Chemistry, 50, 944.

    Article  CAS  Google Scholar 

  12. Adeloju, S. B., Shaw, S. J., & Wallace, G. G. (1996). Polypyrrole-based amperometric flow injection biosensor for urea. Analytica Chimica Acta, 323, 107.

    Article  CAS  Google Scholar 

  13. Ho, W. O., Krause, S., McNeil, C. J., Pritchard, J. A., Armstrong, R. D., Athey, D., et al. (1999). Electrochemical sensor for measurement of urea and creatinine in serum based on ac impedance measurement of enzyme-catalyzed polymer transformation. Analytical Chemistry, 71, 1940.

    Article  CAS  Google Scholar 

  14. Gupta, B., Singh, S., Mohan, S., & Prakash, R. (2010). Urea Biosensor Based on Conducting Polymer Transducers. Biosensors, Book edited by: Pier Andrea Serra, February 2010, INTECH, Croatia. pp. 302

  15. Rick, W. (1990). Klinishe Chemie und Mikroskopie (pp. 245–247). Berlin: Springer.

    Google Scholar 

  16. Ruzicka, J., Hansen, E. H., Ghose, A. K., & Mottola, H. A. (1979). Enzyme determination of urea in serum based on pH measurement with the flow injection method. Analytical Chemistry, 51, 199–203.

    Article  CAS  Google Scholar 

  17. Vadgama, P. M., Alberti, K. G. M. M., & Covington, A. K. (1982). Determination of urea in blood plasma by enzyme-pH electrode. Analytica Chimica Acta, 136, 403–406.

    Article  CAS  Google Scholar 

  18. Miyahara, Y., Moriizumi, T., & Ichimura, K. (1985). Integrated enzyme FETs for simultaneous determination of urea and glucose. Sensors and Actuators, 7, 1–10.

    Article  CAS  Google Scholar 

  19. Karube, I., Tamiya, E., & Dicks, J. M. (1986). A microsensor for urea based on an ion-selective field effect transistor. Analytica Chimica Acta, 185, 195–200.

    Article  Google Scholar 

  20. Hamann, H., Kühn, M., Böttcher, N., & Scheller, F. (1986). Enzyme sensor system for potentiometric urea determination in serum and milk. Journal of Electroanalytical Chemistry, 209, 69–79.

    Article  CAS  Google Scholar 

  21. Guilbault, G. G., & Montalvo, J. G. (1970). An enzyme electrode for the substrate urea. Journal of the American Chemical Society, 92, 2533–2538.

    Article  CAS  Google Scholar 

  22. Campanella, L., Mazzei, F., Sammartino, M. P., & Tomassetti, M. (1990). New enzyme sensors for urea and creatinine analysis. Bioelectrochemistry and Bioenergetics, 23, 195–202.

    Article  CAS  Google Scholar 

  23. Walcerz, I., Koncki, R., Leszczynska, E., Salamonowicz, B., & Glab, S. (1996). Enzyme biosensors for urea determination based on an ionophore free membrane electrode. Analytical Letters, 29(11), 1939–1953.

    Article  CAS  Google Scholar 

  24. Koncki, R., Walcerz, I., Ruckruh, F., & Glab, S. (1996). Bienzymatic potentiometric electrodes for creatine and L-arginine determination. Analytica Chimica Acta, 333, 215–222.

    Article  CAS  Google Scholar 

  25. Schneider, J., Gründig, B., Renneberg, R., Cammann, K., Madaras, M. B., Buck, R. P., et al. (1996). Hydrogel matrix for three enzyme entrapment in creatine/creatinine amperometric biosensing. Analytica Chimica Acta, 325, 161–167.

    Article  CAS  Google Scholar 

  26. Jasnowska, J., Ligaj, M., Stupnicka, B., & Filipiak, M. (2004). DNA sensor for o-dianisidine. Bioelectrochemistry, 64, 85–90.

    Article  CAS  Google Scholar 

  27. Korenbrot, J. I., Perry, R., & Copenhagen, D. R. (1987). Development and characterization of a polymer gel with an immobilized enzyme to measure l-glutamate. Analytical Biochemistry, 161, 187–199.

    Article  CAS  Google Scholar 

  28. Berthelot, MPE (1859). Berthelot’s reaction mechanism. Report Chim. Appl. 2884.

  29. Magalhaes, J. M. C. S., & Machado, A. A. S. C. (1998). Urea potentiometric biosensor based on urease immobilized on chitosan membreanes. Talanta, 47, 183–191.

    Article  CAS  Google Scholar 

  30. Alqasaimeh, M. S., Heng, L., & Ahmad, M. (2007). A urea biosensor from stacked sol-gel films with ımmobilized Nile Blue chromoionophore and urease enzyme. Sensors, 7, 2251–2262.

    Article  CAS  Google Scholar 

  31. Karakuş, E., Pekyardımcı, Ş., & Kılıç, E. (2006). Potentiometric bienzymatic biosensor based on PVC membrane containing palmitic acid for determination of creatine. Process Biochemistry, 41(6), 1371–1377.

    Article  Google Scholar 

  32. Koncki, R., Kopczewska, E., & Glab, S. (1994). Comparison of pH-membrane enzyme electrode for urea with covalently bound enzyme. Analytical Letters, 27(3), 475–486.

    Article  CAS  Google Scholar 

  33. Koncki, R., Chudvick, A., & Walcerz, I. (1999). Urea determination using pH-enzyme electrode. Journal of Pharmaceutical and Biomedical Analysis, 21, 51–57.

    Article  CAS  Google Scholar 

  34. Butt, S. B., & Camman, K. (1992). Enzyme urea biosensor based on a modified potentiometric PVC-nonactin membrane electrode for assay of urea in blood. Analytical Letters, 25(9), 1597–1615.

    CAS  Google Scholar 

  35. Walcerz, I., Koncki, R., Leszczynska, E., & Glab, S. (1995). Enzyme biosensors for urea determination based on an ionophore free pH membrane electrode. Analytica Chimica Acta, 315, 289–296.

    Article  CAS  Google Scholar 

  36. Tinkilic, N., Cubuk, O., & Isildak, I. (2002). Glucose and urea biosensor based on all solid-state PVC-NH2 membrane electrodes. Analytica Chimica Acta, 452, 29–34.

    Article  CAS  Google Scholar 

  37. Lakard, B., Herlem, G., Lakard, S., Antoniou, A., & Fahys, B. (2004). Urea potentiometric biosensor based on modified electrodes with urease immobilized on polyethylenimine films. Biosensors and Bioelectronics, 19, 1641–1647.

    Article  CAS  Google Scholar 

  38. Jha, S. K., Topkar, A., & D’Souza, S. F. (2008). Development of potentiometric urea biosensor based on urease immobilized in PVA-PAA composite matrix for estimation of blood urea nitrogen (BUN). Journal of Biochemical and Biophysical Methods, 70, 1145–1150.

    Article  CAS  Google Scholar 

  39. Ru-Qin, Y., Zong-Rang, Z., & Guo-Li, S. (2000). Potentiometric sensors: Aspects of the recent development. Sensors and Actuators B, 65, 150–153.

    Article  Google Scholar 

  40. Umezawa, Y., Bühlmann, P., Umezawa, K., Tohda, K., & Amemiya, S. (2000). Pure and Applied Chemistry, 72(10), 1851–2082.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge for the financial support of Yildiz Technical University Scientific Research Project Coordination (project no.: 28-01-02-15) and Rentek Dialysis Center for obtaining human serum samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emine Karakuş.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dindar, B., Karakuş, E. & Abasıyanık, F. New Urea Biosensor Based on Urease Enzyme Obtained from Helycobacter pylori . Appl Biochem Biotechnol 165, 1308–1321 (2011). https://doi.org/10.1007/s12010-011-9348-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-011-9348-2

Keywords

Navigation