Skip to main content

Soil Carbon Stock and Sequestration: Implications for Climate Change Adaptation and Mitigation

  • Chapter
  • First Online:
Ecological Intensification of Natural Resources for Sustainable Agriculture

Abstract

The land resource and other natural resources are degrading day by day due to human greed of development and unsustainable management. These will not only affect the ecosystem structure and related services but also disturb environmental sustainability and overall ecological stability at global scale. Today, climate change becomes most highlighted and burning issue among policy makers, stakeholders, scientists, and academicians across various national and international platforms. However, the climate change and other perturbation have altered the natural balance of different ecosystems resulting into poor ecosystem services. This will not only affect yield and productivity but also affect ecosystem health in many dimensions. In this context, capturing of carbon (C) through the process of C sequestration will increase C values in vegetation and soil as soil organic carbon (SOC) pools that directly or indirectly link with food-soil-climate security. Soil organic matter (SOM) and C are the key management strategies for managing land resources wisely. Updated and advance technologies of soil C-friendly management are the major mitigatory strategy for different ecosystems. Soil C management requires the practices which add C inputs in soil instead removing the soil C and nutrients reserve. The land-use systems must be eco-friendly and sustainable one to stop the land degradation and deterioration. Sustained research and developmental activities are needed to generate C dynamics knowledge base which subsequently helps to visualize the changes in soil C quantity and impact on the atmospheric C. Moreover, this information supports for terrestrial C management and climate change adaptation and mitigation. In the view of the above, a rigorous and comprehensive discussion has been made on soil C sequestrations in varying land use practices (forest, agroforestry, and fruits based land use system, etc.) and its role in climate change mitigation to achieve the goal of sustainable environment and maintaining overall ecological stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

C:

Carbon

GHG:

Greenhouse gases

SOC:

Soil organic carbon

SOM:

Soil organic matter

References

  • Amezquita MC, Ibrahim M, Llanderal T, Buurman P, Amezquita E (2005) Carbon sequestration in pastures, silvopastoral systems and forests in four regions of the Latin American tropics. J Sustain For 21:31–49

    Article  Google Scholar 

  • Amundson R, Leopold B (2018) Soil carbon sequestration is an elusive climate mitigation tool. PNAS 115(46):11652–11656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anonymous (2008) ENVIS newsletter Jul.–Dec., 2008, volume II. http://www.hpenvis.nic.in

  • Bambrick AD, Whalen JK, Bradley RL, Cogliastro A, Gordon AM, Olivier A, Thevathasan NV (2010) Spatial heterogeneity of soil organic carbon in tree-based intercropping systems in Quebec and Ontario, Canada. Agrofor Syst 79:343–353

    Article  Google Scholar 

  • Banerjee A, Jhariya MK, Yadav DK, Raj A (2020) Environmental and sustainable development through forestry and other resources. Apple Academic Press, Palm Bay, p 400. https://doi.org/10.1201/9780429276026

    Book  Google Scholar 

  • Bolstad PV, Vose JM (2005) Forest and pasture carbon pools and soil respiration in the southern Appalachian Mountains. For Sci 51:372–383

    Google Scholar 

  • Borah RP, Chandra A (2010) Carbon sequestration potential of selected bamboo species of Northeast India. Ann For 18(2):171–180

    Google Scholar 

  • Camarero JJ, Gazol A, Sancho-Benages S, Sangüesa-Barreda G (2015) Know your limits? Climate extremes impact the range of Scots pine in unexpected places. Ann Bot 116:917–927

    Google Scholar 

  • Chadha KL, Awasthi RP (2005) The apple improvement: production and post harvest management. Malhotra Publishing House, New Delhi, pp 16–23

    Google Scholar 

  • Chauhan SK, Sharma SC, Chauhan R, Gupta N, Srivastava R (2010) Accounting poplar and wheat productivity for carbon sequestration in agrisilviculture system. Indian For 136(9):1174–1182

    Google Scholar 

  • Chavan BL, Rasal GB (2011) Sequestered carbon potential and status of Eucalyptus tree. Int J Appl Eng Technol 1(1):41–47

    Google Scholar 

  • Chavan B, Rasal G (2012) Total sequestered carbon stock of Mangifera indica. J Environ Earth Sci 2:37–48

    Google Scholar 

  • Chen CR, Xu ZH, Mathers NJ (2004) Soil carbon pools in adjacent natural and plantation forests of subtropical Australia. Soil Sci Soc Am J 68:282–291

    Article  CAS  Google Scholar 

  • Coyle C, Creamer RE, Schulte RPO, O'Sullivan L, Jordan P (2016) A functional land management conceptual framework under soil drainage and land use scenarios. Environ Sci Policy 56:39–48. https://doi.org/10.1016/j.envsci.2015.10.012

    Article  Google Scholar 

  • Deb JC, Phinn S, Butt N, McAlpine CA (2017) The impact of climate change on the distribution of two threatened Dipterocarp trees. Ecol Evol 7:2238–2248. https://doi.org/10.1002/ece3.2846

    Article  PubMed  PubMed Central  Google Scholar 

  • Dey SK (2005) A preliminary estimation of carbon stock sequestrated through rubber (Hevea brasiliensis) plantation in north eastern region of India. Indian For 131:1429–1436

    Google Scholar 

  • Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J (1994) Carbon pools and flux of global Forest ecosystems. Science, New Series 263(5144):185–190. http://www.jstor.org/stable/2882371

    CAS  Google Scholar 

  • Eswaran H, Reich FP, Kimble JM, Beinroth FH, Padamnabhan E, Moncharoen P (2000) Global carbon stocks. In: Lal R, Kimble JM, Eswaran H, Stewart BA (eds) Global climate change and pedogenic carbonates. CRC/Lewis, Boca Raton, FL

    Google Scholar 

  • FAO (2015) Learning tool on nationally appropriate mitigation actions (NAMAs) in the agriculture, forestry and other land use (AFOLU) sector. FAO, Rome

    Google Scholar 

  • FAO, ITPS (2015) Status of the world’s soil resources. FAO, Rome

    Google Scholar 

  • Funk R, Pascual U, Joosten H, Duffy C, Pan G, la Scala N, Gottschalk P, Banwart SA, Batjes N, Cai Z, Six J, Noellemeyer E (2015) From potential to implementation: an innovation framework to realize the benefits of soil carbon. In: Banwart SA, Noellemeyer E, Milne E (eds) Soil carbon: science, management and policy for multiple benefits. CABI, Wallingford, pp 47–59

    Chapter  Google Scholar 

  • Ganeshamurthy AN, Ravindra V, Rupa TR (2019) Carbon sequestration potential of mango orchards in India. Curr Sci 117(12):2006–2013

    Article  CAS  Google Scholar 

  • Gera M, Mohan G, Bisht NS, Gera N (2006) Carbon sequestration potential under agroforestry in Rupnagardistrict of Punjab. Indian For 132(5):543–555

    CAS  Google Scholar 

  • Gougoulias C, Clark JM, Shaw LJ (2014) The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. J Sci Food Agric 94:2362–2371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gulati V (2009) From apple to kiwi, a journey of returns. http://www.commodityonline.com/news/From-apple-to-kiwi-%96-a-journey-of-returns-14070-3-1.html

  • Haile SG, Nair PKR, Nair VD (2008) Carbon storage of different soil-size fractions in Florida silvopastoral systems. J Environ Qual 37:1789–1797

    Article  CAS  PubMed  Google Scholar 

  • Haile SG, Nair VD, Nair PKR (2010) Contribution of trees to carbon storage in soils of silvopastoral systems in Florida, USA. Glob Change Biol 16:427–438

    Article  Google Scholar 

  • Hangarge LM, Kulkarni DK, Gaikwad VB, Mahajan DM, Chaudhari N (2012) Carbon sequestration potential of tree species in Somjaichirai (sacred grove) at Nandghur village, in Bihar region of Pune district, Maharashtra state, India. Ann Biol Res 3(7):3426–3429

    CAS  Google Scholar 

  • Henneberry TJ (2007) Integrated Systems for Control of the pink bollworm Pectinophora gossypiella in cotton. In: Vreysen MJB, Robinson AS, Hendrichs J (eds) Area-wide control of insect pests. Springer, Dordrecht

    Google Scholar 

  • Hiederer R, Köchy M (2011) Global soil organic carbon estimates and the harmonized world soil database, EUR 25225 EN. Publications Office of the European Union, Luxembourg, p 79

    Google Scholar 

  • Howlett D (2009) Environmental amelioration potential of silvopastoral agroforestry systems in Spain: soil carbon sequestration and phosphorus retention. Ph.D. Dissertation, University of Florida, Gainesville

    Google Scholar 

  • Howlett DS, Mosquera-Losada MR, Nair PKR, Nair VD, Rigueiro-Rodríguez A (2011) Soil C storage in silvopastoral systems and a treeless pasture in northwestern Spain. J Environ Qual 40:784–790

    Article  CAS  Google Scholar 

  • Ilyas S (2013) Allometric equation and carbon sequestration of Acacia mangium Willd. in coal mining reclamation areas. Civil Environ Res 3(1):8–16

    Google Scholar 

  • IPCC (2007) Climate change 2007: mitigation. Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, New York

    Google Scholar 

  • IPCC (2014) Climate change 2014: impacts, adaptation and vulnerability. synthesis report, Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland

    Google Scholar 

  • Jana BK, Biswas S, Majumder M, Roy PK, Mazumdar A (2009) Comparative assessment of carbon sequestration rate and biomass carbon potential of young Shorea robusta and Albizzia lebbek. Inter J Hydro-Clim Eng Assoc Water Environ-Model 1(2):1–15

    Google Scholar 

  • Jhariya MK (2017) Vegetation ecology and carbon sequestration potential of shrubs in tropics of Chhattisgarh, India. Environ Monit Assess 189(10):518. https://doi.org/10.1007/s10661-017-6246-2

    Article  CAS  PubMed  Google Scholar 

  • Jhariya MK, Bargali SS, Raj A (2015) Possibilities and perspectives of agroforestry in Chhattisgarh. In: Zlatic M (ed) Precious forests-precious earth. InTech, Rijeka, pp 237–257. https://doi.org/10.5772/60841

    Chapter  Google Scholar 

  • Jhariya MK, Yadav DK, Banerjee A (2018a) Plant mediated transformation and habitat restoration: phytoremediation an eco-friendly approach. In: Gautam A, Pathak C (eds) Metallic contamination and its toxicity. Daya Publishing House, A Division of Astral International Pvt Ltd, New Delhi, pp 231–247

    Google Scholar 

  • Jhariya MK, Banerjee A, Yadav DK, Raj A (2018b) Leguminous trees an innovative tool for soil sustainability. In: Meena RS, Das A, Yadav GS, Lal R (eds) Legumes for soil health and sustainable management. Springer, Singapore, pp 315–345. https://doi.org/10.1007/978-981-13-0253-4_10

    Chapter  Google Scholar 

  • Jhariya MK, Banerjee A, Meena RS, Yadav DK (2019a) Sustainable agriculture, forest and environmental management. Springer, Singapore, p 606. https://doi.org/10.1007/978-981-13-6830-1

    Book  Google Scholar 

  • Jhariya MK, Yadav DK, Banerjee A (2019b) Agroforestry and climate change: issues and challenges. Apple Academic Press, Palm Bay, p 335. https://doi.org/10.1201/9780429057274

    Book  Google Scholar 

  • Kaur B, Gupta SR, Singh G (2002) Carbon storage and nitrogen cycling in silvi-pastoral systems on a sodic soil in northwestern India. Agrofor Syst 54:21–29

    Article  Google Scholar 

  • Khan N, Jhariya MK, Yadav DK, Banerjee A (2020a) Herbaceous dynamics and CO2 mitigation in an urban setup- a case study from Chhattisgarh, India. Environ Sci Pollut Res 27(3):2881–2897. https://doi.org/10.1007/s11356-019-07182-8

    Article  CAS  Google Scholar 

  • Khan N, Jhariya MK, Yadav DK, Banerjee A (2020b) Structure, diversity and ecological function of shrub species in an urban setup of Sarguja, Chhattisgarh, India. Environ Sci Pollut Res 27(5):5418–5432. https://doi.org/10.1007/s11356-019-07172-w

    Article  CAS  Google Scholar 

  • Kirby KR, Potvin C (2007) Variation in carbon storage among tree species: implications for the management of a small-scale carbon sink project. For Ecol Manag 246:208–222

    Article  Google Scholar 

  • Köchy M, Hiederer R, Freibauer A (2015) Global distribution of soil organic carbon - part 1: masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world. Soil 1:351–365

    Article  CAS  Google Scholar 

  • Kumar S, Meena RS, Jhariya MK (2020) Resources use efficiency in agriculture. Springer, Singapore, p 760. https://doi.org/10.1007/978-981-15-6953-1

    Book  Google Scholar 

  • Laban P, Metternicht G, Davies J (2018) Soil biodiversity and soil organic carbon: keeping drylands alive. IUCN, Gland, viii + 24 p. https://doi.org/10.2305/IUCN.CH.2018.03.en

    Book  Google Scholar 

  • Lal R (2004a) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627

    Article  CAS  PubMed  Google Scholar 

  • Lal R (2004b) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22

    Article  CAS  Google Scholar 

  • Lal R (2005) Forest soils and carbon sequestration. For Ecol Manag 220:242–258

    Article  Google Scholar 

  • Lal R (2009) Soil degradation as a reason for inadequate human nutrition. Food Secur 1:45–57

    Article  Google Scholar 

  • Lal R (2016) Beyond COP 21: potential and challenges of the “4 per thousand” initiative. J Soil Water Conserv 71:20A–25A

    Article  Google Scholar 

  • Lal R, Follett RF, Kimble JM (2003) Achieving soil carbon sequestration in the U.S: a challenge to the policy makers. Soil Sci 168:827–845

    Article  CAS  Google Scholar 

  • Lemus R, Lal R (2005) Bioenergy crops and carbon sequestration. Crit Rev Plant Sci 24:1–21

    Article  CAS  Google Scholar 

  • Makumba W, Akinnifesi FK, Janssen B, Oenema O (2007) Long-term impact of a Gliricidia-maize intercropping system on carbon sequestration in southern Malawi. Agric Ecosyst Environ 118:237–243

    Article  CAS  Google Scholar 

  • Mandal D (2020) Soil management for regulating C pools: perspective in tropical and subtropical soils. In: Ghosh PK, Mahanta SK, Mandal D, Mandal B, Ramakrishnan S (eds) Carbon management in tropical and sub-tropical terrestrial systems. Springer, Singapore, pp 57–70. https://doi.org/10.1007/978-981-13-9628-1_4

    Chapter  Google Scholar 

  • Mandryk M, Reidsma P, van Ittersum MK (2017) Crop and farm level adaptation under future climate challenges: an exploratory study considering multiple objectives for Flevoland, the Netherlands. Agric Syst 152:154–164. https://doi.org/10.1016/j.agsy.2016.12.016

    Article  Google Scholar 

  • Mayer A, Hausfather Z, Jones AD, Silver WL (2018) The potential of agricultural land managementto contribute to lower global surface temperatures. Sci Adv 4:eaaq0932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meena RS, Lal R (2018) Legumes for soil health and sustainable management. Springer, Singapore, p 541. https://doi.org/10.1007/978-981-13-0253-4_10

    Book  Google Scholar 

  • Meena RS, Kumar V, Yadav GS, Mitran T (2018) Response and interaction of Bradyrhizobium japonicum and Arbuscular mycorrhizal fungi in the soybean rhizosphere: a review. Plant Growth Regul 84:207–223

    Article  CAS  Google Scholar 

  • Meena RS, Kumar S, Datta R, Lal R, Vijaykumar V, Brtnicky M, Sharma MP, Yadav GS, Jhariya MK, Jangir CK, Pathan SI, Dokulilova T, Pecina V, Marfo TD (2020) Impact of agrochemicals on soil microbiota and management: a review. Land (MDPI) 9(2):34. https://doi.org/10.3390/land9020034

    Article  Google Scholar 

  • Meena RS, Lal R, Yadav GS (2020a) Long term impacts of topsoil depth and amendments on soil physical and hydrological properties of an Alfisol in Central Ohio, USA. Geoderma 363:1141164

    Article  CAS  Google Scholar 

  • Meena RS, Lal R, Yadav GS (2020b) Long-term impact of topsoil depth and amendments on carbon and nitrogen budgets in the surface layer of an Alfisol in Central Ohio. Catena 194:104752

    Article  CAS  Google Scholar 

  • Nair PKR (2012) Climate change mitigation and adaptation: a low hanging fruit of agroforestry. In: PKR N, Garrity DP (eds) Agroforestry: the future of global land use. Springer, Dordrecht, pp 31–67

    Chapter  Google Scholar 

  • Oelbermann M, Voroney RP, Gordon AM, Kass DCL, Schlnvoigt AM, Thevathasan NV (2006) Carbon input, soil carbon pools, turnover and residue stabilization efficiency in tropical and temperate agroforestry systems. Agrofor Syst 68:27–36

    Article  Google Scholar 

  • Painkra GP, Bhagat PK, Jhariya MK, Yadav DK (2016) Beekeeping for poverty alleviation and livelihood security in Chhattisgarh, India. In: Narain S, Rawat SK (eds) Innovative technology for sustainable agriculture development. Biotech Books, New Delhi, pp 429–453

    Google Scholar 

  • Pan Y, Birdsey RA, Phillips OL, Jackson RB (2013) The structure, distribution, and biomass of the world’s forests. Annu Rev Ecol Evol Syst 44:593–622

    Article  Google Scholar 

  • Pareek N (2017) Climate change impact on soils: adaptation and mitigation. MOJ Eco Environ Sci 2(3):136–139

    Google Scholar 

  • Parrotta JA (1999) Productivity, nutrient cycling and succession in single- and mixed-species stands of Casuarina equisetifolia, Eucalyptus robusta and Leucaena leucocephala in Puerto Rico. For Manag 124:45–77

    Google Scholar 

  • Paustian K, Lehmann J, Ogle S, Reay D, Robertson GP, Smith P (2016) Climate-smart soils. Nature 532:49

    Article  CAS  PubMed  Google Scholar 

  • Peichl M, Thevathasan NV, Gordon AM, Huss J, Abohassan RA (2006) Carbon sequestration potentials in temperate tree based intercropping systems, southern Ontario, Canada. Agrofor Syst 66:243–257

    Article  Google Scholar 

  • Pimentel D, Burgess M (2013) Soil erosion threatens food production. Agriculture 3:443–463

    Article  Google Scholar 

  • Poll C, Marhan S, Back F, Niklaus PA, Kandeler E (2013) Field-scale manipulation of soil temperatureand precipitation change soil CO2 flux in a temperate agricultural ecosystem. Agric Ecosyst Environ 165:88–97

    Article  CAS  Google Scholar 

  • Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Glob Chang Biol 6:317–327

    Article  Google Scholar 

  • Pramanika M, Paudel U, Mondal B, Chakraborti S, Debd P (2018) Predicting climate change impacts on the distribution of the threatened Garcinia indica in the Western Ghats, India. Clim Risk Manag 19:94–105

    Article  Google Scholar 

  • Prentice IC (2001) The carbon cycle and atmospheric carbon dioxide. Climate change 2001: the scientific basis IPCC. Cambridge University Press, Cambridge, pp 183–237

    Google Scholar 

  • Raizada A, Parandiyal AK, Ghosh BN (2003) Estimation of carbon flux through litter fall in forest plantations of India. Indian For 129(7):881–894

    Google Scholar 

  • Raj A, Jhariya MK, Harne SS (2018) Threats to biodiversity and conservation strategies. In: Sood KK, Mahajan V (eds) Forests, climate change and biodiversity. Kalyani Publisher, New Delhi, pp 304–320

    Google Scholar 

  • Raj A, Jhariya MK, Banerjee A, Yadav DK, Meena RS (2019a) Soil for sustainable environment and ecosystems management. In: Jhariya MK, Banerjee A, Meena RS, Yadav DK (eds) Sustainable agriculture, forest and environmental management. Springer, Singapore, pp 189–221. https://doi.org/10.1007/978-981-13-6830-1

    Chapter  Google Scholar 

  • Raj A, Jhariya MK, Yadav DK, Banerjee A, Meena RS (2019b) Agroforestry: a holistic approach for agricultural sustainability. In: Jhariya MK, Banerjee A, Meena RS, Yadav DK (eds) Sustainable agriculture, forest and environmental management. Springer, Singapore, pp 101–131. https://doi.org/10.1007/978-981-13-6830-1

    Chapter  Google Scholar 

  • Raj A, Jhariya MK, Yadav DK, Banerjee A (2020) Climate change and agroforestry systems: adaptation and mitigation strategies. Apple Academic Press, Palm Bay, p 383. https://doi.org/10.1201/9780429286759

    Book  Google Scholar 

  • Rao MR, Ong CK, Pathak P, Sharma MM (1991) Productivity of annual cropping and agroforestry systems on a shallow Alfisol in semi-arid India. Agrofor Syst 15:51–63

    Article  Google Scholar 

  • Rodríguez-Calcerrada J, Sancho-Knapik D, Martin-StPaul NK, Limousin JM, McDowell NG, Gil-Pelegrín E (2017) Drought-induced oak decline—factors involved, physiological dysfunctions, and potential attenuation by forestry practices. In: Gil-Pelegrín E, Peguero-Pina J, Sancho-Knapik D (eds) Oaks physiological ecology. Exploring the functional diversity of genus Quercus L. tree physiology, vol 7. Springer, Cham

    Google Scholar 

  • Royo AA, Knight KS (2012) White ash (Fraxinus americana) decline and mortality: the role of site nutrition and stress history. For Ecol Manag 286:8–15

    Article  Google Scholar 

  • Runion GB, Torbert HA, Prior SA, Rogers HH (2009) Effects of elevated atmospheric carbon dioxide on soil carbon in terrestrial ecosystems of the Southeastern United States. In: Lal R, Follett R (eds) Soil carbon sequestration and the greenhouse effect, 2nd edn. Soil Science Society of America, Madison, WI, pp 233–262

    Google Scholar 

  • Runyon J, Waring RH, Goward SN, Welles JM (1994) Environmental limits on net primary production and light-use efficiency across the Oregon transect. Ecol Appl 4:226–237

    Article  Google Scholar 

  • Saha S, Nair PKR, Nair VD, Kumar BM (2009) Soil carbon stocks in relation to plant diversity of home gardens in Kerala, India. Agrofor Syst 76:53–65

    Article  Google Scholar 

  • Schlesinger WH, Andrews JA (2000) Soil respiration and the global carbon cycle. Biogeochemistry 48:7–20

    Article  CAS  Google Scholar 

  • Sharma CM, Gairola S, Baduni NP, Ghildiyal SK, Sarvesh S (2011) Variation in carbon stocks on different slope aspects in seven major types of temperate region of Garhwal Himalaya, India. J Biol Sci 36(4):701–708

    CAS  Google Scholar 

  • Sharrow SH, Ismail S (2004) Carbon and nitrogen storage in agroforests, tree plantations, and pastures in western Oregon, USA. Agrofor Syst 60:123–130

    Article  Google Scholar 

  • Shinde SM, Turkhade PD, Deshmukh SB, Narkhede GW (2015) Carbon sequestration potential of some fruit trees in Satara district of Maharashtra India. Ecol Environ Conserv Paper 21(1):359–362

    Google Scholar 

  • Singh NR, Jhariya MK (2016) Agroforestry and agrihorticulture for higher income and resource conservation. In: Narain S, Rawat SK (eds) Innovative technology for sustainable agriculture development. Biotech Books, New Delhi, pp 125–145

    Google Scholar 

  • Singh B, Singh G (2015) Biomass production and carbon stock in a Silvi-Horti based agroforestry system in arid region of Rajasthan. Indian Forester 141(12):1237–1243

    Google Scholar 

  • Sreejesh KK, Thomas TP, Rugmini P, Prasanth KM, Kripa PA (2013) Carbon sequestration potential of Teak (Tectona grandis) plantations in Kerala. Res J Recent Sci 2(ISC 2012):167–170

    CAS  Google Scholar 

  • Sreekanth NP, Santhi Prabha V, Babu P, Thomas AP (2013) Soil carbon alteration of selected forest types as an environmental feedback to climate change. Int J Environ Sci 3:1516–1530

    Google Scholar 

  • Swamy SL, Puri S (2005) Biomass production and C-sequestration of Gmelina arborea in plantation and agroforestry system in India. Agrofor Syst 64:181–195

    Article  Google Scholar 

  • Takimoto A, Nair PKR, Nair VD (2008) Carbon stock and sequestration potential of traditional and improved agroforestry systems in the West African Sahel. Agric Ecosyst Environ 125:159–166

    Article  CAS  Google Scholar 

  • Thomson LJ, Macfadyen S, Hoffmann AA (2010) Predicting the effects of climate change on natural enemies of agricultural pests. Biol Control 52(3):296–306

    Article  Google Scholar 

  • Tonucci RG, Nair PKR, Nair VD, Garcia R, Bernardino FS (2011) Soil carbon storage in silvopasture and related land use systems in the Brazilian Cerrado. J Environ Qual 40(3):833–841. https://doi.org/10.2134/jeq2010.0162

    Article  CAS  PubMed  Google Scholar 

  • Trost B, Prochnow A, Drastig K, Meyer-Aurich A, Ellmer F, Baumecker M (2013) Irrigation, soilorganic carbon and N2O emissions. A review. Agron Sustain Dev 33(4):733–749

    Article  CAS  Google Scholar 

  • Unger S, Máguas C, Pereira JS, David TS, Werner C (2010) The influence of precipitation pulses on soil respiration–assessing the ‘birch effect’ by stable carbon isotopes. Soil Biol Biochem 42(10):1800–1810

    Article  CAS  Google Scholar 

  • US EPA (2019) U. S. Environmental Protection Agency, Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2017 released on 2019. https://www.epa.gov/sites/production/files/2019-04/documents/us-ghg-inventory-2019-main-text.pdf

  • Viswanath S, Peddappaiah RS, Subramoniam V, Manivachakam P, George M (2004) Management of Casuarina equisetifolia in wide-row intercropping systems for enhanced productivity. Indian J Agrofor 6(2):19–25

    Google Scholar 

  • Wiesmeier M, Poeplau C, Sierra CA, Maier H, Frühauf C, Hübner R, Kühnel A, Spörlein P, Geuß U, Hangen E, Schilling B (2016) Projected loss of soil organic carbon in temperate agriculturalsoils in the 21st century: effects of climate change and carbon input trends. Sci Report 6:32525

    Article  CAS  Google Scholar 

  • Zdruli P, Lal R, Cherlet M, Kapur S (2017) New world atlas of desertification and issues of carbon sequestration, organic carbon stocks, nutrient depletion and implications for food security. In: Carbon management, technologies, and trends in Mediterranean ecosystems. Springer, Cham, pp 13–25

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, N., Jhariya, M.K., Raj, A., Banerjee, A., Meena, R.S. (2021). Soil Carbon Stock and Sequestration: Implications for Climate Change Adaptation and Mitigation. In: Jhariya, M.K., Meena, R.S., Banerjee, A. (eds) Ecological Intensification of Natural Resources for Sustainable Agriculture . Springer, Singapore. https://doi.org/10.1007/978-981-33-4203-3_13

Download citation

Publish with us

Policies and ethics