Skip to main content

Top-Down Projections Direct the Gradual Progression of Alzheimer-Related Tau Pathology Throughout the Neocortex

  • Chapter
  • First Online:
Tau Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1184))

Abstract

In sporadic Alzheimer’s disease (sAD), tau pathology gradually but relentlessly progresses from the transentorhinal region of the temporal lobe into both the allocortex and temporal high order association areas of the neocortex. From there, it ultimately reaches the primary sensory and motor fields of the neocortex. The brunt of the changes seen during neurofibrillary stages (NFT) I–VI is borne by top-down projection neurons that contribute to cortico-cortical connectivities between different neocortical fields. Very early changes develop in isolated pyramidal cells in layers III and V, and these cells are targets of top-down projections terminating in association areas of the first temporal gyrus or in peristriate regions of the occipital lobe. Neurofibrillary pathology in these regions is routinely associated with late NFT stages. Sequential changes occur in different cell compartments (dendritic, somatic, axonal) of these early-involved neurons. Tau pathology first develops in distal segments of basal dendrites, then in proximal dendrites, the soma, and, finally, in the axon of affected pyramidal neurons. This sequence of abnormal changes supports the concept that axons of cortico-cortical top-down neurons may carry and spread abnormal tau seeds in a focused manner (transsynaptically) into the distal dendritic segments of nerve cells directly following in the neuronal chain, thereby sustaining tau-seeded templating in sAD.

In commemoration of Korbinian Brodmann (November 17, 1868 – August 22, 1918).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agnati LF, Bjelke B, Fuxe K. Volume versus wiring transmission in the brain: a new theoretical frame of neuropsychopharmacology. Med Res Rev. 1995;15:33–45.

    Article  CAS  PubMed  Google Scholar 

  2. Ahmed Z, Cooper J, Murray TK, Garn K, McNaughton E, Clark H, Parhizkar S, Ward MA, Cavallini A, Jackson S, Bose S, Clavaguera F, Tolnay M, Lavenir I, Goedert M, Hutton ML, O’Neill MJ. A novel in vivo model of tau propagation with rapid and progressive neurofibrillary tangle pathology: the pattern of spread is determined by connectivity, not proximity. Acta Neuropathol. 2014;127:667–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alonso AC, Li B, Grundke-Iqbal I, Iqbal K. Mechanism of tau-induced neurodegeneration in Alzheimer disease and related tauopathies. Curr Alzheimer Res. 2008;5:375–84.

    Article  CAS  PubMed  Google Scholar 

  4. Amieva H, Le Goff M, Millet X, Orgogozo JM, Pérès K, Barberger-Gateau A, Jacqmin-Gadda H, Dartigues JF. Prodromal Alzheimer’s disease: successive emergence of clinical symptoms. Ann Neurol. 2008;64:492–8.

    Article  PubMed  Google Scholar 

  5. Amunts K, Zilles K. Architectonic mapping of the human brain beyond Brodmann. Neuron. 2015;88:1086–107.

    Article  CAS  PubMed  Google Scholar 

  6. Arendt T. Alzheimer’s disease as a loss of differentiation control in a subset of neurons that retain immature features in the adult brain. Neurobiol Aging. 2000;21:783–96.

    Article  CAS  PubMed  Google Scholar 

  7. Arendt T, Brückner MK, Gertz HJ, Marcova L. Cortical distribution of neurofibrillary tangles in Alzheimer’s disease matches the pattern of neurones that retain their capacity of plastic remodelling in the adult brain. Neuroscience. 1998;83:991–1002.

    Article  CAS  PubMed  Google Scholar 

  8. Arendt T, Stieler JT, Holzer M. Tau and tauopathies. Brain Res Bull. 2016;126:238–92.

    Article  CAS  PubMed  Google Scholar 

  9. Arendt T, Stieler J, Ueberham U. Is sporadic Alzheimer’s disease a developmental disorder? J Neurochem. 2017;143:396–408.

    Article  CAS  PubMed  Google Scholar 

  10. Arnold SE, Hyman BT, Flory J, Damasio AR, Van Hoesen GW. The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cereb Cortex. 1991;1:103–16.

    Article  CAS  PubMed  Google Scholar 

  11. Avila J. Tau phosphorylation and aggregation in Alzheimer’s disease pathology. FEBS Lett. 2006;580:2922–7.

    Article  CAS  PubMed  Google Scholar 

  12. Bannister AP. Inter- and intra-laminar connections of pyramidal cells in the neocortex. Neurosci Res. 2005;53:95–103.

    Article  PubMed  Google Scholar 

  13. Barbas H. Specialized elements of orbitofrontal cortex in primates. Ann N Y Acad Sci. 2007;1121:10–32.

    Article  PubMed  Google Scholar 

  14. Barbas H, Rempel-Clower N. Cortical structure predicts the pattern of corticocortical connections. Cereb Cortex. 1997;7:635–46.

    Article  CAS  PubMed  Google Scholar 

  15. Bartzokis G. Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer’s disease. Neurobiol Aging. 2004;25:5–18.

    Article  CAS  PubMed  Google Scholar 

  16. Bengtsson SL, Nagy Z, Skare S, Forsman L, Forssberg H, Ullén F. Extensive piano practicing has regionally specific effects on white matter development. Nat Neurosci. 2005;8:1140–50.

    Article  CAS  Google Scholar 

  17. Bobinski M, Wegiel J, Tarnawski M, de Leon MJ, Reisberg B, Miller DC, Wisniewski HM. Duration of neurofibrillary changes in the hippocampal pyramidal neurons. Brain Res. 1998;799:156–8.

    Article  CAS  PubMed  Google Scholar 

  18. Braak H, Braak E. On areas of transition between entorhinal allocortex and temporal isocortex in the human brain. Normal morphology and lamina-specific pathology in Alzheimer’s disease. Acta Neuropathol. 1985;68:325–32.

    Article  CAS  PubMed  Google Scholar 

  19. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82:239–59.

    Article  CAS  PubMed  Google Scholar 

  20. Braak H, Braak E. Development of Alzheimer-related neurofibrillary changes in the neocortex inversely recapitulates cortical myelogenesis. Acta Neuropathol. 1996;92:97–101.

    Article  Google Scholar 

  21. Braak H, Del Tredici K. Poor and protracted myelination as a contributory factor to neurodegenerative disorders. Neurobiol Aging. 2004;25:19–23.

    Article  CAS  PubMed  Google Scholar 

  22. Braak H, Del Tredici K. Alzheimer’s pathogenesis: is there neuron-to-neuron propagation? Acta Neuropathol. 2011;121:589–95.

    Article  CAS  PubMed  Google Scholar 

  23. Braak H, Del Tredici K. Alzheimer’s disease: pathogenesis and prevention. Alzheimers Dement. 2012;8:227–33.

    Article  CAS  PubMed  Google Scholar 

  24. Braak H, Del Tredici K. Where, when, and in what form does sporadic Alzheimer’s disease begin? Curr Opin Neurol. 2012;25:708–14.

    Article  CAS  PubMed  Google Scholar 

  25. Braak H, Del Tredici K. Neuroanatomy and pathology of sporadic Alzheimer’s disease. Adv Anat Embryol Cell Biol. 2015;215:1–162.

    Article  PubMed  Google Scholar 

  26. Braak H, Del Tredici K. The preclinical phase of the pathological process underlying Alzheimer’s disease. Brain. 2015;138:2814–33.

    Article  PubMed  Google Scholar 

  27. Braak H, Del Tredici K. Spreading of tau pathology in sporadic Alzheimer’s disease along cortico-cortical top-down connections. Cereb Cortex. 2018;28:3372–84.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K. Staging of Alzheimer disease-associated neuropathology using paraffin sections and immunocytochemistry. Acta Neuropathol. 2006;112:3894–04.

    Article  Google Scholar 

  29. Braak H, Thal DR, Ghebremedhin E, Del Tredici K. Stages of the pathological process in Alzheimer’s disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol. 2011;70:960–9.

    Article  CAS  PubMed  Google Scholar 

  30. Branco T, Häusser M. Synaptic integration gradients in single cortical pyramidal cell dendrites. Neuron. 2011;69:885–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement. 2007;3:186–91.

    Article  PubMed  Google Scholar 

  32. Brundin P, Melki R, Kopito R. Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat Rev Mol Cell Biol. 2010;11:301–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bullier J. Feedback connections and conscious vision. Trends Cogn Sci. 2001;5:369–570.

    Article  CAS  PubMed  Google Scholar 

  34. Bussiere T, Giannakopoulos P, Bouras C, Perl DP, Morrison JH, Hof PR. Progressive degeneration of nonphosphorylated neurofilament protein-enriched pyramidal neurons predicts cognitive impairment in Alzheimer’s disease: stereologic analysis of prefrontal cortex area 9. J Comp Neurol. 2003;463:281–302.

    Article  CAS  PubMed  Google Scholar 

  35. Calafate S, Buist A, Miskiewicz K, Vijayan V, Daneels G, de Strooper B, de Wit J, Verstreken K, Moechars D. Synaptic contacts enhance cell-to-cell tau pathology propagation. Cell Rep. 2015;11:1–8.

    Article  CAS  Google Scholar 

  36. Cass SP. Alzheimer’s disease and exercise: a literature review. Curr Sports Med Rep. 2017;16:19–22.

    Article  PubMed  Google Scholar 

  37. Clavaguera F, Bolmont T, Crowther RA, Abramowski A, Frank S, Probst A, Fraser G, Stalder AK, Beibel M, Staufenbiel M, Jucker M, Goedert M, Tolnay M. Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol. 2009;11:909–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. De Calignon A, Polydoro M, Suárez-Calvet M, William C, Adamowicz DH, Kopeikina KJ, Pitstick R, Sahara N, Ashe KH, Carlson GA, Spires-Jones TL, Hyman BT. Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron. 2012;73:685–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Deb A, Thornton JD, Sambamoorthi U, Innes K. Direct and indirect cost of managing Alzheimer’s disease and related dementias in the United States. Expert Rev Pharmaoecon Outcomes Res. 2017;17:189–202.

    Article  Google Scholar 

  40. DeFelipe J, Farinas I. The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs. Prog Neurobiol. 1992;39:563–607.

    Article  CAS  PubMed  Google Scholar 

  41. DeFelipe J, Alonso-Nanclares L, Arellano JI. Microstructure of the neocortex: comparative aspects. J Neurocytol. 2002;31:299–316.

    Article  PubMed  Google Scholar 

  42. Delatour B, Blanchard V, Pradier L, Duyckaerts C. Alzheimer pathology disorganizes cortico-cortical circuitry: direct evidence from a transgenic animal model. Neurobiol Dis. 2004;16:41–7.

    Article  CAS  PubMed  Google Scholar 

  43. Deoni SC, Dean DC, Remer J, Dirks H, O’Muircheartaigh J. Cortical maturation and myelination in healthy toddlers and young children. Neuroimage. 2015;115:147–61.

    Article  PubMed  Google Scholar 

  44. Dotti CG, Banker GA, Binder LI. The expression and distribution of the microtubule-associated proteins tau and microtubule-associated protein 2 in hippocampal neurons in the rat in situ and in cell culture. Neuroscience. 1987;23:121–30.

    Article  CAS  PubMed  Google Scholar 

  45. Dugger BN, Hildalgo JA, Chiarolanza G, Mariner JM, Henry-Watson J, Sue LI, Beach TG. The distribution of phosphorylated tau in spinal cords of Alzheimer’s disease and non-demented individuals. J Alzheimers Dis. 2013;34:529–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dujardin S, Lécolle K, Caillierez R, Bégard S, Zommer N, Lachaud C, Carrier S, Dufour N, Aurégan G, Winderickx J, Hantraye P, Déglon N, Colin M, Buée L. Neuron-to-neuron wild-type tau protein transfer through a trans-synaptic mechanism: relevance to sporadic tauopathies. Acta Neuropathol Commun. 2014;2:1–14.

    Article  Google Scholar 

  47. Duyckaerts C, Braak H, Brion J-P, Buée L, Del Tredici K, Goedert M, Halliday G, Neumann M, Spillantini MG, Tolnay M, Uchihara T. PART is part of Alzheimer disease. Acta Neuropathol. 2015;129:749–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Elobeid A, Soininen H, Alafuzoff I. Hyperphosphorylated tau in young and middle-aged subjects. Acta Neuropathol. 2011;123:97–104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Felleman DJ, van Essen DC. Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex. 1991;1:1–47.

    Article  CAS  PubMed  Google Scholar 

  50. Frahm-Falkenberg S, Ibsen R, Kjellberg J, Jennum P. Health, social and economic consequences of dementias: a comparative national cohort study. Eur J Neurol. 2016;23:1400–7.

    Article  CAS  PubMed  Google Scholar 

  51. Freedman M, Alladi S, Chertkow H, Bialystok E, Craik FI, Phillips NA, Duggirala V, Raju SB, Bak TH. Delaying onset of dementia: are two languages enough? Behav Neurol. 2014;2014:808137.

    Article  PubMed  PubMed Central  Google Scholar 

  52. García-Cabezas MÁ, Zikopoulos B, Barbas H. The structural model: a theory linking connection, plasticity, pathology, development and evolution of the cerebral cortex. Brain Struct Funct. 2019;224:985–1008.

    Article  PubMed  Google Scholar 

  53. German DC, White CL, Sparkman DR. Alzheimer’s disease: neurofibrillary tangles in nuclei that project to the cerebral cortex. Neuroscience. 1987;21:305–12.

    Article  CAS  PubMed  Google Scholar 

  54. Goedert M, Spillantini MG. A century of Alzheimer’s disease. Science. 2006;314:777–81.

    Article  CAS  PubMed  Google Scholar 

  55. Goedert M, Clavaguera F, Tolnay M. The propagation of prion-like protein inclusions in neurodegenerative diseases. Trends Neurosci. 2010;33:317–25.

    Article  CAS  PubMed  Google Scholar 

  56. Gordon U, Polsky A, Schiller J. Plasticity compartments in basal dendrites of neocortical pyramidal neurons. J Neurosci. 2006;26:12717–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Grundke-Iqbal I, Iqbal K, Tung Y, Quinlan M, Wisniewski HM, Binder LI. Abnormal phosphorylation of the microtubule-associated protein τ (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A. 1986;83:4913–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Grydeland H, Walhovd KB, Tamnes CK, Westlye LT, Fjell AM. Intracortical myelin links with performance variability across the human lifespan: results from T1- and T2-weighter MRI myelin mapping and diffusion tensor imaging. J Neurosci. 2013;33:18618–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Guo JL, Lee VM. Seeding of normal tau by pathological tau conformers drives pathogenesis of Alzheimer-like tangles. J Biol Chem. 2011;286:15317–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Häusser M, Mel B. Dendrites: bug or feature? Curr Opin Neurobiol. 2003;13:372–83.

    Article  PubMed  CAS  Google Scholar 

  61. Hochstein S, Ahissar M. View from the top: hierarchies and reverse hierarchies in the visual system. Neuron. 2002;36:791–804.

    Article  CAS  PubMed  Google Scholar 

  62. Hof PR, Morrison JH. The aging brain: morphomolecular senescence of cortical circuits. Trends Neurosci. 2004;27:607–13.

    Article  CAS  PubMed  Google Scholar 

  63. Hoover BR, Reed MN, Su J, Penrod RD, Kotilinek LA, Grant MK, Pitstick R, Carlson GA, Lanier LM, Yuan LL, Ashe KH, Liao D. Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron. 2010;68:1067–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hopf A. Photometric studies on the myeloarchitecture of the human temporal lobe. J Hirnforsch. 1968;10:285–97.

    CAS  PubMed  Google Scholar 

  65. Hyman BT, Goméz-Isla T. Alzheimer’s disease is a laminar, regional, and neural system specific disease, not a global brain disease. Neurobiol Aging. 1994;15:353–4.

    Article  CAS  PubMed  Google Scholar 

  66. Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC, Dickson DW, Duyckaerts C, Frosch MP, Masliah E, Mirra SS, Nelson PT, Schneider JA, Thal DR, Thies B, Trojanowski JQ, Vinters HV, Montine TJ. National Institute on Aging-Alzheimer’s association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement. 2012;8:1–13.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Iqbal K, Liu F, Gong CX, Alonso C, Grundke-Iqbal I. Mechanisms of tau-induced neurodegeneration. Acta Neuropathol. 2009;118:53–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ittner LM, Götz J. Amyloid-β and tau – a toxic pas de deux in Alzheimer’s disease. Nat Rev Neurosci. 2011;12:65–72.

    Article  CAS  PubMed  Google Scholar 

  69. Ittner LM, Ke YD, Delerue F, Bi M, Gladbach A, van Eersel J, Wölfing H, Chieng BC, Christie MJ, Napier IA, Eckert A, Staufenbiel M, Hardeman E, Götz J. Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell. 2010;142:387–97.

    Article  CAS  PubMed  Google Scholar 

  70. Kaufman S, Del Tredici K, Thomas TL, Braak H, Diamond MI. Tau seeding activity anticipates phospho-tau pathology in Alzheimer’s disease. Acta Neuropathol. 2018;136:57–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Khatoon S, Grundke-Iqbal I, Iqbal K. Levels of normal and abnormally phosphorylated tau in different cellular and regional compartments of Alzheimer disease and control brains. FEBS Lett. 1994;94:80–4.

    Article  Google Scholar 

  72. Kopelkina KJ, Hyman BT, Spires-Jones TL. Soluble forms of tau are toxic in Alzheimer’s disease. Transl Neurosci. 2012;3:223–33.

    Google Scholar 

  73. Liu L, Drouet V, Wu JW, Witter MP, Smith SA, Clelland C, Duff K. Trans-synaptic spread of tau pathology in vivo. PLoS One. 2012;7:e31302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mandelkow EM, Mandelkow E. Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb Perspect Med. 2012;2:a006247.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Marin-Padilla M. Ontogenesis of the pyramidal cell of the mammalian neocortex and developmental cytoarchitectonics: a unifying theory. J Comp Neurol. 1992;321:223–40.

    Article  CAS  PubMed  Google Scholar 

  76. Markram H. A network of tufted layer 5 pyramidal neurons. Cereb Cortex. 1997;7:523–33.

    Article  CAS  PubMed  Google Scholar 

  77. Merino-Serrais P, Benavides-Piccione R, Blazquez-Llorca L, Kastanauskaite A, Rábano A, Avila J, DeFelipe J. The influence of phospho-tau on dendritic spines of cortical pyramidal neurons in patients with Alzheimer’s disease. Brain. 2013;136:1913–28.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Meyer K. Primary sensory cortices, top-down projections and conscious experience. Prog Neurobiol. 2011;94:408–17.

    Article  PubMed  Google Scholar 

  79. Meyer K. The role of dendritic signaling in the anesthetic suppression of consciousness. Anesthesiology. 2015;122:1415–31.

    Article  CAS  PubMed  Google Scholar 

  80. Morsch R, Simon W, Coleman PD. Neurons may live for decades with neurofibrillary tangles. J Neuropathol Exp Neurol. 1999;58:188–97.

    Article  CAS  PubMed  Google Scholar 

  81. Mudher A, Colin M, Dujardin S, Medina M, Dewachter I, Alavi Naini SM, Mandelkow EM, Mandelkow E, Buée L, Goedert M, Brion JP. What is the evidence that tau pathology spreads through prion-like propagation? Acta Neuropathol Commun. 2017;5:99–119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Nelson PT, Jicha GA, Schmitt FA, Liu H, Davis DG, Mendiondo MS, Abner EL, Markesbery WR. Clinicopathologic correlations in a large Alzheimer disease center autopsy cohort: neuritic plaques and neurofibrillary tangles “do count” when staging disease severity. J Neuropathol Exp Neurol. 2007;66:1136–46.

    Article  PubMed  Google Scholar 

  83. Nieuwenhuys R. The neocortex. An overview of its evolutionary development, structural organization and synaptology. Anat Embryol. 1994;190:307–37.

    Article  CAS  Google Scholar 

  84. Nieuwenhuys R. The greater limbic system, the emotional motor system and the brain. Prog Brain Res. 1996;107:551–80.

    Article  CAS  PubMed  Google Scholar 

  85. Nieuwenhuys R. Comparative aspects of volume transmission, with sidelight on other forms of intercellular communication. Prog Brain Res. 2000;125:49–126.

    Article  CAS  PubMed  Google Scholar 

  86. Nieuwenhuys R, Broere CA. A map of the human neocortex showing the estimated overall myelin content of the individuals architectonic areas based on the studies of Adolf Hopf. Brain Struct Funct. 2017;222:465–80.

    Article  PubMed  Google Scholar 

  87. O’Donnell J, Zeppenfeld D, McConnell E, Pena S, Nedergaard M. Norepinephrine: a neuromodulator that boosts the function of multiple cell types to optimize CNS performance. Neurochem Res. 2012;37:2496–512.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Paus T, Collins DL, Evans AC, Leonard G, Pike B, Zijdenbos A. Maturation of white matter in the human brain: a review of magnetic resonance studies. Brain Res Bull. 2001;54:255–66.

    Article  CAS  PubMed  Google Scholar 

  89. Pearson RCA. Cortical connections and the pathology of Alzheimer’s disease. Neurodegeneration. 1996;5:429–34.

    Article  CAS  PubMed  Google Scholar 

  90. Purohit DP, Batheja NO, Sano M, Jashnani KD, Kalaria RN, Karunamurthy A, Kaur S, Shenoy AS, Van Dyk K, Schmeidler J, Perl DP. Profiles of Alzheimer’s disease-related pathology in an aging urban population sample. J Alzheimers Dis. 2011;24:187–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rapoport SI. Hypothesis: Alzheimer’s disease is a phylogenetic disease. Med Hypotheses. 1989;29:147–50.

    Article  CAS  PubMed  Google Scholar 

  92. Rapoport SI. Integrated phylogeny of the primate brain, with special reference to humans and their diseases. Brain Res Rev. 1990;15:267–94.

    Article  CAS  PubMed  Google Scholar 

  93. Reisberg B, Franssen EH, Hasan SM, Monteiro I, Boksay I, Souren LE, Kenowsky S, Auer SR, Elahi S, Kruger A. Retrogenesis: clinical, physiologic, and pathologic mechanisms in brain aging, Alzheimer’s and other dementing processes. Eur Arch Psychiatry Clin Neurosci. 1999;249(Suppl 3):28–36.

    Article  PubMed  Google Scholar 

  94. Reisberg B, Franssen EH, Souren LE, Auer SR, Akram I, Kenowsky S. Evidence and mechanisms of retrogenesis in Alzheimer’s and other dementias: management and treatment import. Am J Alzheimers Dis Other Demen. 2002;17:2021–2.

    Article  Google Scholar 

  95. Rockland KS, Pandya DN. Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Res. 1979;179:3–20.

    Article  CAS  PubMed  Google Scholar 

  96. Rüb U, Del Tredici K, Schultz C, Thal DR, Braak E, Braak H. The evolution of Alzheimer’s disease-related cytoskeletal pathology in the human raphe nuclei. Neuropathol Appl Neurobiol. 2000;26:553–67.

    Article  PubMed  Google Scholar 

  97. Rubial-Álvarez S, de Sola S, Machado MC, Sintas E, Böhm P, Sánchez-Benavides G, Langohr K, Muñiz R, Peña-Casanova J. The comparison of cognitive and functional performance in children and Alzheimer’s disease supports the retrogenesis model. J Alzheimers Dis. 2013;33:191–203.

    Article  PubMed  Google Scholar 

  98. Sabbagh MN, Cooper K, DeLange J, Stoehr JD, Thind K, Lahti T, Reisberg B, Sue L, Vedders L, Fleming SR, Beach TG. Functional, global and cognitive decline correlates to accumulation of Alzheimer’s pathology in MCI and AD. Curr Alzheimer Res. 2010;7:280–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Saper CB, Wainer BH, German DC. Axonal and transneuronal transport in the transmission of neurological disease: potential role in system degenerations, including Alzheimer’s disease. Neuroscience. 1987;23:3893–8.

    Article  Google Scholar 

  100. Schlaug G, Norton A, Overy K, Winner E. Effects of music training on the child’s brain and cognitive development. Ann N Y Acad Sci. 2003;1060:219–30.

    Article  Google Scholar 

  101. Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med. 2011;1:a006189.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Sonnen JA, Larson EB, Crane PK, Haneuse S, Li G, Schellenberg GD, Craft S, Leverenz JB, Montine TJ. Pathological correlates of dementia in a longitudinal, population-based sample of aging. Ann Neurol. 2007;62:406–13.

    Article  PubMed  Google Scholar 

  103. Swaab DF, Dubelaar EJ, Hofman MA, Scherder EJ, van Someren EJ, Verwer RW. Brain aging and Alzheimer’s disease; use it or lose it. Prog Brain Res. 2002;138:343–73.

    Article  CAS  PubMed  Google Scholar 

  104. Tai HC, Serrano-Pozo A, Hashimoto T, Frosch MP, Spires-Jones TL, Hyman BT. The synaptic accumulation of hyperphosphorylated tau oligomers in Alzheimer disease is associated with dysfunction of the ubiquitin-proteasome system. Am J Pathol. 2012;181:14263–5.

    Article  CAS  Google Scholar 

  105. Tashiro K, Hasegawa M, Ihara Y, Iwatsubo T. Somatodendritic localization of phosphorylated tau in neonatal and adult rat cerebral cortex. Neuroreport. 1997;8:2797–801.

    Article  CAS  PubMed  Google Scholar 

  106. Thies E, Mandelkow EM. Missorting of tau in neurons causes degeneration of synapses that can be rescued by kinase MARK2/Par-1. J Neurosci. 2007;27:2896–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ullén F. Is activity regulation of late myelination a plastic mechanism in the human nervous system? Neuron Glia Biol. 2009;5:29–34.

    Article  PubMed  Google Scholar 

  108. Van Dam D, De Deyn PP. Non human primate models for Alzheimer’s disease-related research and drug discovery. Expert Opin Drug Discovery. 2017;12:187–200.

    Article  CAS  Google Scholar 

  109. van der Knaap MS, Valk J, Bakker CJ, Schooneveld M, Faber JA, Willemse J, Gooskens RH. Myelination as an expression of the functional maturity of the brain. Dev Med Child Neurol. 1991;33:849–57.

    Article  PubMed  Google Scholar 

  110. Velasco ME, Smith MA, Siedlak SI, Nunomura A, Perry G. Striation is the characteristic neuritic abnormality in Alzheimer disease. Brain Res. 1998;813:329–33.

    Article  CAS  PubMed  Google Scholar 

  111. von Bergen M, Barghorn S, Biernat J, Mandelkow EM, Mandelkow E. Tau aggregation is driven by a transition from random coil to beta sheet structure. Biochim Biophys Acta. 2005;1739:158–66.

    Article  CAS  Google Scholar 

  112. Wozniak JR, Lim KO. Advances in white matter imaging: a review of in vivo magnetic resonance methodologies and their applicability to the study of development and aging. Neurosci Biobehav Rev. 2006;30:762–74.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Yogev S, Shen K. Cellular and molecular mechanisms of synaptic specificity. Annu Rev Cell Dev Biol. 2014;30:417–37.

    Article  CAS  PubMed  Google Scholar 

  114. Zempel H, Thies E, Mandelkow E, Mandelkow EM. Aβ oligomers cause localized Ca2+ elevation, missorting of endogeneous tau into dendrites, tau phosphorylation, and destruction of microtubules and spines. J Neurosci. 2010;30:11938–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhu QB, Bao AM, Swaab D. Activation of the brain to postpone dementia: a concept originating from postmortem human brain studies. Neurosci Bull. 2019;35:253–66.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Zilles K, Amunts K. Architecture of the cerebral cortex. In: Mai JK, Paxinos G, editors. The human nervous system. 3rd ed. New York: Elsevier; 2012. p. 836–95.

    Chapter  Google Scholar 

Download references

Acknowledgments

This chapter was made possible by support from the Hans and Ilse Breuer Foundation (Frankfurt am Main, Germany) and the Braak Collection (Frankfurt am Main, Germany). We thank Ms. Simone Feldengut (immunoreactions) and Mr. David Ewert (University of Ulm) for technical assistance with the graphics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly Del Tredici .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Braak, H., Del Tredici, K. (2019). Top-Down Projections Direct the Gradual Progression of Alzheimer-Related Tau Pathology Throughout the Neocortex. In: Takashima, A., Wolozin, B., Buee, L. (eds) Tau Biology. Advances in Experimental Medicine and Biology, vol 1184. Springer, Singapore. https://doi.org/10.1007/978-981-32-9358-8_22

Download citation

Publish with us

Policies and ethics