Skip to main content
Log in

The neocortex

An overview of its evolutionary development, structural organization and synaptology

  • Review article
  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Abstract

By way of introduction, an outline is presented of the origin and evolutionary development of the neocortex. A cortical formation is lacking in amphibians, but a simple three-layered cortex is present throughout the pallium of reptiles. In mammals, two three-layered cortical structures, i.e. the prepiriform cortex and the hippocampus, are separated from each other by a six-layered neocortex. Still small in marsupials and insectivores, this “new” structure attains amazing dimensions in anthropoids and cetaceans. Neocortical neurons can be allocated to one of two basic categories: pyramidal and nonpyramidal cells. The pyramidal neurons form the principal elements in neocortical circuitry, accounting for at least 70% of the total neorcortical population. The evolutionary development of the pyramidal neurons can be traced from simple, “extraverted” neurons in the amphibian pallium, via pyramid-like neurons in the reptilian cortex to the fully developed neocortical elements designated by Cajal as “psychic cells”. Typical mammalian pyramidal neurons have the following eight features in common: (1) spiny dendrites, (2) a stout radially oriented apical dendrite, forming (3) a terminal bouquet in the most superficial cortical layer, (4) a set of basal dendrites, (5) an axon descending to the subcortical white matter, (6) a number of intracortical axon collaterals, (7) terminals establishing synaptic contacts of the round vesicle/asymmetric variety, and (8) the use of the excitatory aminoacids glutamate and/or aspartate as their neurotransmitter. The pyramidal neurons constitute the sole output and the largest input system of the neocortex. They form the principal targets of the axon collaterals of other pyramidal neurons, as well as of the endings of the main axons of cortico-cortical neurons. Indeed, the pyramidal neurons constitute together a continuous network extending over the entire neocortex, justifying the generalization: the neocortex communicates first and foremost within itself. The typical pyramidal neurons represent the end stage of a progressive evolutionary process. During further development many of these elements have become transformed by reduction into various kinds of atypical or aberrant pyramidal neurons. Interestingly, none of the six morphological characteristics, mentioned above under 1–6, has appeared to be unassailable; pyramidal neurons lacking spines, apical dendrites, long axons and intracortical axon collaterals etc. have all been described. From an evolutionary point of view the typical pyramidal neurons represent not only the principal neocortical elements, but also the source of various excitatory local circuit neurons. The spiny stellate cells, which are abundant in highly specialized primary sensory areas, form a remarkable case in point. In these elements only two of the six original pyramidal attributes, i.e. spiny dendrites and an intracortical axonal arbor, are retained. The nonpyramidal neurons display a diverse morphology, but share a number of important morphological and functional features: (1) their dendrites bear only a few spines or none, (2) their axons do not leave the cortex, (3) their terminals make synapses of the flat vesicle/symmetric variety, (4) they use the inhibitory neurotransmitter GABA, and (5) almost all types make synaptic contacts with pyramidal neurons. Several subclasses of nonpyramidal neurons are selectively immunoreactive for particular calcium-binding proteins. The widely held notion that the pyramidal neurons constitute the relatively constant basic framework of the cortex, whereas the local circuit neurons are variable and increase during phylogenetic development in number as well as in diversity is untenable. A survey is presented of the structure, synaptology and chemodifferentiation of the various neocortical cell types, allocating them to three groups: pyramidal neurons, excitatory interneurons and inhibitory interneurons. The synaptic relations of the various neocortical neurons are pictorially summarized in two microcircuitry diagrams, which together form the pièce de résistance of the present treatise. The various approaches to the structure of the neocortex are discussed. It is emphasized that correlative structural, ultrastructural and electrophysiological studies of pyramidal neurons known to project to a given cortical or subcortical target form a promising field of interdisciplinary research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Referneces

  • Abeles M, Goldstein MH, Jr (1970) Functional architecture in cat primary auditory cortex: columnar organization and organization according to depth. J Neurophysiol 33:172–187

    Google Scholar 

  • Asanuma H (1975) Recent developments in the study of the columnar arrangement of neurons in the motor cortex. Physiol Rev 55:143–156

    Google Scholar 

  • Asanuma H (1987) Cortical motor columns. In: Adelman G (ed) Encyclopedia of neuroscience, vol I. Birkhäuser, Basel, pp 281–282

    Google Scholar 

  • Beaulieu C, Campistron G, Crevier C (1994) Quantitative aspects of the GABA circuitry in the primary visual cortex of the adult rat. J Comp Neurol 339:559–572

    Google Scholar 

  • Braitenberg V (1974) Thoughts on the cerebral cortex. J Theor Biol 46:421–447

    Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Groß- hirnrinde. Barth, Leipzig

    Google Scholar 

  • Brugge JF, Reale RA (1985) Auditory cortex. In: Peters A, Jones EG (eds) Cerebral cortex, vol 4. Association and auditory cor- tices. Plenum Press, New York, pp 229–271

    Google Scholar 

  • Bugbee NM, Goldman-Rakic PS (1983) Columnar organization of corticocortical projections in squirrel and rhesus monkeys: sim- ilarity of column width in species differing in cortical volume. J Comp Neurol 220:355–364

    Google Scholar 

  • Burgunder J, Young WS, III (1990) Cortical neurons expressing the cholecystokinin gene in the rat: distribution in the adult brain, ontogeny, and some of their projections. J Comp Neurol 300:26–46

    Google Scholar 

  • Cajal P (1917) Nuevo estudio del encéfalo de los reptiles. Trab Lab Invest Biol Univ Madrid 15:83–99

    Google Scholar 

  • Cajal P (1922) El cerebro de los batracios. In: Libro en honor de D.S. Ramón y Cajal Tomo 1:13–59

    Google Scholar 

  • Cajal SR (1893) Neue Darstellung vom histologischen Bau des Centralnervensystems. Arch Anat Physiol Anat Abtheilung (Leipzig) 319–428

  • Cajal SR (1911) Histologie du système nerveux de l'homme & des vertébrés, vol II. Institute Ramon y Cajal, Madrid, pp 993

    Google Scholar 

  • Cajal SR (1922) Studien über die Sehrinde der Katze. J Psychol Neurol (Leipzig) 29:161–181

    Google Scholar 

  • Cajal SR (1937) Recollections of my life. American Philosophical Society, Philadelphia (Memoirs of the American Philosophical Society, VIII)

    Google Scholar 

  • Chagnac-Amitai Y, Connors BW (1989) Synchronized excitation and inhibition driven by intrinsically bursting neurons in neocortex. J Neurophysiol 61:1149–1162

    Google Scholar 

  • Chagnac-Amitai Y, Luhmann HJ, Prince DA (1990) Burst generat- ing and regular spiking layer 5 pyramidal neurons of rat neocor- tex have different morphological features. J Comp Neurol 296:598–613

    Google Scholar 

  • Cipolloni PB, Keller A (1989) Thalamocortical synapses with iden- tified neurons in monkey primary auditory cortex: a combined Golgi/EM and GABA/peptide immunocytochemistry study. Brain Res 492:347–355

    Google Scholar 

  • Cipolloni PB, Peters A (1983) The termination of callosal fibres in the auditory cortex of the rat A combined Golgi-electron micro- scope and degeneration study. J Neurocytol 12:713–726

    Google Scholar 

  • Colonnier M (1968) Synaptic patterns on different cell types in the different laminae of the cat visual cortex. Brain Res 9:268–287

    Google Scholar 

  • Colonnier M (1981) The electron-microscopic analysis of the neu- ronal organization of the cerebral cortex. In: Adelman G, Dennis SG, Schmitt FO, Worden FG (eds) The organization of the cerebral cortex. MIT Press, Cambridge Mass, pp 125–153

    Google Scholar 

  • Conley M, Fitzpatrick D, Diamond IT (1984) The laminar organi- zation of the lateral geniculate body and the striate cortex in the tree shrew (Tupaia glis). J Neurosci 4:171–197

    Google Scholar 

  • Connor JR, Peters A (1984) Vasoactive intestinal polypeptide im- munoreactive neurons in rat visual cortex. Neuroscience 4:1027–1044

    Google Scholar 

  • Conti F, Rustioni A, Petrusz P, Towle AC (1987a) Glutamate-posi- tive neurons in the somatic sensory cortex of rats and monkeys. J Neurosci 7:1887–1901

    Google Scholar 

  • Conti F, Rustioni A, Petrusz P (1987b) Co-localization of glutamate and aspartate immunoreactivity in neurons of the rat somatic sensory cortex. In: Hicks TP, Lodge D, McLennan H (eds) Exci- tatory amino acid transmission. Liss, New York, pp 169–172

    Google Scholar 

  • Conti F, De Biasi S, Fabri M, Abdullah L, Manzoni T, Petrusz P (1992) Substance P-containing pyramidal neurons in the cat so- matic sensory cortex. J Comp Neurol 322:136–148

    Google Scholar 

  • Creutzfeldt OD (1977) Generality of the functional structure of the neocortex. Naturwissenschaften 64:507–517

    Google Scholar 

  • Crick F (1982) Do dendritic spines twitch? Trends Neurosci 5:44–46

    Google Scholar 

  • Czeiger D, White EL (1993) Synapses of extrinsic and intrinsic origin made by callosal projection neurons in mouse visual cor- tex. J Comp Neurol 330:502–513

    Google Scholar 

  • DeFelipe J, Fairén A (1982) A type of basket cell in superficial layers of the cat visual cortex: a Golgi-electron microscope study. Brain Res 244:9–16

    Google Scholar 

  • DeFelipe J, Fairén A (1988) Synaptic connections of an interneuron wict axonal arcades in the cat visual cortex. J Neurocytol 17:313–323

    Google Scholar 

  • DeFelipe J, Fariñas I (1992) The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs. Progr Neurobiol 39:563–607

    Google Scholar 

  • DeFelipe J, Jones EG (1992) High resolution light and electron microscopic immunocytochemistry of colocalized GABA and calbindin D-28k in somata and double bouquet cell axons of monkey somatosensory cortex. Eur J Neurosci 4:46–60

    Google Scholar 

  • DeFelipe J, Conley M, Jones EG (1986) Long-range focal collateral- ization of axons arising from corticocortical cells in monkey sensory-motor cortex. J Neurosci 6:3749–3766

    Google Scholar 

  • DeFelipe J, Hendry SHC, Jones EG (1989a) Synapses of double bouquet cells in monkey cerebral cortex visualized by calbindin immunoreactivity. Brain Res 503:49–54

    Google Scholar 

  • DeFelipe J, Hendry SHC, Jones EG (1989b) Visualization of chan- delier cell axons by parvalbumin immunoreactivity in monkey cerebral cortex. Proc Natl Acad Sci USA 86:2093–2097

    Google Scholar 

  • DeFelipe J, Hendry SHC, Hashikawa T, Molinari M, Jones EG (1990) A microcolumnar structure of monkey cerebral cortex revealed by immunocytochemical studies of double bouquet cell axons. Neuroscience 37:655–673

    Google Scholar 

  • Dori I, Petrou M, Parnavelas JG (1989) Excitatory transmitter amino acid-containing neurons in the rat visual cortex: a light and electron microscopic immunocytochemical study. J Comp Neurol 290:169–184

    Google Scholar 

  • Dori I, Dinopoulos A, Cavanagh ME, Parnavelas JG (1992) Pro- portion of glutamate- and aspartate-immunoreactive neurons in the efferent pathways of the rat visual cortex varies according to the target. J Comp Neurol 319:191–204

    Google Scholar 

  • Douglas RJ, Martin KAC (1990) Neocortex. In: Shephard GM (ed) The synaptic organization of the brain. Oxford University Press, New York, pp 389–438

    Google Scholar 

  • Eccles JC (1984) The cerebral neocortex: a theory of its operation. In: Jones EG, Peters A (eds) Cerebral cortex, vol 2: Functional properties of cortical cells. Plenum Press, New York, pp 1–36

    Google Scholar 

  • Elhanany E, White EL (1990) Intrinsic circuitry: synapses involving the local axon collaterals of corticocortical projection neurons in the mouse primary somatosensory cortex. J Comp Neurol 291:43–54

    Google Scholar 

  • Fairén A, Peters A, Saldanha J (1977) A new procedure for examin- ing Golgi impregnated neurons by light and electron mi- croscopy. J Neurocytol 6:311–337

    Google Scholar 

  • Fairén A, DeFelipe J, Regidor J (1984) Nonpyramidal Neurons: general account. In: Peters A, Jones EG (eds) Cerebral cortex, vol 1. Cellular components of the cerebral cortex. Plenum Press, New York, pp 201–253

    Google Scholar 

  • Feldman ML, Peters A (1978) The forms of nonpyramidal neurons in the visual cortex of the rat. J Comp Neurol 179:761–794

    Google Scholar 

  • Felleman DJ, Van Essen DC (1991) Distributed hierarchical pro- cessing in the primate cerebral cortex. Cereb Cortex 1:1–47

    CAS  PubMed  Google Scholar 

  • Ferster D, Lindström S (1983) An intracellular analysis of geniculo- cortical connectivity in area 17 of the cat. J Physiol (Lond) 342:181–215

    Google Scholar 

  • Fitzpatrick D, Itoh K, Diamond IT (1983) The laminar organiza- tion of the lateral geniculate body and the striate cortex in the squirrel monkey (Saimiri sciureus). J Neurosci 3:673–702

    Google Scholar 

  • Fitzpatrick D, Lund JS, Blasdel GG (1985) Intrinsic connections of macaque striate cortex: afferent and efferent connections of lam- ina 4C. J Neurosci 5:3329–3349

    Google Scholar 

  • Freund TF, Maglóczky ZS, Soltész I, Somogyi P (1986) Synaptic connections, axonal and dendritic patterns of neurons im- munoreactive for cholecystokinin in the visual cortex of the cat. Neuroscience 19:1133–1159

    Google Scholar 

  • Gabbott PLA, Martin KAC, Whitteridge D (1987) Connections between pyramidal neurons in layer 5 of cat visual cortex (area 17). J Comp Neurol 259:364–381

    Google Scholar 

  • Ghosh S, Fyffe REW, Porter R (1988) Morphology of neurons in area 4gamma of the cat's cortex studied with intracellular injec- tion of HRP. J Comp Neurol 269:290–312

    Google Scholar 

  • Gilbert CD, Wiesel TN (1979) Morphology and intracortical pro- jections of functionally identified neurons in cat visual cortex. Nature 280:120–125

    Google Scholar 

  • Gilbert CD, Wiesel TN (1989) Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex. J Neurosci 9:2432–2442

    Google Scholar 

  • Giuffrida R, Rustioni A (1989a) Glutamate and aspartate im- munoreactivity in cortico-cortical neurons of the sensorimotor cortex of rats. Exp Brain Res 74:41–46

    Google Scholar 

  • Giuffrida R, Rustioni A (1989b) Glutamate and aspartate im- munoreactivity in corticospinal neurons of rats. J Comp Neurol 288:154–164

    Google Scholar 

  • Glezer II, Jacobs MS, Morgane PJ (1988) Implications of the “initial brain” concept for brain evolution in Cetacea. Behav Brain Sci 11:75–116

    Google Scholar 

  • Goldman-Rakic PS, Nauta WJH (1977) Columnar distribution of cortico-cortical fibres in the frontal association, limbic and mo- tor cortex of the developing rhesus monkey. Brain Res 122:393–414

    Google Scholar 

  • Goldman-Rakic PS, Schwartz ML (1982) Interdigitaion of con- tralateral and ipsilateral columnar projections to frontal associ- ation cortex in primates. Science 216:755–757

    Google Scholar 

  • Gray EG (1959) Axo-somatic and axodendritic synapses of the cere- bral cortex: an electron microscopic study. J Anat 93:420–433

    Google Scholar 

  • Haberly LB (1990a) Comparative aspects of olfactory cortex. In: Jones EG, Peters A (eds) Cerebral cortex, vol 8B. Comparative structure and evolution of cerebral cortex, part II. Plenum Press, New York, pp 137–166

    Google Scholar 

  • Haberly LB (1990b) Olfactory cortex. In: Shepherd GM (ed) The synaptic organization of the brain, 3rd ed. Oxford University Press, New York, pp 317–345

    Google Scholar 

  • Hallman LE, Schofield BR, Lin C (1990) Dendritic morphology and axon collaterals of corticotectal, cortico-pontine, and callosal neurons in layer V of the primary visual cortex of the hooded rat. J Comp Neurol 272:149–160

    Google Scholar 

  • Hebb DO (1949) The organization of behavior. Wiley, New York, pp 62–66

    Google Scholar 

  • Hendry SHC, Jones EG (1981) Sizes and distribution of intrinsic neurons incorporating tritiated GABA in monkey sensory-motor cortex. J Neurosci 1:390–408

    Google Scholar 

  • Hendry SHC, Jones EG (1983a) The organization of pyramidal and nonpyramidal cell dendrites in relation to thalamic afferent terminations in the monkey somatic sensory cortex. J Neurocytol 12:277–298

    Google Scholar 

  • Hendry SHC, Jones EG (1983b) Thalamic inputs to identified commissural neurons in the monkey somatic sensory cortex. J Neurocytol 12:299–316

    Google Scholar 

  • Hendry SHC, Jones EG, Emson PC, Lawson DEM, Heizmann CW, Streit P (1989) Two classes of cortical GABA neurons defined by differential calcium binding protein immunoreactivities. Exp Brain Res 76:467–472

    Google Scholar 

  • Herrick CJ (1948) The brain of the tiger salamander. University of Chicago Press, Chicago

    Google Scholar 

  • Hersch SM, White EL (1981) Thalamocortical synapses with corticothalamic projection neurons in mouse SmI cortex: electron microscopic demonstration of a monosynaptic feedback loop. Neurosci Lett 24:207–210

    Google Scholar 

  • Hersch SM, White EL (1982) A quantitative study of the thalamocortical and other synapses in layer IV of pyramidal cells projecting from mouse SmI cortex to the caudate-putamen nucleus. J Comp Neurol 211:217–225

    Google Scholar 

  • Horner CH (1993) Plasticity of the dendritic spine. Progr Neurobiol 41:281–321

    Google Scholar 

  • Hornung JP, Garey LJ (1981) The thalamic projection to cat visual cortex: ultrastructure of neurons indentified by Golgi impregnation of retrograde horseradish peroxidase transport. Neuroscience 6:1053–1068

    Google Scholar 

  • Houser CR, Vaughn JE, Hendry SHC, Jones EG, Peters A (1984) GABA neurons in the cerebral cortex. In: Jones EG, Peters A (eds) Cerebral cortex, vol 2. Functional properties of cortical cells. Plenum Press, New York, pp 63–90

    Google Scholar 

  • Houser CR, Crawford GD, Salvaterra PM, Vaughn JE (1985) Immunocytochemical localization of choline acetyltransferase in rat cerebral cortex: a study of cholinergic neurons and synapses. J Comp Neurol 234:17–34

    Google Scholar 

  • Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of monkey visual cortex. J Physiol (Lond) 195:215–243

    Google Scholar 

  • Hubel DH, Wiesel TN (1972) Laminar and columnar distribution of geniculo-cortical fibres in the macaque monkey. J Comp Neurol 146:421–450

    Google Scholar 

  • Hubel DH, Wiesel TN (1977) Functional architecture of macaque monkey cortex. Proc R Soc Lond [Biol] 198:1–59

    Google Scholar 

  • Hübener M, Schwarz C, Bolz J (1990) Morphological types of projection neurons in layer 5 of cat visual cortex. J Comp Neurol 301:655–674

    Google Scholar 

  • Ichikawa M, Arissian K, Asanuma H (1985) Distribution of corticocortical and thalamocortical synapses on identified motor cortical neurons in the cat: Golgi, electron microscopic and degeneration study. Brain Res 345:87–101

    Google Scholar 

  • Innocenti GM (1986) General organization of callosal connections in the cerebral cortex. In: Jones EG, Peters A (eds) Cerebral cortex, vol 5. Sensory-motor areas and aspects of cortical connectivity. Plenum Press, New York, pp 291–354

    Google Scholar 

  • Isseroff A, Schwartz ML, Dekker JJ, Goldman-Rakic PS (1984) Columnar organization of callosal and associational projections from rat frontal cortex. Brain Res 293:213–223

    Google Scholar 

  • Jones EG (1975) Varieties and distribution of nonpyramidal cells in the somatic sensory cortex of the squirrel monkey. J Comp Neurol 160:205–268

    Google Scholar 

  • Jones EG (1984a) Neurogliaform or spiderweb cells. In: Peters A, Jones EG (eds) Cerebral cortex, vol 1. Cellular components of the cerebral cortex. Plenum Press, New York, pp 409–418

    Google Scholar 

  • Jones EG (1984b) Laminar distribution of cortical efferent cells. In: Peters A, Jones EG (eds) Cerebral cortex, vol 1. Cellular components of the cerebral cortex. Plenum Press, New York, pp 521–553

    Google Scholar 

  • Jones EG (1987) Cerebral cortex. In: Adelman G (ed) Encyclopedia of neuroscience, vol I. Birkhäuser, Basel, pp 209–211

    Google Scholar 

  • Jones EG, Hendry SHC (1984) Basket cells. In: Peters A, Jones EG (eds) Cerebral cortex, vol 1. Cellular components of the cerebral cortex. Plenum Press, New York, pp 309–336

    Google Scholar 

  • Jones EG, Burton H, Porter R (1975) Commissural and cortico-cortical “columns” in the somatic sensory cortex of primates. Science 190:572–574

    Google Scholar 

  • Jones EG, Hendry SHC, DeFelipe J, (1987) GABA-peptide neurons of the primate cerebral cortex: a limited cell class. In: Jones EG, Peters A (eds) Cerebral cortex, vol 6. Further aspects of cortical function, including hippocampus. Plenum Press, New York, pp 237–266

    Google Scholar 

  • Jones EG, DeFelipe J, Hendry SHC, Maggio JE (1988) A study of tachykinin-immunoreactive neurons in monkey cerebral cortex. J Neurosci 8:1206–1224

    Google Scholar 

  • Kasper EM, Larkman AU, Lübke J, Blakemore C (1994a) Pyramidal neurons in layer 5 of the rat visual cortex I. Correlation among cell morphology, intrinsic electrophysiological properties, and axon targets. J Comp Neurol 339:459–474

    Google Scholar 

  • Kasper EM, Larkman AU, Lübke J, Blakemore C (1994b) Pyramidal neurons in layer 5 of the rat visual cortex II. Development of electrophysiological properties. J Comp Neurol 339:475–494

    Google Scholar 

  • Kasper EM, Lübke J, Larkman AU, Blakemore C (1994c) Pyramidal neurons in layer 5 of the rat visual cortex III. Differential maturation of axon targeting, dendritic morphology, and electrophysiological properties. J Comp Neurol 339:495–518

    Google Scholar 

  • Katz LC (1987) Local circuitry of identified projection neurons in cat visual cortex brain slices. J Neurosci 7:1223–1249

    Google Scholar 

  • Keller A, Asanuma H (1993) Synaptic relationships involving local axon collaterals of pyramidal neurons in the cat motor cortex. J Comp Neurol 336:229–242

    Google Scholar 

  • Kisvárday ZF, Eysel UT (1992) Cellular organization of reciprocal patchy networks in layer III of cat visual cortex (area 17). Neuroscience 46:275–286

    Google Scholar 

  • Kisvárday ZF, Martin KAC, Freund TF, Maglóczky Z, Whitteridge D, Somogyi P (1986) Synaptic targets of HRP-filled layer III pyramidal cells in the cat striate cortex. Exp Brain Res 64:541–552

    Google Scholar 

  • Kisvárday ZF, Martin KAC, Friedlander MJ, Somogyi P (1987) Evidence for interlaminar inhibitory circuits in the striate cortex of the cat. J Comp Neurol 260:1–19

    Google Scholar 

  • Kisvárday ZF, Beaulieu C, Eysel UT (1993) Network of GABAergic large basket cells in cat visual cortex (area 18): implication for lateral disinhibition. J Comp Neurol 327:398–415

    Google Scholar 

  • Koester SE, O'Leary DM (1992) Functional classes of cortical projection neurons develop dendritic distinctions by class-specific sculpting of an early common pattern. J Neurosci 12:1382–1393

    Google Scholar 

  • Kuroda M, Murakami K, Oda S, Shinkai M, Kishi K (1993) Direct synaptic connections between thalamocortical axon terminals from the mediodorsal thalamic nucleus (MD) and corticothalamic neurons to MD in the prefrontal cortex. Brain Res 612:339–344

    Google Scholar 

  • Landry P, Labelle A, Deschênes M (1980) Intracortical distribution of axonal collaterals of pyramidal tract cells in the cat motor cortex. Brain Res 191:327–336

    Google Scholar 

  • Larkman AU, Mason A (1990) Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. I. Establishment of cell classes. J Neurosci 10:1407–1414

    Google Scholar 

  • Le Vay S (1973) Synaptic patterns in the visual cortex of the cat and monkey: electron microscopy of Golgi preparations. J Comp Neurol 150:53–86

    Google Scholar 

  • Lewis DA, Lund JS (1990) Heterogeneity of chandelier neurons in monkey neocortex: corticotropin-releasing factor- and parvalbumin-immunoreactive populations. J Comp Neurol 293:599–615

    Google Scholar 

  • Lima AD de, Morrison JH (1989) Ultrastructural analysis of somatostatin-immunoreactive neurons and synapses in the temporal and occipital cortex of the macaque monkey. J Comp Neurol 283:212–227

    Google Scholar 

  • Livingstone MS, Hubel DH (1984a) Anatomy and physiology of a colour system in the primate visual cortex. J Neurosci 4:309–356

    Google Scholar 

  • Livingstone MS, Hubel DH (1984b) Specificity of intrinsic connections in primate primary visual cortex. J Neurosci 4:2830–2835

    Google Scholar 

  • Lorente de Nó R (1922) La corteza cerebral del ratón. Trabajos Cajal Madrid 20:41–80

    Google Scholar 

  • Lorente de Nó R (1934a) Studies on the structure of the cerebral cortex I The area entorhinalis. J Psychol Neurol 45:381–439

    Google Scholar 

  • Lorente de Nó R (1934b) Studies on the structure of the cerebral cortex II Continuation of the study of the ammonic system. J Psychol Neurol 46:113–177

    Google Scholar 

  • Lorente de Nó R (1938) The cerebral cortex: architecture, intracortical connections and motor projections. In: Fulton JF (ed) Physiology of the nervous system. Oxford University Press, London, pp 291–325

    Google Scholar 

  • Lund JS (1973) Organization of neurons in the visual cortex, area 17, of the monkey (Macaca mulatta). J Comp Neurol 147:455–469

    Google Scholar 

  • Lund JS (1984) Spiny stellate neurons. In: Peters A, Jones EG (eds) Cerebral cortex, vol 1. Cellular components of the cerebral cortex. Plenum Press, New York, pp 255–308

    Google Scholar 

  • Lund JS (1987) Local circuit neurons of macaque monkey striate cortex. I. Neurons of laminae 4C and 5A. J Comp Neurol 257:60–92

    Google Scholar 

  • Lund JS (1988) Anatomical organization of macaque monkey striate visual cortex. Annu Rev Neurosci 11:253–288

    Google Scholar 

  • Lund JS, Boothe RG (1975) Interlaminar connections and pyramidal neuron organisation in the visual cortex, area 17, of the macaque monkey. J Comp Neurol 159:305–334

    Google Scholar 

  • Lund JS, Lewis DA (1993) Local circuit neurons of developing and mature prefrontal cortex: Golgi and immunocytochemical characteristics. J Comp Neurol 328:282–312

    Google Scholar 

  • Lund JS, Yoshioka T (1991) Local circuit neurons of macaque monkey striate cortex. III. Neurons of laminae 4B, 4A, and 3B. J Comp Neurol 311:234–258

    Google Scholar 

  • Lund JS, Hendrickson AE, Ogren MP, Tobin EA (1981) Anatomical organization of primate visual cortex area VII. J Comp Neurol 202:19–45

    CAS  PubMed  Google Scholar 

  • Lund JS, Fitzpatrick D, Humphrey AL (1985) The striate visual cortex of the tree shrew. In: Peters A, Jones EG (eds) Cerebral cortex, vol 3. Visual cortex. Plenum Press, New York, pp 157–205

    Google Scholar 

  • Lund JS, Hawken MJ, Parker AJ (1988) Local circuit neurons of macaque monkey striate cortex. II. Neurons of laminae 5B and 6. J Comp Neurol 276:1–29

    Google Scholar 

  • Marin-Padilla M (1978) Dual origin of the mammalian neocortex and evolution of the cortical plate. Anat Embryol 152:109–126

    Google Scholar 

  • Marin-Padilla M (1992) Ontogenesis of the pyramidal cell of the mammalian neocortex and developmental cytoarchitectonics: a unifying theory. J Comp Neurol 321:223–240

    Google Scholar 

  • Martinotti C (1890) Beitrag zum Studium der Hirnrinde und dem Centralursprung der Nerven. Int Monatsschr Anat Physiol 7:69–90

    Google Scholar 

  • Mates SL, Lund JS (1983) Neuronal composition and development in lamina 4C of monkey striate cortex. J Comp Neurol 221:60–90

    Google Scholar 

  • Matsubara JA, Phillips DP (1988) Intracortical connections and their physiological correlates in the primary auditory cortex (AI) of the cat. J Comp Neurol 268:38–48

    Google Scholar 

  • McGuire BA, Hornung JP, Gilbert CD, Wiesel TN (1984) Patterns of input to layer 4 of cat striate cortex. J Neurosci 4:3021–3033

    Google Scholar 

  • McGuire BA, Gilbert CD, Rivlin PK, Wiesel TN (1991) Targets of horizontal connections in macaque primary visual cortex. J Comp Neurol 305:370–392

    Google Scholar 

  • McGuire PK, Bates JF, Goldman-Rakic PS (1991) Interhemispheric integration. I. Symmetry and convergence of the corticocortical connections of the left and the right principal sulcus (PS) and the left and the right supplementary motor area (SMA) in the rhesus monkey. Cereb Cortex 1:390–407

    Google Scholar 

  • Meinecke DL, Peters A (1987) GABA immunoreactive neurons in rat visual Cortex. J Comp Neurol 261:388–404

    Google Scholar 

  • Metherate R, Dykes RW (1985) Simultanous recordings from pairs of cat somatosensory cortical neurons with overlapping peripheral receptive fields. Brain Res 341:119–129

    Google Scholar 

  • Morgane PJ, Glezer JJ, Jacobs MS (1990) Comparative and evolutionary anatomy of the visual cortex of the dolphin. In: Jones EG, Peters A (eds) Cerebral cortex, vol 8B. Comparative structure and evolution of cerebral cortex. Part II. Plenum Press, New York, pp 215–262

    Google Scholar 

  • Mountcastle VB (1957) Modality and topographic properties of single neurones of cat's somatic sensory cortex. J Neurophysiol 20:408–434

    Google Scholar 

  • Mountcastle VB (1979) An organizing principle for cerebral function: the unit module and distributed system. In: Schmitt FO, Worden FG (eds) The neurosciences fourth study program. MIT Press, Cambridge, Mass, pp 21–42

    Google Scholar 

  • Ojima H, Honda CN, Jones EG, (1991) Patterns of axon collateralization of identified supragranular pyramidal neurons in the cat auditory cortex. Cereb Cortex 1:80–94

    Google Scholar 

  • Ottersen OP, Fisher BO, Storm-Mathisen J (1983) Retrograde transport of D-[3H]aspartate in thalamocortcial neurons. Neurosci Lett 42:19–24

    Google Scholar 

  • Parnavelas JG (1984) Physiological properties of identified neurons. In: Jones EG, Peters A (eds) Cerebral cortex, vol 2. Functional properties of cortical cells. Plenum Press, New York, pp 205–239

    Google Scholar 

  • Parnavelas JG, Sullivan K, Lieberman AR, Webster KE (1977) Neurons and their synaptic organization in the visual cortex of the rat: electron microscopy of Golgi preparations. Cell Tissue Res 183:499–517

    Google Scholar 

  • Parnavelas JG, Barfield JA, Luskin MB (1991) Separate progenitor cells give rise to pyramidal and nonpyramidal neurons in the rat telencephalon. Cereb Cortex 1:463–468

    Google Scholar 

  • Peters A (1984a) Chandelier cells. In: Peters A, Jones EG (eds) Cerebral cortex, vol 1. Cellular components of the cerebral cortex. Plenum Press, New York, pp 361–380

    Google Scholar 

  • Peters A (1984b) Bipolar cells. In: Peters A, Jones EG (eds) Cerebral cortex, vol 1. Cellular components of the cerebral cortex. Plenum Press, New York, pp 381–408

    Google Scholar 

  • Peters A (1987) Cortical neurons. In: Adelman G (ed) Encyclopedia of neuroscience, vol 1. Birkhäuser, Basel, pp 282–284

    Google Scholar 

  • Peters A, Fairén A (1978) Smooth and sparsely-spined stellate cells in the visual cortex of the rat: a study using a combined Golgi — electron microscope technique. J Comp Neurol 181:129–172

    Google Scholar 

  • Peters A, Harriman KM (1988) Enigmatic bipolar cell of rat visual cortex. J Comp Neurol 267:409–432

    Google Scholar 

  • Peters A, Jones EG (1984) Classification of cortical neurons. In: Peters A, Jones EG (eds) Cerebral cortex, vol 1. Cellular components of the cerebral cortex. Plenum Press, New York, pp 107–122

    Google Scholar 

  • Peters A, Kimerer LM (1981) Bipolar neurons in rat visual cortex: a combined Golgi-electron microscope study. J Neurocytol 10:921–946

    Google Scholar 

  • Peters A, Proskauer CC (1980) Synaptic relationships between a multipolar stellate cell and a pyramidal neuron in the rat visual cortex A combined Golgi-electron microscope study. J Neurocytol 9:163–183

    Google Scholar 

  • Peters A, Saint Marie PL (1984) Smooth and sparsely spinous nonpyramidal cells forming local axonal plexuses. In: Peters A, Jones EG (eds) Cerebral cortex, vol 1. Cellular components of the cerebral cortex. Plenum Press, New York, pp 419–445

    Google Scholar 

  • Peters A, Meinecke DL, Karamanlidis AN (1987) Vasoactive intestinal polypeptide immunoreactive neurons in cat primary visual cortex. J Neurocytol 16:23–38

    Google Scholar 

  • Poljakow GI (1979) Entwicklung der Neuronen der menschlichen Grosshirnrinde. Thieme, Leipzig, 320

    Google Scholar 

  • Porter L, White EL (1986) Synaptic connections of callosal projection neurons in the vibrissal region of mouse primary motor cortex: an electron microscopic/horseradish peroxidase study. J Comp Neurol 253:303–314

    Google Scholar 

  • Ribak CE (1978) Aspinous and sparsely-spinous stellate neurons in the visual cortex of rats contain glutamic acid carboxylase. J Neurocytol 7:461–478

    Google Scholar 

  • Rockel AJ, Hiorns RW, Powell TPS (1980) The basic uniformity in structure of the neocortex. Brain 103:221–244

    Google Scholar 

  • Rockland KS, Lund JS (1982) Widespread periodic intrinsic connections in the tree shrew visual cortex. Science 215:1532–1534

    Google Scholar 

  • Ruiz-Marcos A, Valverde F (1970) Dynamic architecture of the visual cortex. Brain Res 19:25–39

    Google Scholar 

  • Saint Marie RL, Peters A (1985) The morphology and synaptic connections of spiny stellate neurons in monkey visual cortex (area 17): a Golgi-electron microscopic study. J Comp Neurol 233:213–235

    Google Scholar 

  • Sanides F, Sanides D (1972) The ‘extraverted neurons’ of the mammalian cerebral cortex. Z Anat Entwicklungsgesch 136:272–293

    Google Scholar 

  • Sanides D, Sanides F (1974) A comparative Golgi study of the neocortex in insectivores and rodents. Z Mikrosk Anat Forsch 88:957–977

    Google Scholar 

  • Selemon LD, Goldman-Rakic PS (1988) Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the Rhesus monkey: evidence for a distributed neural network subserving spatially guided behavior. J Neurosci 8:4049–4068

    CAS  PubMed  Google Scholar 

  • Sloper JJ, Powell TPS (1979) An experimental electron microscopic study of afferent connections to the primate motor and somatic sensory cortices. Philos Trans R Soc London [Biol] 285:199–226

    Google Scholar 

  • Somogyi P (1977) A specific axo-axonal interneuron in the visual cortex of the rat. Brain Res 136:345–350

    Google Scholar 

  • Somogyi P, Cowey A (1981) Combined Golgi and electron microscopic study on the synapses formed by double bouquet cells in the visual cortex of the cat and monkey. J Comp Neurol 195:547–566

    Google Scholar 

  • Somogyi P, Kisvárday ZF, Martin KAC, Whitteridge D (1983a) Synaptic connections of morphologically identified and physiologically characterized large basket cells in the striate cortex of cat. Neuroscience 10:261–294

    Google Scholar 

  • Somogyi P, Nunzi MG, Gorio A, Smith AD (1983b) A new type of specific interneuron in the monkey hippocampus forming synapses exclusively with the axon inital segments of pyramidal cells. Brain Res 259:137–142

    Google Scholar 

  • Somogyi P, Freund TF, Hodgson AJ, Somogyi J, Beroukas D, Chubb IW (1985) Identified axo-axonic cells are immunoreactive for GABA in the hippocampus and visual cortex of the cat. Brain Res 332:143–149

    Google Scholar 

  • Soriano E, Frotscher M (1989) A GABAergic axo-axonic cell in the fascia dentata controls the main excitatory hippocampal pathway. Brain Res 503:170–174

    Google Scholar 

  • Szentágothai J (1978) The neuron network of the cerebral cortex: a functional interpretation. Proc R Soc Lond [Biol] 201:219–248

    Google Scholar 

  • Tieman SB, Cangro CB, Neale JH (1987) N-Acetylaspartylglutamate immunoreactivity in neurons of the cat's visual system. Brain Res 420:188–193

    Google Scholar 

  • Ts'o DY, Gilbert CD (1988) The organization of chromatic and spatial interactions in the primate striate cortex. J Neurosci 8:1712–1727

    Google Scholar 

  • Ts'o DY, Gilbert CD, Wiesel TN (1986) Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis. J Neurosci 6:1160–1170

    Google Scholar 

  • Tsai G, Stauch-Slusher B, Sim I, Hedreen J, Rothstein J, Kuncle R, Coyle JT (1991) Reduction in acidic amino acids and N-acetylaspartylglutamate in amyotropic lateral sclerosis CNS. Brain Res 556:151–156

    Google Scholar 

  • Tsumoto T, Masui H, Sato H (1986) Excitatory amino acid transmitters in neuronal circuits of the cat visual cortex. J Neurophysiol 55:469–483

    Google Scholar 

  • Valverde F (1965) Studies on the piriform lobe. Harvard University Press, Cambridge, Mass

    Google Scholar 

  • Valverde F (1986) Intrinsic neocortical organization: some comparative aspects. Neuroscience 18:1–23

    Google Scholar 

  • Valverde F, Facal-Valverde MV (1986) Neocortical layers I and II of the hedgehog (Erinaceus europaeus). I. Intrinsic organization. Anat Embryol 173:413–430

    Google Scholar 

  • Van Essen DC, Anderson CH, Felleman DJ, (1992) Information processing in the primate visual system: an integrated systems perspective. Science 255:419–423

    Google Scholar 

  • Vogt BA (1991) The role of layer I in cortical function. In: Peters A, Jones EG (eds) Cerebral cortex, vol 9. Normal and altered states of function. Plenum Press, New York, pp 49–80

    Google Scholar 

  • White EL (1978) Identified neurons in mouse Sm I cortex, which are postsynaptic to thalamocortical axon terminals: A combined Golgi-electron microscopic and degeneration study. J Comp Neurol 181:627–662

    Google Scholar 

  • White EL (1989) Cortical circuits: synaptic organization of the cerebral cortex: structure, function, and theory. Birkhäuser, Basel

    Google Scholar 

  • White EL, Czeiger D (1991) Synapses made by axons of callosal projection neurons in mouse: somatosensory cortex: emphasis on intrinsic connections. J Comp Neurol 303:233–244

    Article  CAS  Google Scholar 

  • White EL, Hersch SM (1981) Thalamocortical synapses of pyramidal cells which project from SmI to MsI cortex in the mouse. J Comp Neurol 198:167–181

    Google Scholar 

  • White EL, Hersch SM (1982) A quantitative study of thalamocortical and other synapses involving the apical dendrites of corticothalamic projection cells in mouse SmI cortex. J Neurocytol 11:137–157

    Google Scholar 

  • White EL, Keller A (1987) Intrinsic circuitry involving the local axonal collaterals of corticothalamic projection cells in mouse SmI cortex. J Comp Neurol 262:13–26

    Google Scholar 

  • White EL, Hersch SM, Rock MP (1980) Synaptic sequences in mouse SMI cortex involving pyramidel cells labeled by retrograde filling with horseradish peroxidase. Neuro Sci Lett 19:149–154

    Google Scholar 

  • White EL, Hersch SM, Belford GR (1982) Quantitative studies of thalamocortical synapses with labelled pyramidal cells in mouse SmI cortex. Soc Neurosci Abstr 8:853

    Google Scholar 

  • White EL, Amitai Y, Gutnick MJ (1994) A comparison of synapses onto the somata of intrinsically bursting and regular spiking neurons in layer V of rat SmI cortex. J Comp Neurol 340:1–14

    Google Scholar 

  • Winfield DA, Gatter KC, Powell TPS (1980) An electron microscopic study of the types and proportions of neurons in the cortex of the motor and visual areas of the cat and rat. Brain 103:245–258

    Google Scholar 

  • Winfield DA, Brooke RNL, Sloper JJ, Powell TPS (1981) A combined Golgi-electron microscopic study of the synapses made by the proximal axon and recurrent collaterals of a pyramidal cell in the somatic sensory cortex of the monkey. Neuroscience 6:1217–1230

    Google Scholar 

  • Woolsey TA, Van der Loos H (1970) The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. Brain Res 17:205–242

    Google Scholar 

  • Zeki S, Shipp S (1988) The functional logic of cortical connections. Nature 335:311–317

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to the memory of Hendrik van der Loos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nieuwenhuys, R. The neocortex. Anat Embryol 190, 307–337 (1994). https://doi.org/10.1007/BF00187291

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00187291

Key words

Navigation