Skip to main content

Flow Distribution of Multiphase Flow in Parallel Channels

  • Reference work entry
  • First Online:
Handbook of Multiphase Flow Science and Technology

Abstract

The transformation of lab-scale continuous synthesis to the commercial scale demands an increase in throughput either through scale-up or scale-out (numbering up). Numbering up involves the parallelization of single, lab-scale unit into multiple units of the same dimensions, and thus it offers better control over transport characteristics, safety, and economics of the process as compared to conventional scale-up. However, the major constraint in adopting the approach is in the complexity in maintaining the required flow distribution throughout the device, especially multiphase flows. This chapter discusses the reports on application of numbering up (internal and external) for chemical synthesis, various design configurations involving consecutive, bifurcation structures, 2D and 3D planar distributor designs, methods of analysis of flow distribution, etc. Different modeling approaches for single and multiphase flow distribution are analyzed, including pressure drop model for consecutive structures, two-phase network resistance model, energy balance coupled with network of resistance model for barrier-based manifold design, etc. Subsequently, complexities in numbering up are thoroughly discussed by considering different aspects, viz. flow distributor designs, RTD, and heat transfer modeling. Design guidelines are provided for selecting the scale-out approach and suitable geometry depending on the process requirement. Finally, a few key concerns which remains unaddressed and need detailed investigation are presented.

The authors M.K. Sharma and M.S. Khan contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • D.N. Adamson, D. Mustafi, J.X. Zhang, B. Zheng, R.F. Ismagilov, Production of arrays of chemically distinct nanolitre plugs via repeated splitting in microfluidic devices. Lab Chip 6, 1178–1186 (2006)

    Article  Google Scholar 

  • M. Al-Rawashdeh, F. Yu, T. Nijhuis, E. Rebrov, V. Hessel, J. Schouten, Numbered-up gas–liquid micro/milli channels reactor with modular flow distributor. Chem. Eng. J. 207, 645–655 (2012a)

    Article  Google Scholar 

  • M.M. Al-Rawashdeh, X. Nijhuis, E.V. Rebrov, V. Hessel, J.C. Schouten, Design methodology for barrier-based two phase flow distributor. AICHE J. 58, 3482–3493 (2012b)

    Article  Google Scholar 

  • M.M. Al-Rawashdeh, F. Yue, N.G. Patil, T. Nijhuis, V. Hessel, J.C. Schouten, E.V. Rebrov, Designing flow and temperature uniformities in parallel microchannels reactor. AICHE J. 60, 1941–1952 (2014)

    Article  Google Scholar 

  • C. Amador, A. Gavriilidis, P. Angeli, Flow distribution in different microreactor scale-out geometries and the effect of manufacturing tolerances and channel blockage. Chem. Eng. J. 101, 379–390 (2004)

    Article  Google Scholar 

  • T. Bayer, J. Jenck, M. Matlosz, IMPULSE – A new approach to process design. Chem. Eng. Technol.: Ind. Chem.-Plant Equip.-Process Eng.-Biotechnol. 28, 431–438 (2005)

    Article  Google Scholar 

  • J.C. Brandt, T. Wirth, Controlling hazardous chemicals in microreactors: Synthesis with iodine azide. Beilstein J. Org. Chem. 5, 30 (2009)

    Article  Google Scholar 

  • D. Cantillo, C.O. Kappe, Halogenation of organic compounds using continuous flow and microreactor technology. Reaction Chem. Eng. 2, 7–19 (2017)

    Article  Google Scholar 

  • E. Cao, A. Gavriilidis, W.B. Motherwell, Oxidative dehydrogenation of 3-Methyl-2-buten-1-ol in microreactors. Chem. Eng. Sci. 59, 4803–4808 (2004)

    Article  Google Scholar 

  • G. Caygill, M. Zanfir, A. Gavriilidis, Scalable reactor design for pharmaceuticals and fine chemicals production. 1: Potential scale-up obstacles. Org. Process Res. Dev. 10, 539–552 (2006)

    Article  Google Scholar 

  • R.D. Chambers, M.A. Fox, D. Holling, T. Nakano, T. Okazoe, G. Sandford, Elemental fluorine Part 16. Versatile thin-film gas–liquid multi-channel microreactors for effective scale-out. Lab Chip 5, 191–198 (2005)

    Article  Google Scholar 

  • Y. Chen, J.C.M. Monbaliu. Continuous-flow multistep synthesis of active pharmaceutical ingredients. in Flow and Microreactor Technology in Medicinal Chemistry (2022), pp. 233–268

    Google Scholar 

  • J. Chen, S. Wang, S. Cheng, Experimental investigation of two-phase distribution in parallel micro-T channels under adiabatic condition. Chem. Eng. Sci. 84, 706–717 (2012)

    Article  Google Scholar 

  • J.-W. Choi, Y.-D. Choi, C.-G. Kim, Y.-H. Lee, Flow uniformity in a multi-intake pump sump model. J. Mech. Sci. Technol. 24, 1389–1400 (2010)

    Article  Google Scholar 

  • J. Commenge, L. Falk, J. Corriou, M. Matlosz, Optimal design for flow uniformity in microchannel reactors. AICHE J. 48, 345–358 (2002)

    Article  Google Scholar 

  • E. Dario, L. Tadrist, J. Passos, Review on two-phase flow distribution in parallel channels with macro and micro hydraulic diameters: Main results, analyses, trends. Appl. Therm. Eng. 59, 316–335 (2013)

    Article  Google Scholar 

  • N. De Mas, A. Günther, M.A. Schmidt, K.F. Jensen, Microfabricated multiphase reactors for the selective direct fluorination of aromatics. Ind. Eng. Chem. Res. 42, 698–710 (2003)

    Article  Google Scholar 

  • N. de Mas, A. Günther, T. Kraus, M.A. Schmidt, K.F. Jensen, Scaled-out multilayer gas− liquid microreactor with integrated velocimetry sensors. Ind. Eng. Chem. Res. 44, 8997–9013 (2005)

    Article  Google Scholar 

  • N. de Mas, A. Günther, M.A. Schmidt, K.F. Jensen, Increasing productivity of microreactors for fast gas− liquid reactions: the case of direct fluorination of toluene. Ind. Eng. Chem. Res. 48, 1428–1434 (2009)

    Article  Google Scholar 

  • E. R. Delsman, A. Pierik, M.H.J.M. De Croon, G.J. Kramer, J.C. Schouten, Microchannel plate geometry optimization for even flow distribution at high flow rates. Chemical Engineering Research and Design. 82(A2), 267–273 (2004)

    Google Scholar 

  • A.-L. Dessimoz, L. Cavin, A. Renken, L. Kiwi-Minsker, Liquid–liquid two-phase flow patterns and mass transfer characteristics in rectangular glass microreactors. Chem. Eng. Sci. 63, 4035–4044 (2008)

    Article  Google Scholar 

  • G.N. Doku, W. Verboom, D.N. Reinhoudt, A. Van Den Berg, On-microchip multiphase chemistry – A review of microreactor design principles and reagent contacting modes. Tetrahedron 61, 2733–2742 (2005)

    Article  Google Scholar 

  • J. Dong, X. Xu, B. Xu, CFD analysis of a novel modular manifold with multi-stage channels for uniform air distribution in a fuel cell stack. Appl. Therm. Eng. 124, 286–293 (2017)

    Article  Google Scholar 

  • Z. Dong, Z. Wen, F. Zhao, S. Kuhn, T. Noël, Scale-up of micro-and milli-reactors: An overview of strategies, design principles and applications. Chem. Eng. Sci.: X 10, 100097 (2021)

    Google Scholar 

  • K.S. Elvira, X.C. i Solvas, R.C. Wootton, The past, present and potential for microfluidic reactor technology in chemical synthesis. Nat. Chem. 5, 905 (2013)

    Article  Google Scholar 

  • Z. Fan, X. Zhou, L. Luo, W. Yuan, Experimental investigation of the flow distribution of a 2-dimensional constructal distributor. Exp. Thermal Fluid Sci. 33, 77–83 (2008)

    Article  Google Scholar 

  • R. Gorges, S. Meyer, G. Kreisel, Photocatalysis in microreactors. J. Photochem. Photobiol. A Chem. 167, 95–99 (2004)

    Article  Google Scholar 

  • R.L. Hartman, J.P. McMullen, K.F. Jensen, Deciding whether to go with the flow: evaluating the merits of flow reactors for synthesis. Angew. Chem. Int. Ed. 50, 7502–7519 (2011)

    Article  Google Scholar 

  • Y. He, S. Guo, K. Chen, S. Li, L. Zhang, S. Yin, Sustainable green production: A review of recent development on rare earths extraction and separation using microreactors. ACS Sustain. Chem. Eng. 7, 17616–17626 (2019)

    Article  Google Scholar 

  • D.A. Hoang, C. Haringa, L.M. Portela, M.T. Kreutzer, C.R. Kleijn, V. van Steijn, Design and characterization of bubble-splitting distributor for scaled-out multiphase microreactors. Chem. Eng. J. 236, 545–554 (2014)

    Article  Google Scholar 

  • C.A. Hone, C.O. Kappe, Membrane microreactors for the on-demand generation, separation, and reaction of gases. Chem. – Eur. J. 26, 13108–13117 (2020)

    Article  Google Scholar 

  • D. Ichinari, Y. Ashikari, K. Mandai, Y. Aizawa, J.I. Yoshida, A. Nagaki, A novel approach to functionalization of aryl azides through the generation and reaction of organolithium species bearing masked azides in flow microreactors. Angew. Chem. Int. Ed. 59, 1567–1571 (2020)

    Article  Google Scholar 

  • T. Inoue, K. Ohtaki, S. Murakami, S. Matsumoto, Direct synthesis of hydrogen peroxide based on microreactor technology. Fuel Process. Technol. 108, 8–11 (2013)

    Article  Google Scholar 

  • T. Inoue, J. Adachi, K. Ohtaki, M. Lu, S. Murakami, X. Sun, D.F. Wang, Direct hydrogen peroxide synthesis using glass microfabricated reactor–paralleled packed bed operation. Chem. Eng. J. 278, 517–526 (2015)

    Article  Google Scholar 

  • M. Irfan, T.N. Glasnov, C.O. Kappe, Heterogeneous catalytic hydrogenation reactions in continuous-flow reactors. ChemSusChem 4, 300–316 (2011)

    Article  Google Scholar 

  • K. Jähnisch, M. Baerns, V. Hessel, W. Ehrfeld, V. Haverkamp, H. Löwe, C. Wille, A. Guber, Direct fluorination of toluene using elemental fluorine in gas/liquid microreactors. J. Fluor. Chem. 105, 117–128 (2000)

    Article  Google Scholar 

  • S. Jang, S. Vidyacharan, B.T. Ramanjaneyulu, K.-W. Gyak, D.-P. Kim, Photocatalysis in a multi-capillary assembly microreactor: Toward up-scaling the synthesis of 2 H-indazoles as drug scaffolds. Reaction Chem. Eng. 4, 1466–1471 (2019)

    Article  Google Scholar 

  • K.F. Jensen, Microchemical systems: Status, challenges, and opportunities. AICHE J. 45, 2051–2054 (1999)

    Article  Google Scholar 

  • K.F. Jensen, Microreaction engineering – Is small better? Chem. Eng. Sci. 56, 293–303 (2001)

    Article  Google Scholar 

  • M.N. Kashid, A. Gupta, A. Renken, L. Kiwi-Minsker, Numbering-up and mass transfer studies of liquid–liquid two-phase microstructured reactors. Chem. Eng. J. 158, 233–240 (2010)

    Article  Google Scholar 

  • Y. Kikutani, A. Hibara, K. Uchiyama, H. Hisamoto, M. Tokeshi, T. Kitamori, Pile-up glass microreactor. Lab Chip 2, 193–196 (2002)

    Article  Google Scholar 

  • S. Kim, E. Choi, Y.I. Cho, The effect of header shapes on the flow distribution in a manifold for electronic packaging applications. Int. Commun. Heat Mass Transfer 22, 329–341 (1995)

    Article  Google Scholar 

  • S. Kumar, P.K. Singh, Effects of flow inlet angle on flow maldistribution and thermal performance of water cooled mini-channel heat sink. Int. J. Therm. Sci. 138, 504–511 (2019)

    Article  Google Scholar 

  • T.L. LaPorte, M. Hamedi, J.S. DePue, L. Shen, D. Watson, D. Hsieh, Development and scale-up of three consecutive continuous reactions for production of 6-hydroxybuspirone. Org. Process Res. Dev. 12, 956–966 (2008)

    Article  Google Scholar 

  • W. Li, J. Greener, D. Voicu, E. Kumacheva. Modular Multiple Microfluidic (M3) reactors for the synthesis of polymer particles. in The 2009 Spring National Meeting (2009)

    Google Scholar 

  • H. Liu, P. Li, Even distribution/dividing of single-phase fluids by symmetric bifurcation of flow channels. Int. J. Heat Fluid Flow 40, 165–179 (2013)

    Article  Google Scholar 

  • H. Liu, P. Li, J. Van Lew, CFD study on flow distribution uniformity in fuel distributors having multiple structural bifurcations of flow channels. Int. J. Hydrog. Energy 35, 9186–9198 (2010)

    Article  Google Scholar 

  • H. Liu, P. Li, K. Wang, The flow downstream of a bifurcation of a flow channel for uniform flow distribution via cascade flow channel bifurcations. Appl. Therm. Eng. 81, 114–127 (2015)

    Article  Google Scholar 

  • K. Madane, A.A. Kulkarni, Pressure equalization approach for flow uniformity in microreactor with parallel channels. Chem. Eng. Sci. 176, 96–106 (2018)

    Article  Google Scholar 

  • M. Mendorf, H. Nachtrodt, A. Mescher, A. Ghaini, D.W. Agar, Design and control techniques for the numbering-up of capillary microreactors with uniform multiphase flow distribution. Ind. Eng. Chem. Res. 49, 10908–10916 (2010)

    Article  Google Scholar 

  • P. Moschou, M.H. de Croon, J. van der Schaaf, J.C. Schouten, Advances in continuous crystallization: Toward microfluidic systems. Rev. Chem. Eng. 30, 127–138 (2014)

    Article  Google Scholar 

  • A. Nagaki, K. Hirose, O. Tonomura, S. Taniguchi, T. Taga, S. Hasebe, N. Ishizuka, J.-I. Yoshida, Design of a numbering-up system of monolithic microreactors and its application to synthesis of a key intermediate of valsartan. Org. Process Res. Dev. 20, 687–691 (2016)

    Article  Google Scholar 

  • A.M. Nightingale, J.H. Bannock, S.H. Krishnadasan, F.T. O'Mahony, S.A. Haque, J. Sloan, C. Drury, R. McIntyre, J.C. deMello, Large-scale synthesis of nanocrystals in a multichannel droplet reactor. J. Mater. Chem. A 1, 4067–4076 (2013)

    Article  Google Scholar 

  • E.G. Ortega, D. Tsaoulidis, P. Angeli, Predictive model for the scale-out of small channel two-phase flow contactors. Chem. Eng. J. 351, 589–602 (2018)

    Article  Google Scholar 

  • M. Pan, Y. Tang, H. Yu, H. Chen, Modeling of velocity distribution among microchannels with triangle manifolds. AICHE J. 55, 1969–1982 (2009)

    Article  Google Scholar 

  • E.L. Paul, Design of reaction systems for specialty organic chemicals. Chem. Eng. Sci. 43, 1773–1782 (1988)

    Article  Google Scholar 

  • C. Pistoresi, Y. Fan, L. Luo, Numerical study on the improvement of flow distribution uniformity among parallel mini-channels. Chem. Eng. Process. Process Intensif. 95, 63–71 (2015)

    Article  Google Scholar 

  • R. Porta, M. Benaglia, A. Puglisi, Flow chemistry: Recent developments in the synthesis of pharmaceutical products. Org. Process Res. Dev. 20, 2–25 (2016)

    Article  Google Scholar 

  • D.M. Roberge, M. Gottsponer, M. Eyholzer, N. Kockmann, Industrial design, scale-up, and use of microreactors. Chim. Oggi 27, 8–11 (2009)

    Google Scholar 

  • L.A. Rocha, S. Lorente, A. Bejan, Conduction tree networks with loops for cooling a heat generating volume. Int. J. Heat Mass Transf. 49, 2626–2635 (2006)

    Article  MATH  Google Scholar 

  • R. Schenk, V. Hessel, C. Hofmann, H. Löwe, F. Schönfeld, Novel liquid-flow splitting unit specifically made for numbering-up of liquid/liquid chemical microprocessing. Chem. Eng. Technol.: Ind. Chem.-Plant Equip.-Process Eng.-Biotechnol. 26, 1271–1280 (2003)

    Article  Google Scholar 

  • N. Steinfeldt, N. Dropka, D. Wolf, M. Baerns, Application of multichannel microreactors for studying heterogeneous catalysed gas phase reactions. Chem. Eng. Res. Des. 81, 735–743 (2003)

    Article  Google Scholar 

  • Y. Su, A. Lautenschleger, G. Chen, E.Y. Kenig, A numerical study on liquid mixing in multichannel micromixers. Ind. Eng. Chem. Res. 53, 390–401 (2014)

    Article  Google Scholar 

  • Y. Su, K. Kuijpers, V. Hessel, T. Noel, A convenient numbering-up strategy for the scale-up of gas–liquid photoredox catalysis in flow. Reaction Chem. Eng. 1, 73–81 (2016)

    Article  Google Scholar 

  • P.L. Suryawanshi, S.P. Gumfekar, B.A. Bhanvase, S.H. Sonawane, M.S. Pimplapure, A review on microreactors: Reactor fabrication, design, and cutting-edge applications. Chem. Eng. Sci. 189, 431–448 (2018)

    Article  Google Scholar 

  • S. Togashi, T. Miyamoto, T. Sano, M. Suzuki, Microreactor system using the concept of numbering-up. in New Trends in Fluid Mechanics Research (Springer, 2007), pp. 678–681

    Google Scholar 

  • D. Tondeur, Y. Fan, L. Luo, Constructal optimization of arborescent structures with flow singularities. Chem. Eng. Sci. 64, 3968–3982 (2009)

    Article  Google Scholar 

  • D. Tondeur, Y. Fan, J.-M. Commenge, L. Luo, Uniform flows in rectangular lattice networks. Chem. Eng. Sci. 66, 5301–5312 (2011)

    Article  Google Scholar 

  • A. Ufer, M. Mendorf, A. Ghaini, D.W. Agar, Liquid/liquid slug flow capillary microreactor. Chem. Eng. Technol. 34, 353–360 (2011)

    Article  Google Scholar 

  • Y. Voloshin, R. Halder, A. Lawal, Kinetics of hydrogen peroxide synthesis by direct combination of H2 and O2 in a microreactor. Catal. Today 125, 40–47 (2007)

    Article  Google Scholar 

  • Y. Wada, M.A. Schmidt, K.F. Jensen, Flow distribution and ozonolysis in gas− liquid multichannel microreactors. Ind. Eng. Chem. Res. 45, 8036–8042 (2006)

    Article  Google Scholar 

  • J. Wang, Theory and practice of flow field designs for fuel cell scaling-up: A critical review. Appl. Energy 157, 640–663 (2015)

    Article  Google Scholar 

  • M. Wei, G. Boutin, Y. Fan, L. Luo, Numerical and experimental investigation on the realization of target flow distribution among parallel mini-channels. Chem. Eng. Res. Des. 113, 74–84 (2016)

    Article  Google Scholar 

  • Z. Yan, J. Tian, K. Wang, K.D. Nigam, G. Luo, Microreaction processes for synthesis and utilization of epoxides: A review. Chem. Eng. Sci. 229, 116071 (2021)

    Article  Google Scholar 

  • J. Yue, R. Boichot, L. Luo, Y. Gonthier, G. Chen, Q. Yuan, Flow distribution and mass transfer in a parallel microchannel contactor integrated with constructal distributors. AICHE J. 56, 298–317 (2010)

    Google Scholar 

  • L. Zhang, D. Peng, W. Lyu, F. Xin, Uniformity of gas and liquid two phases flowing through two microchannels in parallel. Chem. Eng. J. 263, 452–460 (2015)

    Article  Google Scholar 

  • J. Zhang, K. Wang, A.R. Teixeira, K.F. Jensen, G. Luo, Design and scaling up of microchemical systems: a review. Annu. Rev. Chem. Biomol. Eng. 8, 285–305 (2017)

    Article  Google Scholar 

  • P. Zhou, D. Tarlet, M. Wei, Y. Fan, L. Luo, Novel multi-scale parallel mini-channel contactor for monodisperse water-in-oil emulsification. Chem. Eng. Res. Des. 121, 233–244 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amol A. Kulkarni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sharma, M.K., Khan, M.S., Kulkarni, A.A. (2023). Flow Distribution of Multiphase Flow in Parallel Channels. In: Yeoh, G.H., Joshi, J.B. (eds) Handbook of Multiphase Flow Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-287-092-6_31

Download citation

Publish with us

Policies and ethics