Skip to main content
Log in

A perspective on the past, the present, and the future of computational fluid dynamics (CFD) in flow chemistry

  • Perspectives
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

Flow chemistry is the future of chemical processing. It represents a significant advance in energy consumption and waste generation regarding operations in batch and continuous flow macroscopic equipment since the transport rate (of mass, heat, photons, electrons, etc.) is tremendously intensified. In parallel, computational fluid dynamics (CFD) is part of engineering’s future. Digitalization of transport processes (involving fluid flow and scalar transport, e.g., species, energy, etc.) is the state-of-the-art for designing, optimizing, and scaling chemical reactors, separation and purification units, heat exchangers, etc. This perspective initially presents relevant fundamental CFD concepts applicable to any field. In the sequence, an overview of applications of CFD in flow chemistry reported in the literature over the last two decades is presented, highlighting the evolution of complexity and variety of topics investigated (ranging from single-phase flow optimization to multiphysics cases involving coupling of multiphase flow and external forces—e.g., ultrasound and electric field). Next, the contributions of our research group in CFD in flow chemistry are presented—with a focus on photocatalytic and electrocatalytic systems—and accompanied by highlights about our personal experience. Further discussion about strengths, limitations, and opportunities for CFD in flow chemistry is presented, highlighting to the reader the gaps that should be in the spotlight over the next few years, followed by our final remarks. After reading this perspective, the reader (either a starter in this field or an expert) will be able to identify how CFD has evolved in flow chemistry over the years and what are the next directions from the authors’ point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The authors will provide data upon request.

References

  1. Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics: the finite volume method. 2nd ed. Prentice-Hall, Harlow p 503

  2. Tu J, Yeoh GH, Liu C (2008) Computational fluid dynamics: a practical approach, 1st ed. Butterworth-Heinemann p 480

  3. Matiazzo T, Ramaswamy K, Vilar VJP, Padoin N, Soares C (2022) Radiation field modeling of the NETmix milli-photocatalytic reactor: Effect of LEDs position over the reactor window. Chem Eng J 429:131670. https://doi.org/10.1016/J.CEJ.2021.131670

    Article  CAS  Google Scholar 

  4. Matiazzo T, Vilar VJP, Riella HG, Padoin N, Soares C (2022) CFD and radiation field modeling of the NETmix milli-photocatalytic reactor for n-decane oxidation at gas phase: Effect of LEDs number and arrangement. Chem Eng J 444:136577. https://doi.org/10.1016/J.CEJ.2022.136577

    Article  CAS  Google Scholar 

  5. Rossbach V, Padoin N, Meier HF, Soares C (2020) Influence of acoustic waves on the solids dispersion in a gas-solid CFB riser: Numerical analysis. Powder Technol 359:292–304. https://doi.org/10.1016/J.POWTEC.2019.09.075

    Article  CAS  Google Scholar 

  6. Rossbach V, Padoin N, Meier HF, Soares C (2021) Influence of ultrasonic waves on the gas-solid flow and the solids dispersion in a CFB riser: Numerical and experimental study. Powder Technol 389:430–449. https://doi.org/10.1016/J.POWTEC.2021.05.051

    Article  CAS  Google Scholar 

  7. Becker SL, Rossbach V, Meier HF, Padoin N, Soares C (2023) A CFD study on ultrasound-enhanced CFB riser with calcium oxide and activated coal for CO2 capture application. Results in Engineering 20:101583. https://doi.org/10.1016/J.RINENG.2023.101583

    Article  CAS  Google Scholar 

  8. Cao Y, Padoin N, Soares C, Noël T (2022) On the performance of liquid-liquid Taylor flow electrochemistry in a microreactor – A CFD study. Chem Eng J 427:131443. https://doi.org/10.1016/J.CEJ.2021.131443

    Article  CAS  Google Scholar 

  9. Cao Y, Soares C, Padoin N, Noël T (2021) Gas bubbles have controversial effects on Taylor flow electrochemistry. Chem Eng J 406:126811. https://doi.org/10.1016/J.CEJ.2020.126811

    Article  CAS  Google Scholar 

  10. Ghaffari A, Hashemabadi SH, Bazmi M (2015) CFD simulation of equilibrium shape and coalescence of ferrofluid droplets subjected to uniform magnetic field. Colloids Surf A Physicochem Eng Asp 481:186–198. https://doi.org/10.1016/J.COLSURFA.2015.04.038

    Article  CAS  Google Scholar 

  11. Ghorbani B, Ebrahimi S, Vijayaraghavan K (2018) CFD modeling and sensitivity analysis of heat transfer enhancement of a ferrofluid flow in the presence of a magnetic field. Int J Heat Mass Transf 127:544–552. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2018.06.050

    Article  CAS  Google Scholar 

  12. Deen NG, van Sint Annaland M, Kuipers JAM (2004) Multi-scale modeling of dispersed gas–liquid two-phase flow. Chem Eng Sci 59(8–9):1853–1861. https://doi.org/10.1016/J.CES.2004.01.038

    Article  CAS  Google Scholar 

  13. van der Hoef MA, van Sint Annaland M, Kuipers JAM (2005) Computational fluid dynamics for dense gas-solid fluidized beds: a multi-scale modeling strategy. China Particuol 3(1–2):69–77. https://doi.org/10.1016/S1672-2515(07)60169-9

    Article  Google Scholar 

  14. Chandra V, Vogels D, Peters EAJF, Kuipers JAM (2021) A multi-scale model for the Fischer-Tropsch synthesis in a wall-cooled packed bed reactor. Chem Eng J 410:128245. https://doi.org/10.1016/J.CEJ.2020.128245

    Article  CAS  Google Scholar 

  15. Das S, Deen NG, Kuipers JAM (2018) Multiscale modeling of fixed-bed reactors with porous (open-cell foam) non-spherical particles: Hydrodynamics. Chem Eng J 334:741–759. https://doi.org/10.1016/J.CEJ.2017.10.047

    Article  CAS  Google Scholar 

  16. Sengar A, Kuipers JAM, van Santen RA, Padding JT (2019) Towards a particle based approach for multiscale modeling of heterogeneous catalytic reactors. Chem Eng Sci 198:184–197. https://doi.org/10.1016/J.CES.2018.10.038

    Article  CAS  Google Scholar 

  17. Lyczkowski RW (2010) The history of multiphase computational fluid dynamics. Ind Eng Chem Res 49(11):5029–5036. https://doi.org/10.1021/IE901439Y/ASSET/IMAGES/LARGE/IE-2009-01439Y_0001.JPEG

    Article  CAS  Google Scholar 

  18. Epelle EI, Gerogiorgis DI (2017) A multiparametric CFD analysis of multiphase annular flows for oil and gas drilling applications. Comput Chem Eng 106:645–661. https://doi.org/10.1016/J.COMPCHEMENG.2017.08.011

    Article  CAS  Google Scholar 

  19. Marocco L, Inzoli F (2009) Multiphase Euler-Lagrange CFD simulation applied to Wet Flue Gas Desulphurisation technology. Int J Multiph Flow 35(2):185–194. https://doi.org/10.1016/J.IJMULTIPHASEFLOW.2008.09.005

    Article  CAS  Google Scholar 

  20. Cleary PW, Hilton JE, Sinnott MD (2017) Modelling of industrial particle and multiphase flows. Powder Technol 314:232–252. https://doi.org/10.1016/J.POWTEC.2016.10.072

    Article  CAS  Google Scholar 

  21. Kim M, Park S, Lee D, Lim S, Park M, Lee JM (2020) Modeling long-time behaviors of industrial multiphase reactors for CO2 capture using CFD-based compartmental model. Chem Eng J 395:125034. https://doi.org/10.1016/J.CEJ.2020.125034

    Article  CAS  Google Scholar 

  22. Mirzaei M et al (2023) CFD simulation and experimental validation of multiphase flow in industrial cyclone preheaters. Chem Eng J 465:142757. https://doi.org/10.1016/J.CEJ.2023.142757

    Article  CAS  Google Scholar 

  23. Mouketou FN, Kolesnikov A (2019) Modelling and simulation of multiphase flow applicable to processes in oil and gas industry. Chem Prod Process Model 14(1):1–16. https://doi.org/10.1515/CPPM-2017-0066/MACHINEREADABLECITATION/RIS

  24. Hissanaga AM, Padoin N, Paladino EE (2020) Mass transfer modeling and simulation of a transient homogeneous bubbly flow in a bubble column. Chem Eng Sci 218:115531. https://doi.org/10.1016/J.CES.2020.115531

    Article  CAS  Google Scholar 

  25. Raman A, Porto CCDS, Gardeniers H, Soares C, Fernández Rivas D, Padoin N (2023) Investigating mass transfer around spatially-decoupled electrolytic bubbles. Chem Eng J 477:147012. https://doi.org/10.1016/J.CEJ.2023.147012

    Article  CAS  Google Scholar 

  26. Ishii M, Hibiki T (2011) Thermo-fluid dynamics of two-phase flow, 2nd ed. Springer New York, New York, NY, p 518

  27. Feng J, Bolotnov IA (2017) Evaluation of bubble-induced turbulence using direct numerical simulation. Int J Multiph Flow 93:92–107. https://doi.org/10.1016/J.IJMULTIPHASEFLOW.2017.04.003

    Article  CAS  Google Scholar 

  28. Joshi JB et al (2017) Bubble generated turbulence and direct numerical simulations. Chem Eng Sci 157:26–75. https://doi.org/10.1016/J.CES.2016.03.041

    Article  CAS  Google Scholar 

  29. Khajeh-Saeed A, Blair Perot J (2013) Direct numerical simulation of turbulence using GPU accelerated supercomputers. J Comput Phys 235:241–257. https://doi.org/10.1016/J.JCP.2012.10.050

    Article  Google Scholar 

  30. Introini C et al (2023) A complete CFD study on natural convection in the TRIGA Mark II reactor. Nucl Eng Des 403:112118. https://doi.org/10.1016/J.NUCENGDES.2022.112118

    Article  CAS  Google Scholar 

  31. De Santis A, Ingham DB, Ma L, Pourkashanian M (2016) CFD analysis of exhaust gas recirculation in a micro gas turbine combustor for CO2 capture. Fuel 173:146–154. https://doi.org/10.1016/J.FUEL.2016.01.063

    Article  Google Scholar 

  32. Gadhewal R, Vinod Ananthula V, Suresh Patnaikuni V (2023) CFD simulation of hot spot in PEM fuel cell with diverging and converging flow channels. Mater Today Proc 72:410–416. https://doi.org/10.1016/J.MATPR.2022.08.190

    Article  CAS  Google Scholar 

  33. Elattar HF, Specht E, Fouda A, Bin-Mahfouz AS (2016) Study of Parameters Influencing Fluid Flow and Wall Hot Spots in Rotary Kilns using CFD. Can J Chem Eng 94(2):355–367. https://doi.org/10.1002/CJCE.22392

    Article  CAS  Google Scholar 

  34. Aligolzadeh H, Jebreili Jolodar A, Mohammadikhah R (2015) CFD analysis of hot spot formation through a fixed bed reactor of Fischer-Tropsch synthesis. Cogent Eng 2(1):1006016. https://doi.org/10.1080/23311916.2015.1006016

  35. McBride D, Ilankoon IMSK, Neethling SJ, Gebhardt JE, Cross M (2017) Preferential flow behaviour in unsaturated packed beds and heaps: Incorporating into a CFD model. Hydrometallurgy 171:402–411. https://doi.org/10.1016/J.HYDROMET.2017.06.008

    Article  CAS  Google Scholar 

  36. Padoin N, Soares C (2017) An explicit correlation for optimal TiO2 film thickness in immobilized photocatalytic reaction systems. Chem Eng J 310:381–388. https://doi.org/10.1016/J.CEJ.2016.06.013

    Article  CAS  Google Scholar 

  37. Gopal Manoharan K, Buwa VV (2019) Structure-Resolved CFD Simulations of Different Catalytic Structures in a Packed Bed. Ind Eng Chem Res 58(49):22363–22375. https://doi.org/10.1021/ACS.IECR.9B03537/SUPPL_FILE/IE9B03537_SI_001.PDF

    Article  CAS  Google Scholar 

  38. Lira JODB, Riella HG, Padoin N, Soares C (2022) Fluid dynamics and mass transfer in curved reactors: A CFD study on Dean flow effects. J Environ Chem Eng 10(5):108304. https://doi.org/10.1016/J.JECE.2022.108304

    Article  CAS  Google Scholar 

  39. Matiazzo T, Vilar VJP, Padoin N, Soares C (2024) CFD and radiation field modeling of the NETmix milli-photocatalytic reactor: Evaluation of illumination systems composed of LEDs with distinct view angles. Chem Eng Sci 285:119576. https://doi.org/10.1016/J.CES.2023.119576

    Article  CAS  Google Scholar 

  40. Steinfeldt N, Dropka N, Wolf D, Baerns M (2003) Application of Multichannel Microreactors for Studying Heterogeneous Catalysed Gas Phase Reactions. Chem Eng Res Des 81(7):735–743. https://doi.org/10.1205/026387603322302904

    Article  CAS  Google Scholar 

  41. Rebrov EV, Duinkerke SA, de Croon MHJM, Schouten JC (2003) Optimization of heat transfer characteristics, flow distribution, and reaction processing for a microstructured reactor/heat-exchanger for optimal performance in platinum catalyzed ammonia oxidation. Chem Eng J 93(3):201–216. https://doi.org/10.1016/S1385-8947(02)00338-8

    Article  CAS  Google Scholar 

  42. Harries N, Burns JR, Barrow DA, Ramshaw C (2003) A numerical model for segmented flow in a microreactor. Int J Heat Mass Transf 46(17):3313–3322. https://doi.org/10.1016/S0017-9310(03)00120-0

    Article  CAS  Google Scholar 

  43. Choe J, Kwon Y, Kim Y, Song HS, Song KH (2003) Micromixer as a continuous flow reactor for the synthesis of a pharmaceutical intermediate. Korean J Chem Eng 20(2):268–272. https://doi.org/10.1007/BF02697239/METRICS

    Article  CAS  Google Scholar 

  44. Delsman ER, Pierik A, De Croon MHJM, Kramer GJ, Schouten JC (2004) Microchannel Plate Geometry Optimization for Even Flow Distribution at High Flow Rates. Chem Eng Res Des 82(2):267–273. https://doi.org/10.1205/026387604772992864

    Article  CAS  Google Scholar 

  45. O-Charoen S, Srivannavit O, Gulari E (2007) Simulation and Visualization of Flow Pattern in Microarrays for Liquid Phase Oligonucleotide and Peptide Synthesis. Biotechnol Prog 23(3):755–761. https://doi.org/10.1021/BP060363O

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rebrov EV, Ismagilov IZ, Ekatpure RP, De Croon MHJM, Schouten JC (2007) Header design for flow equalization in microstructured reactors. AIChE J 53(1):28–38. https://doi.org/10.1002/AIC.11043

    Article  CAS  Google Scholar 

  47. Aoki N, Hasebe S, Mae K (2004) Mixing in microreactors: effectiveness of lamination segments as a form of feed on product distribution for multiple reactions. Chem Eng J 101(1–3):323–331. https://doi.org/10.1016/J.CEJ.2003.10.015

    Article  CAS  Google Scholar 

  48. Tonomura O, Takase T, Kano M, Hasebe S (2006) Systematic procedure for designing a microreactor with slit-type mixing structure. Comput Aided Chem Eng 21(C):823–828. https://doi.org/10.1016/S1570-7946(06)80147-1

    Article  Google Scholar 

  49. Sichler P, Büttgenbach S, Baars-Hibbe L, Schrader C, Gericke KH (2004) A micro plasma reactor for fluorinated waste gas treatment. Chem Eng J 101(1–3):465–468. https://doi.org/10.1016/J.CEJ.2004.01.008

    Article  CAS  Google Scholar 

  50. Serra C, Schlatter G, Sary N, Schönfeld F, Hadziioannou G (2007) Free radical polymerization in multilaminated microreactors: 2D and 3D multiphysics CFD modeling. Microfluid Nanofluidics 3(4):451–461. https://doi.org/10.1007/S10404-006-0130-7/FIGURES/10

    Article  CAS  Google Scholar 

  51. Fazeli A, Behnam M (2007) CFD modeling of methane autothermal reforming in a catalytic microreactor. Int J Chem React Eng 5(1):1–16. https://doi.org/10.2202/1542-6580.1596/MACHINEREADABLECITATION/RIS

  52. Mies MJM, Rebrov EV, de Croon MHJM, Schouten JC (2004) Design of a molybdenum high throughput microreactor for high temperature screening of catalytic coatings. Chem Eng J 101(1–3):225–235. https://doi.org/10.1016/J.CEJ.2003.11.024

    Article  CAS  Google Scholar 

  53. Chen RS, Mao CY, Chen YS (2007) ‘Improvement of temperature uniformity for polymerase chain reaction chip with heat spreader. Jpn J Appl Phys, Part 1: Regular Papers and Short Notes and Review Papers 46(11):7530–7535. https://doi.org/10.1143/JJAP.46.7530/XML

    Article  CAS  Google Scholar 

  54. Adeosun JT, Lawal A (2005) Mass transfer enhancement in microchannel reactors by reorientation of fluid interfaces and stretching. Sens Actuators B Chem 110(1):101–111. https://doi.org/10.1016/J.SNB.2005.01.016

    Article  CAS  Google Scholar 

  55. Keoschkerjan R, Richter M, Boskovic D, Schnürer F, Löbbecke S (2004) Novel multifunctional microreaction unit for chemical engineering. Chem Eng J 101(1–3):469–475. https://doi.org/10.1016/J.CEJ.2004.01.012

    Article  CAS  Google Scholar 

  56. Kashid MN et al (2005) Internal Circulation within the Liquid Slugs of a Liquid−Liquid Slug-Flow Capillary Microreactor. Ind Eng Chem Res 44(14):5003–5010. https://doi.org/10.1021/IE0490536

    Article  CAS  Google Scholar 

  57. Kashid MN, Platte F, Agar DW, Turek S (2007) Computational modelling of slug flow in a capillary microreactor. J Comput Appl Math 203(2):487–497. https://doi.org/10.1016/J.CAM.2006.04.010

    Article  Google Scholar 

  58. Kashid MN, Agar DW, Turek S (2007) CFD modelling of mass transfer with and without chemical reaction in the liquid–liquid slug flow microreactor. Chem Eng Sci 62(18–20):5102–5109. https://doi.org/10.1016/J.CES.2007.01.068

    Article  CAS  Google Scholar 

  59. Abdallah R, Magnico P, Fumey B, de Bellefon C (2006) CFD and kinetic methods for mass transfer determination in a mesh microreactor. AIChE J 52(6):2230–2237. https://doi.org/10.1002/AIC.10822

    Article  CAS  Google Scholar 

  60. Cordiner S, Mariani A, Mulone V (2010) CFD-based design of microtubular solid oxide fuel cells. J Heat Transfer 132(6):1–15. https://doi.org/10.1115/1.4000709/475494

    Article  Google Scholar 

  61. Zamaniyan A, Behroozsarand A, Mehdizadeh H, Ghadirian HA (2010) Modeling of microreactor for syngas production by catalytic partial oxidation of methane. J Nat Gas Chem 19(6):660–668. https://doi.org/10.1016/S1003-9953(09)60135-3

    Article  CAS  Google Scholar 

  62. Mettler MS, Stefanidis GD, Vlachos DG (2010) Scale-out of microreactor stacks for portable and distributed processing: Coupling of exothermic and endothermic processes for syngas production. Ind Eng Chem Res 49(21):10942–10955. https://doi.org/10.1021/IE100459B/SUPPL_FILE/IE100459B_SI_001.PDF

    Article  CAS  Google Scholar 

  63. Mettler MS, Stefanidis GD, Vlachos DG (2011) Enhancing stability in parallel plate microreactor stacks for syngas production. Chem Eng Sci 66(6):1051–1059. https://doi.org/10.1016/J.CES.2010.12.004

    Article  CAS  Google Scholar 

  64. Patil RA, Patnaik A, Ganguly S, Patwardhan AV (2011) Effect of structural, thermal and flow parameters on steam reforming of methane in a catalytic microreactor. Chem Eng Res Des 89(10):2159–2167. https://doi.org/10.1016/J.CHERD.2011.01.009

    Article  CAS  Google Scholar 

  65. Akbari MH, Ardakani AHS, Tadbir MA (2011) A microreactor modeling, analysis and optimization for methane autothermal reforming in fuel cell applications. Chem Eng J 166(3):1116–1125. https://doi.org/10.1016/J.CEJ.2010.12.044

    Article  CAS  Google Scholar 

  66. Uriz I, Arzamendi G, López E, Llorca J, Gandía LM (2011) Computational fluid dynamics simulation of ethanol steam reforming in catalytic wall microchannels. Chem Eng J 167(2–3):603–609. https://doi.org/10.1016/J.CEJ.2010.07.070

    Article  CAS  Google Scholar 

  67. Andisheh Tadbir M, Akbari MH (2012) Integrated methanol reforming and oxidation in wash-coated microreactors: A three-dimensional simulation. Int J Hydrogen Energy 37(3):2287–2297. https://doi.org/10.1016/J.IJHYDENE.2011.11.015

    Article  CAS  Google Scholar 

  68. Arzamendi G, Diéguez PM, Montes M, Odriozola JA, Sousa-Aguiar EF, Gandía LM (2010) Computational fluid dynamics study of heat transfer in a microchannel reactor for low-temperature Fischer-Tropsch synthesis. Chem Eng J 160(3):915–922. https://doi.org/10.1016/J.CEJ.2009.12.028

    Article  CAS  Google Scholar 

  69. Hernández Carucci JR, Eränen K, Murzin DY, Salmi TO (2009) Experimental and modelling aspects in microstructured reactors applied to environmental catalysis. Catal Today 147(1SUPPL):149–155. https://doi.org/10.1016/J.CATTOD.2009.07.034

    Article  Google Scholar 

  70. Corbel S, Charles G, Becheikh N, Roques-Carmes T, Zahraa O (2012) Modelling and design of microchannel reactor for photocatalysis. Virtual Phys Prototyp 7(3):203–209. https://doi.org/10.1080/17452759.2012.708837

    Article  Google Scholar 

  71. Malecha K, Pijanowska DG, Golonka LJ, Torbicz W (2009) LTCC microreactor for urea determination in biological fluids. Sens Actuators B Chem 141(1):301–308. https://doi.org/10.1016/J.SNB.2009.06.026

    Article  CAS  Google Scholar 

  72. Li X et al (2009) Application of direct fluid flow oscillations to improve mixing in microbioreactors. AIChE J 55(10):2725–2736. https://doi.org/10.1002/AIC.11880

    Article  CAS  Google Scholar 

  73. Edlich A et al (2010) Microfluidic reactor for continuous cultivation of Saccharomyces cerevisiae. Biotechnol Prog 26(5):1259–1270. https://doi.org/10.1002/BTPR.449

    Article  CAS  PubMed  Google Scholar 

  74. Mandal MM, Serra C, Hoarau Y, Nigam KDP (2011) Numerical modeling of polystyrene synthesis in coiled flow inverter. Microfluid Nanofluidics 10(2):415–423. https://doi.org/10.1007/S10404-010-0679-Z/FIGURES/13

    Article  CAS  Google Scholar 

  75. Capretto L, Carugo D, Cheng W, Hill M, Zhang X (2011) Continuous-flow production of polymeric micelles in microreactors: Experimental and computational analysis. J Colloid Interface Sci 357(1):243–251. https://doi.org/10.1016/J.JCIS.2011.01.085

    Article  CAS  PubMed  Google Scholar 

  76. An H, Li A, Sasmito AP, Kurnia JC, Jangam SV, Mujumdar AS (2012) Computational fluid dynamics (CFD) analysis of micro-reactor performance: Effect of various configurations. Chem Eng Sci 75:85–95. https://doi.org/10.1016/J.CES.2012.03.004

    Article  CAS  Google Scholar 

  77. Arzamendi G et al (2012) A CFD study on the effect of the characteristic dimension of catalytic wall microreactors. AIChE J 58(9):2785–2797. https://doi.org/10.1002/AIC.12790

    Article  CAS  Google Scholar 

  78. Aubin J, Prat L, Xuereb C, Gourdon C (2009) Effect of microchannel aspect ratio on residence time distributions and the axial dispersion coefficient. Chem Eng Process 48(1):554–559. https://doi.org/10.1016/J.CEP.2008.08.004

    Article  CAS  Google Scholar 

  79. Yu L, Nassar R, Fang J, Kuila D, Varahramyan K (2008) INVESTIGATION OF A NOVEL MICROREACTOR FOR ENHANCING MIXING AND CONVERSION. Chem Eng Commun 195(7):745–757. https://doi.org/10.1080/00986440701690980

    Article  CAS  Google Scholar 

  80. Li X et al (2008) Improving mixing in microbioreactors. Chem Eng Sci 63(11):3036–3046. https://doi.org/10.1016/J.CES.2008.02.036

    Article  CAS  Google Scholar 

  81. Liu Y, Olsen MG, Fox RO (2009) Turbulence in a microscale planar confined impinging-jets reactor. Lab Chip 9(8):1110–1118. https://doi.org/10.1039/B818617K

    Article  CAS  PubMed  Google Scholar 

  82. Kashid MN, Renken A, Kiwi-Minsker L (2010) CFD modelling of liquid–liquid multiphase microstructured reactor: Slug flow generation. Chem Eng Res Des 88(3):362–368. https://doi.org/10.1016/J.CHERD.2009.11.017

    Article  CAS  Google Scholar 

  83. Ghaini A, Mescher A, Agar DW (2011) Hydrodynamic studies of liquid–liquid slug flows in circular microchannels. Chem Eng Sci 66(6):1168–1178. https://doi.org/10.1016/J.CES.2010.12.033

    Article  CAS  Google Scholar 

  84. Kashid MN, Rivas DF, Agar DW, Turek S (2008) On the hydrodynamics of liquid–liquid slug flow capillary microreactors. Asia-Pac J Chem Eng 3(2):151–160. https://doi.org/10.1002/APJ.127

    Article  CAS  Google Scholar 

  85. Ho CD, Chang H, Chen HJ, Chang CL, Li HH, Chang YY (2011) CFD simulation of the two-phase flow for a falling film microreactor. Int J Heat Mass Transf 54(15–16):3740–3748. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2011.03.015

    Article  CAS  Google Scholar 

  86. Al-Rawashdeh M, Hessel V, Löb P, Mevissen K, Schönfeld F (2008) Pseudo 3-D simulation of a falling film microreactor based on realistic channel and film profiles. Chem Eng Sci 63(21):5149–5159. https://doi.org/10.1016/J.CES.2008.07.004

    Article  CAS  Google Scholar 

  87. Mathieu-Potvin F, Gosselin L (2012) Threshold length for maximal reaction rate in catalytic microchannels. Chem Eng J 188:86–97. https://doi.org/10.1016/J.CEJ.2012.01.100

    Article  CAS  Google Scholar 

  88. Regatte VR, Kaisare NS (2011) Numerical Analysis of Fractal Catalyst Structuring in Microreactors. Ind Eng Chem Res 50(23):12925–12932. https://doi.org/10.1021/IE2003957

    Article  CAS  Google Scholar 

  89. Wibel W, Wenka A, Brandner JJ, Dittmeyer R (2013) Measuring and modeling the residence time distribution of gas flows in multichannel microreactors. Chem Eng J 215–216:449–460. https://doi.org/10.1016/J.CEJ.2012.10.011

    Article  Google Scholar 

  90. Moreau M, Di Miceli Raimondi N, Le Sauze N, Gourdon C, Cabassud M (2017) A new numerical method for axial dispersion characterization in microreactors. Chem Eng Sci 168:178–188. https://doi.org/10.1016/J.CES.2017.04.040

    Article  CAS  Google Scholar 

  91. Fukuda T, Sawada M, Maki T, Mae K (2013) Basic Design Concept of a Microreactor for Isothermal Operation Including Heat Conductivity. Chem Eng Technol 36(6):968–974. https://doi.org/10.1002/CEAT.201200634

    Article  CAS  Google Scholar 

  92. Van Daele T, Fernandes del Pozo D, Van Hauwermeiren D, Gernaey KV, Wohlgemuth R, Nopens I (2016) A generic model-based methodology for quantification of mass transfer limitations in microreactors. Chem Eng J 300:193–208. https://doi.org/10.1016/J.CEJ.2016.04.117

    Article  Google Scholar 

  93. Kositanont C, Tagawa T, Yamada H, Putivisutisak S, Assabumrungrat S (2013) Effect of surface modification on parallel flow in microchannel with guideline structure. Chem Eng J 215–216:404–410. https://doi.org/10.1016/J.CEJ.2012.10.047

    Article  Google Scholar 

  94. Abadie T, Xuereb C, Legendre D, Aubin J (2013) Mixing and recirculation characteristics of gas–liquid Taylor flow in microreactors. Chem Eng Res Des 91(11):2225–2234. https://doi.org/10.1016/J.CHERD.2013.03.003

    Article  CAS  Google Scholar 

  95. Yang L, Shi Y, Abolhasani M, Jensen KF (2015) Characterization and modeling of multiphase flow in structured microreactors: a post microreactor case study. Lab Chip 15(15):3232–3241. https://doi.org/10.1039/C5LC00431D

    Article  CAS  PubMed  Google Scholar 

  96. Yang L, Nieves-Remacha MJ, Jensen KF (2017) Simulations and analysis of multiphase transport and reaction in segmented flow microreactors. Chem Eng Sci 169:106–116. https://doi.org/10.1016/J.CES.2016.12.003

    Article  CAS  Google Scholar 

  97. Behroozsarand A, Pour AN (2014) Modeling of microreactor for methane dry reforming: Comparison of Langmuir-Hinshelwood kinetic and microkinetic models. J Nat Gas Sci Eng 20:99–108. https://doi.org/10.1016/J.JNGSE.2014.06.011

    Article  CAS  Google Scholar 

  98. Uriz I et al (2014) CFD analysis of the effects of the flow distribution and heat losses on the steam reforming of methanol in catalytic (Pd/ZnO) microreactors. Chem Eng J 238:37–44. https://doi.org/10.1016/J.CEJ.2013.05.097

    Article  CAS  Google Scholar 

  99. Butcher H, Wilhite BA (2016) Enhancing catalyst effectiveness by increasing catalyst film thickness in coated-wall microreactors: Exploiting heat effects in catalytic methane steam micro-reformers. Chem Eng Sci 143:47–54. https://doi.org/10.1016/J.CES.2015.12.024

    Article  CAS  Google Scholar 

  100. Heidarzadeh M, Taghizadeh M (2017) Methanol steam reforming in a spiral-shaped microchannel reactor over Cu/ZnO/Al2O3Catalyst: A Computational Fluid Dynamics Simulation Study. Int J Chem React Eng 15(4):20160205. https://doi.org/10.1515/IJCRE-2016-0205/MACHINEREADABLECITATION/RIS

  101. Chen J, Liu B (2016) CFD Modeling and Operation Strategies for Hetero-/Homogeneous Combustion of Methane-Air Mixtures in Catalytic Microreactors Using Detailed Chemical Kinetics. Chem Prod Process Model 11(4):291–304. https://doi.org/10.1515/CPPM-2015-0053/ASSET/GRAPHIC/CPPM-2015-0053_FIGURE14.JPG

    Article  CAS  Google Scholar 

  102. Chen J, Yan L, Song W, Xu D (2016) Operating strategies for thermally coupled combustion-decomposition catalytic microreactors for hydrogen production. Int J Hydrogen Energy 41(46):21532–21547. https://doi.org/10.1016/J.IJHYDENE.2016.10.025

    Article  CAS  Google Scholar 

  103. Schulze S et al (2013) Investigations on the anionic polymerization of butadiene in capillaries by kinetic measurements and reactor simulation. Green Process Synth 2(5):381–395. https://doi.org/10.1515/GPS-2013-0059/MACHINEREADABLECITATION/RIS

    Article  CAS  Google Scholar 

  104. Castedo A, Uriz I, Soler L, Gandía LM, Llorca J (2017) Kinetic analysis and CFD simulations of the photocatalytic production of hydrogen in silicone microreactors from water-ethanol mixtures. Appl Catal B 203:210–217. https://doi.org/10.1016/J.APCATB.2016.10.022

    Article  CAS  Google Scholar 

  105. Bodla VK, Seerup R, Krühne U, Woodley JM, Gernaey KV (2013) Microreactors and CFD as Tools for Biocatalysis Reactor Design: A case study. Chem Eng Technol 36(6):1017–1026. https://doi.org/10.1002/CEAT.201200667

    Article  CAS  Google Scholar 

  106. Yi SJ, Park JM, Chang SC, Kim KC (2014) Design and validation of a uniform flow microreactor. J Mech Sci Technol 28(1):157–166. https://doi.org/10.1007/S12206-013-0954-5/METRICS

    Article  Google Scholar 

  107. Wang K, Lu Y, Luo G (2014) Strategy for Scaling-up of a Microsieve Dispersion Reactor. Chem Eng Technol 37(12):2116–2122. https://doi.org/10.1002/CEAT.201400296

    Article  CAS  Google Scholar 

  108. Burkle-Vitzthum V, Moulis F, Zhang J, Commenge JM, Schaer E, Marquaire PM (2015) Annular flow microreactor: An efficient tool for kinetic studies in gas phase at very short residence times. Chem Eng Res Des 94:611–623. https://doi.org/10.1016/J.CHERD.2014.10.003

    Article  CAS  Google Scholar 

  109. Asano S, Maki T, Mae K (2016) Evaluation of mixing profiles for a new micromixer design strategy. AIChE J 62(4):1154–1161. https://doi.org/10.1002/AIC.15082

    Article  CAS  Google Scholar 

  110. Liu H, Li J, Sun D, Odoom-Wubah T, Huang J, Li Q (2014) Modeling of silver nanoparticle formation in a microreactor: Reaction kinetics coupled with population balance model and fluid dynamics. Ind Eng Chem Res 53(11):4263–4270. https://doi.org/10.1021/IE4031314/ASSET/IMAGES/IE-2013-031314_M060.GIF

    Article  CAS  Google Scholar 

  111. Bal V, Bandyopadhyaya R (2019) Mechanistic aspects in the formation of nano- and submicron particles in a batch and a continuous microfluidic reactor: Experiment, modeling and simulation. Chem Eng J 371:43–54. https://doi.org/10.1016/J.CEJ.2019.03.194

    Article  CAS  Google Scholar 

  112. Rahimi M, Aghel B, Hatamifar B, Akbari M, Alsairafi AA (2014) CFD modeling of mixing intensification assisted with ultrasound wave in a T-type microreactor. Chem Eng Process 86:36–46. https://doi.org/10.1016/J.CEP.2014.10.006

    Article  CAS  Google Scholar 

  113. Ortega-Casanova J (2017) Application of CFD on the optimization by response surface methodology of a micromixing unit and its use as a chemical microreactor. Chem Eng Process: Process Intensif 117:18–26. https://doi.org/10.1016/J.CEP.2017.03.012

    Article  CAS  Google Scholar 

  114. Pálovics P, Ender F, Rencz M (2018) Geometric optimization of microreactor chambers to increase the homogeneity of the velocity field. J Micromech Microeng 28(6):064002. https://doi.org/10.1088/1361-6439/AAB1C3

    Article  Google Scholar 

  115. Santana HS, da Silva AGP, Lopes MGM, Rodrigues AC, Taranto OP, Lameu Silva J (2020) Computational methodology for the development of microdevices and microreactors with ANSYS CFX. MethodsX 7:100765. https://doi.org/10.1016/J.MEX.2019.12.006

    Article  CAS  Google Scholar 

  116. Madane K, Kulkarni AA (2018) Pressure equalization approach for flow uniformity in microreactor with parallel channels. Chem Eng Sci 176:96–106. https://doi.org/10.1016/J.CES.2017.10.021

    Article  CAS  Google Scholar 

  117. Lobasov AS, Minakov AV, Kuznetsov VV, Rudyak VY, Shebeleva AA (2018) Investigation of mixing efficiency and pressure drop in T-shaped micromixers. Chem Eng Process - Process Intensif 134:105–114. https://doi.org/10.1016/J.CEP.2018.10.012

    Article  CAS  Google Scholar 

  118. Zhang H et al (2020) Accessing multidimensional mixing via 3D printing and showerhead micromixer design. AIChE J 66(4):e16873. https://doi.org/10.1002/AIC.16873

    Article  CAS  Google Scholar 

  119. Zhang F, Marre S, Erriguible A (2020) Mixing intensification under turbulent conditions in a high pressure microreactor. Chem Eng J 382:122859. https://doi.org/10.1016/J.CEJ.2019.122859

    Article  CAS  Google Scholar 

  120. Galletti C, Mariotti A, Siconolfi L, Mauri R, Brunazzi E (2019) Numerical investigation of flow regimes in T-shaped micromixers: Benchmark between finite volume and spectral element methods. Can J Chem Eng 97(2):528–541. https://doi.org/10.1002/CJCE.23321

    Article  CAS  Google Scholar 

  121. Kunte A, Raghu AK, Kaisare NS (2018) A spiral microreactor for improved stability and performance for catalytic combustion of propane. Chem Eng Sci 187:87–97. https://doi.org/10.1016/J.CES.2018.04.069

    Article  CAS  Google Scholar 

  122. Yedala N, Raghu AK, Kaisare NS (2019) A 3D CFD study of homogeneous-catalytic combustion of hydrogen in a spiral microreactor. Combust Flame 206:441–450. https://doi.org/10.1016/J.COMBUSTFLAME.2019.05.022

    Article  CAS  Google Scholar 

  123. Hamzah AB, Fukuda T, Ookawara S, Yoshikawa S, Matsumoto H (2021) Process intensification of dry reforming of methane by structured catalytic wall-plate microreactor. Chem Eng J 412:128636. https://doi.org/10.1016/J.CEJ.2021.128636

    Article  CAS  Google Scholar 

  124. Garg DK, Serra CA, Hoarau Y, Parida D, Bouquey M, Muller R (2020) Numerical Investigations of Perfectly Mixed Condition at the Inlet of Free Radical Polymerization Tubular Microreactors of Different Geometries. Macromol Theory Simul 29(6):2000030. https://doi.org/10.1002/MATS.202000030

    Article  CAS  Google Scholar 

  125. Yusuf A et al (2020) Modelling of a recirculating photocatalytic microreactor implementing mesoporous N-TiO2 modified with graphene. Chem Eng J 391:123574. https://doi.org/10.1016/J.CEJ.2019.123574

    Article  CAS  Google Scholar 

  126. Yusuf A, Palmisano G (2021) Three-dimensional CFD modelling of a photocatalytic parallel-channel microreactor. Chem Eng Sci 229:116051. https://doi.org/10.1016/J.CES.2020.116051

    Article  CAS  Google Scholar 

  127. Peralta Muniz Moreira R, Li Puma G (2021) CFD modeling of pharmaceuticals and CECs removal by UV/H2O2 process in helical microcapillary photoreactors and evaluation of OH radical rate constants. Chem Eng J 415:128833. https://doi.org/10.1016/J.CEJ.2021.128833

    Article  CAS  Google Scholar 

  128. Pálovics P, Ender F, Rencz M (2018) Towards the CFD model of flow rate dependent enzyme-substrate reactions in nanoparticle filled flow microreactors. Microelectron Reliab 85:84–92. https://doi.org/10.1016/J.MICROREL.2018.03.035

    Article  Google Scholar 

  129. da Silva JCG, Alves JLF, Mumbach GD, Di Domenico M (2023) Photocatalytic degradation of ethylene in tubular microreactor coated with thin-film of TiO2: Mathematical modeling with experimental validation and geometry analysis using computational fluid dynamics simulations. Chem Eng Res Des 196:101–117. https://doi.org/10.1016/J.CHERD.2023.06.036

    Article  Google Scholar 

  130. Xu R et al (2023) Highly efficient approach to the synthesis of 2-Chloro-2-methylbutane in a continuous-flow microreactor. Can J Chem Eng 101(7):3813–3820. https://doi.org/10.1002/CJCE.24726

    Article  CAS  Google Scholar 

  131. Nakahara Y, Metten B, Tonomura O, Nagaki A, Hasebe S, Yoshida JI (2019) Modeling and Design of a Flow-Microreactor-Based Process for Synthesizing Ionic Liquids. Org Process Res Dev 23(4):641–647. https://doi.org/10.1021/ACS.OPRD.8B00436/ASSET/IMAGES/MEDIUM/OP-2018-00436H_M003.GIF

    Article  CAS  Google Scholar 

  132. Sen N, Singh KK, Mukhopadhyay S, Shenoy KT (2020) Continuous synthesis of tributyl phosphate in microreactor. Prog Nucl Energy 126:103402. https://doi.org/10.1016/J.PNUCENE.2020.103402

    Article  CAS  Google Scholar 

  133. de Sousa MRP, Santana HS, Taranto OP (2020) Modeling and simulation using OpenFOAM of biodiesel synthesis in structured microreactor. Int J Multiph Flow 132:103435. https://doi.org/10.1016/J.IJMULTIPHASEFLOW.2020.103435

    Article  Google Scholar 

  134. Chen L, Dong B, Guo Y, Yang X, Li G (2020) CFD modelling of the effects of local turbulence intensification on synthesis of LiFePO4 particles in an impinging jet reactor. Chem Eng Process - Process Intensif 155:108065. https://doi.org/10.1016/J.CEP.2020.108065

    Article  CAS  Google Scholar 

  135. Zhang J, Zhang S, Peng C, Chen Y, Tang Z, Wu Q (2020) Continuous synthesis of 2,5-hexanedione through direct C-C coupling of acetone in a Hilbert fractal photo microreactor. React Chem Eng 5(12):2250–2259. https://doi.org/10.1039/D0RE00247J

    Article  CAS  Google Scholar 

  136. Pereira HS, Santana HS, Silva JL (2021) Continuous synthesis of 4-(2-fluoro-4-nitrophenyl)morpholine in microreactors: Optimization of process conditions and scale-up to millidevices. Chem Eng Process - Process Intensif 161:108316. https://doi.org/10.1016/J.CEP.2021.108316

    Article  CAS  Google Scholar 

  137. Chen Q, Xia S, Wang Y, Luo G, Shang H, Wang K (2021) Continuous synthesis of 1-ethoxy-2,3-difluoro-4-iodo-benzene in a microreactor system and the Gaussian and computational fluid dynamics simulations. AIChE J 67(6):e17217. https://doi.org/10.1002/AIC.17217

    Article  CAS  Google Scholar 

  138. Wang Y et al (2022) Experimental and numerical study of the synthesis of isopropyl propionate in microreactor. Chem Eng Process - Process Intensif 170:108705. https://doi.org/10.1016/J.CEP.2021.108705

    Article  CAS  Google Scholar 

  139. Sen N et al (2023) Flow synthesis of poly(acrylamide-co-acrylic acid) microspheres in a microreactor: Experimental and CFD studies. J Dispers Sci Technol 1:1 https://doi.org/10.1080/01932691.2022.2156531

  140. JalalSahandi P, Kazemeini M, Sadjadi S (2021) Simulation of continuous catalytic conversion of glycerol into lactic acid in a microreactor system: A CFD study. J Ind Eng Chem 104:258–271. https://doi.org/10.1016/J.JIEC.2021.08.027

    Article  CAS  Google Scholar 

  141. Shi ZC, Wei SX, Xie TL, Liu Q, Au CT, Yin SF (2023) High-throughput synthesis of high-purity and ultra-small iron phosphate nanoparticles by controlled mixing in a chaotic microreactor. Chem Eng Sci 280:119084. https://doi.org/10.1016/J.CES.2023.119084

    Article  CAS  Google Scholar 

  142. Santana HS et al (2022) Design, optimization and scale-up of a new micromixer design based on plate column for organic synthesis. Chem Eng J 446:137159. https://doi.org/10.1016/J.CEJ.2022.137159

    Article  CAS  Google Scholar 

  143. Wang N, Jin Y, Huang T, Zhou J, Zhang Y, Li N (2022) Continuous production of 3,5,5-trimethylhexanoyl chloride and CFD simulations of single-phase flow in an advanced-flow reactor. J Taiwan Inst Chem Eng 138:104465. https://doi.org/10.1016/J.JTICE.2022.104465

    Article  CAS  Google Scholar 

  144. Chen Q, Xia S, Luo G, Wang Y (2022) Continuous-flow synthesis of the liquid crystal intermediate 1-(4-ethoxy-2,3-difluorobenzyl)-4-propylcyclohexan-1-ol in a microfluidic system: Experimental and numerical studies. Chem Eng Sci 254:117645. https://doi.org/10.1016/J.CES.2022.117645

    Article  CAS  Google Scholar 

  145. Asano S, Yatabe S, Maki T, Mae K (2019) Numerical and Experimental Quantification of the Performance of Microreactors for Scaling-up Fast Chemical Reactions. Org Process Res Dev 23(5):807–817. https://doi.org/10.1021/ACS.OPRD.8B00356/ASSET/IMAGES/LARGE/OP-2018-00356Y_0009.JPEG

    Article  CAS  Google Scholar 

  146. Sheng X, Zheng Y, Li W, Gao R, Du L, Wang Y (2020) Scale-up potential of photochemical microfluidic synthesis by selective dimension enlarging with agitation of microbubbles. Chem Eng Sci 226:115862. https://doi.org/10.1016/J.CES.2020.115862

    Article  CAS  Google Scholar 

  147. Xie Y et al (2021) Scaling up microreactors for kilogram-scale synthesis of piperacillin: Experiments and computational fluid dynamics simulations. AIChE J 67(6):e17231. https://doi.org/10.1002/AIC.17231

    Article  CAS  Google Scholar 

  148. García-López I, Águeda VI, Garrido-Escudero A (2023) Hydrodynamic behavior of a novel 3D-printed nature-inspired microreactor with a high length-to-surface ratio. Chemical Engineering Journal Advances 13:100438. https://doi.org/10.1016/J.CEJA.2022.100438

    Article  Google Scholar 

  149. Mohammad N, Chukwudoro C, Bepari S, Basha O, Aravamudhan S, Kuila D (2022) Scale-up of high-pressure F-T synthesis in 3D printed stainless steel microchannel microreactors: Experiments and modeling. Catal Today 397–399:182–196. https://doi.org/10.1016/J.CATTOD.2021.09.038

    Article  Google Scholar 

  150. Maity S, Chaudhuri J, Mitra S, Rarotra S, Bandyopadhyay D (2019) Electric field assisted multicomponent reaction in a microfluidic reactor for superior conversion and yield. Electrophoresis 40(3):401–409. https://doi.org/10.1002/ELPS.201800377

    Article  CAS  PubMed  Google Scholar 

  151. Xu F, Yang L, Liu Z, Chen G (2021) Numerical investigation on the hydrodynamics of Taylor flow in ultrasonically oscillating microreactors. Chem Eng Sci 235:116477. https://doi.org/10.1016/J.CES.2021.116477

    Article  CAS  Google Scholar 

  152. Dong B, Guo Y, Yang J, Yang X, Wang LL, Huang D (2023) Turbulence induced shear controllable synthesis of nano FePO4 irregularly-shaped particles in a counter impinging jet flow T-junction reactor assisted by ultrasound irradiation. Ultrason Sonochem 99:106590. https://doi.org/10.1016/J.ULTSONCH.2023.106590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Padoin N, Dal’Toé ATO, Rangel LP, Ropelato K, Soares C (2014) Heat and mass transfer modeling for multicomponent multiphase flow with CFD. Int J Heat Mass Transf 73:239–249. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2014.01.075

    Article  CAS  Google Scholar 

  154. Dal’Toé ATO, Padoin N, Ropelato K, Soares C (2015) Cross diffusion effects in the interfacial mass and heat transfer of multicomponent droplets. Int J Heat Mass Transf 85:830–840. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2015.01.131

    Article  Google Scholar 

  155. Padoin N, Andrade L, Ângelo J, Mendes A, Moreira RdeFPM, Soares C (2016) Intensification of photocatalytic pollutant abatement in microchannel reactor using TiO2 and TiO2-graphene. AIChE J 62(8):2794–2802. https://doi.org/10.1002/AIC.15262

    Article  CAS  Google Scholar 

  156. Lira JOB, Riella HG, Padoin N, Soares C (2022) Computational fluid dynamics (CFD), artificial neural network (ANN) and genetic algorithm (GA) as a hybrid method for the analysis and optimization of micro-photocatalytic reactors: NOx abatement as a case study. Chem Eng J 431:133771. https://doi.org/10.1016/J.CEJ.2021.133771

    Article  CAS  Google Scholar 

  157. Lira JOB, Riella HG, Padoin N, Soares C (2020) CFD + DoE optimization of a flat plate photocatalytic reactor applied to NOx abatement. Chem Eng Process - Process Intensif 154:107998. https://doi.org/10.1016/J.CEP.2020.107998

    Article  CAS  Google Scholar 

  158. Lira JdeOB, Padoin N, Vilar VJP, Soares C (2019) Photocatalytic NOx abatement: Mathematical modeling, CFD validation and reactor analysis. J Hazard Mater 372:145–153. https://doi.org/10.1016/J.JHAZMAT.2018.07.009

    Article  Google Scholar 

  159. de Oliveira GX et al (2020) CFD analysis of a luminescent solar concentrator-based photomicroreactor (LSC-PM) with feedforward control applied to the synthesis of chemicals under fluctuating light intensity. Chem Eng Res Des 153:626–634. https://doi.org/10.1016/J.CHERD.2019.10.047

    Article  Google Scholar 

  160. Padoin N, de Souza AZ, Ropelato K, Soares C (2016) Numerical simulation of isothermal gas−liquid flow patterns in microchannels with varying wettability. Chem Eng Res Des 109:698–706. https://doi.org/10.1016/J.CHERD.2016.03.027

    Article  CAS  Google Scholar 

  161. Gupta R, Fletcher DF, Haynes BS (2009) On the CFD modelling of Taylor flow in microchannels. Chem Eng Sci 64(12):2941–2950. https://doi.org/10.1016/J.CES.2009.03.018

    Article  CAS  Google Scholar 

  162. De Schepper SCK, Heynderickx GJ, Marin GB (2008) CFD modeling of all gas–liquid and vapor–liquid flow regimes predicted by the Baker chart. Chem Eng J 138(1–3):349–357. https://doi.org/10.1016/J.CEJ.2007.06.007

    Article  Google Scholar 

  163. Boache PJ (1994) Perspective: A Method for Uniform Reporting of Grid Refinement Studies. J Fluids Eng 116(3):405–413. https://doi.org/10.1115/1.2910291

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Council for Scientific and Technological Development (CNPq), Brazil (Processes 312247/2022-2 – N.P. and 313202/2021-4 – C.S.), and the Foundation for the Support of Research and Innovation of the State of Santa Catarina (FAPESC), Brazil (Process PJD2022421000100). 

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Natan Padoin or Cíntia Soares.

Ethics declarations

Competing of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padoin, N., Matiazzo, T., Riella, H.G. et al. A perspective on the past, the present, and the future of computational fluid dynamics (CFD) in flow chemistry. J Flow Chem 14, 239–256 (2024). https://doi.org/10.1007/s41981-024-00313-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-024-00313-4

Keywords

Navigation