Skip to main content

Mass Transfer Intensification in Micro-Fluidic Devices

  • Chapter
  • First Online:
Heat and Mass Transfer Intensification and Shape Optimization
  • 2106 Accesses

Abstract

Following the novel design and structure optimization of heat exchangers to enhance the heat transfer, we present in this chapter some designs of micro-mixer/reactor that we have developed during our research studies, to demonstrate the notion of mass transfer intensification. Three examples will be illustrated: meshed micro-mixer and multi-scale impinging streams mixer/reactor for liquid–liquid applications, and parallel microchannels contactor/reactor for gas–liquid two-phase applications. Each device has an arborescent or lattice structure that we have explored in Chap. 3. Numerical and experimental results on flow distribution, mixing and chemical reaction performances will be presented and discussed. Finally, some reflects on the design and optimization of micro-fluidic devices will be given with the aim of process intensification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Geometric dimensions of the single microchannel contactor: Y-type rectangular microchannel with a hydraulic diameter of 667 µm (1000 µm deep, 500 µm wide). Both the gas and liquid inlet sections have lengths of 1.5 cm and the angle between them is 60°. The straight section in the microchannel for gas–liquid contacting is 4.8 cm long.

References

  • Antes J, Boskovic D, Krause H, Loebbecke S, Lutz N, Tuercke T, Schweikert W (2003) Analysis and improvement of strong exothermic nitrations in micro reactors. Chem Eng Res Design 81:760–765

    Article  Google Scholar 

  • Bayer T, Pysall D, Wachsen O (2000) Micro mixing effects in continuous radical polymerization. In: Proceedings of IMRET3. Springer, Berlin, pp 165–170

    Google Scholar 

  • Burns JR, Ramshaw C (2002) A microreactor for the nitration of benzene and toluene. Chem Eng Com 189:1611–1628

    Article  Google Scholar 

  • Cao E, Gavriilidis A, Motherwell WB (2004) Oxidative dehydrogenation of 3-methyl-2-buten-1-ol in micro reactors. Chem Eng Sci 59:4803–4808

    Article  Google Scholar 

  • Chambers RD, Spink RCH (1999) Microreactors for elemental fluorine. Chem Commun 10:883–884

    Article  Google Scholar 

  • Chambers RD, Holling D, Spink RCH, Sandford G (2001) Elemental fluorine part 13. Gas–liquid thin film micro reactors for selective direct fluorination. Lab Chip 1:132–137

    Article  Google Scholar 

  • Chambers RD, Fox MA, Holling D, Nakano T, Okazoe T, Sandford G (2005a) Versatile gas/liquid micro reactors for industry. Chem Eng Tech 28:344–352

    Article  Google Scholar 

  • Chambers RD, Fox MA, Holling D, Nakano T, Okazoeb T, Sandford G (2005b) Elemental fluorine part 16. Versatile thin-film gas–liquid multi-channel micro reactors for effective scale-out. Lab Chip 5:191–198

    Article  Google Scholar 

  • Chambers RD, Fox MA, Sandford G (2005c) Elemental fluorine part 18. Selective direct fluorination of 1,3-ketoesters and 1,3-diketones using gas/liquid micro reactor technology. Lab Chip 5:1132–1139

    Article  Google Scholar 

  • Charpentier JC (1981) Mass transfer rates in gas-liquid absorbers and reactors. Adv Chem Eng 11:2–133

    Article  Google Scholar 

  • Chattopadhyay S, Veser G (2006) Heterogeneous–homogeneous interactions in catalytic micro channel reactors. AIChE J 52:2217–2229

    Article  Google Scholar 

  • Chen G, Yuan Q, Li H, Li S (2004) CO selective oxidation in a micro channel reactor for PEM fuel cell. Chem Eng J 101:101–106

    Article  Google Scholar 

  • Chen GG, Luo GS, Li SW, Xu JH, Wang JD (2005) Experimental approaches for understanding mixing performance of a minireactor. AIChE J 51:2923–2929

    Article  Google Scholar 

  • Chen G, Li S, Yuan Q (2007) Pd–Zn/Cu–Zn–Al catalysts prepared for methanol oxidation reforming in micro channel reactors. Catal Today 120:63–70

    Article  Google Scholar 

  • de Bellefon C, Tanchoux N, Caravieilhes S, Grenouillet P, Hessel V (2000) Micro reactors for dynamic, high throughput screening of fluid/liquid molecular catalysis. Angew Chem Int Ed 39:3442–3445

    Article  Google Scholar 

  • de Mas N, Günther A, Schmidt MA, Jensen KF (2003) Microfabricated multiphase reactors for the selective direct fluorination of aromatics. Ind Eng Chem Res 42:698–710

    Article  Google Scholar 

  • Dehkordi AM (2001) Novel type of impinging streams contactor for liquid–liquid extraction. Ind Eng Chem Res 40:681–688

    Article  Google Scholar 

  • Dlusa E, Wronski S, Ryszczuk T (2004) Interfacial area in gas–liquid Couette-Taylor flow reactor. Exp Therm Fluid Sci 28:467–472

    Article  Google Scholar 

  • Edel JB, Fortt R, de Mello JC, de Mello AJ (2002) Microfluidic routes to the controlled production of nanoparticles. Chem Commun 10:1136–1137

    Article  Google Scholar 

  • Ehrfeld W, Golbig K, Hessel V, Löwe H, Richter T (1999) Characterization of mixing in micro mixers by a test reaction: Single mixing units and mixer arrays. Ind Eng Chem Res 38:1075–1082

    Article  Google Scholar 

  • Ehrfeld W, Hessel V, Löwe H (2000) Micro reactors: new technology for modern chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  • Falk L, Commenge JM (2009) Characterization of mixing and segregation in homogeneous flow systems, chap. 6. In: Micro process engineering—a comprehensive handbook—vol 1: Fundamentals, operations and catalysts. Wiley-VCH, Weinheim, pp 147–170. ISBN 978-3-527-31550-5

    Google Scholar 

  • Falk L, Commenge JM (2010) Performance comparison of micro mixers. Chem Eng Sci 65:405–411

    Article  Google Scholar 

  • Fan Z, Zhou X, Luo L, Yuan W (2010) Evaluation of the performance of a constructal mixer with the iodide–iodate reaction system. Chem Eng Process 49:628–632

    Article  Google Scholar 

  • Fang JZ, Lee DJ (2001) Micromixing efficiency in static mixer. Chem Eng Sci 56:3797–3802

    Article  Google Scholar 

  • Fichtner M, Mayer J, Wolf D, Schubert K (2001) Micro structured rhodium catalysts for the partial oxidation of methane to syngas under pressure. Ind Eng Chem Res 40:3475–3483

    Article  Google Scholar 

  • Fournier MC, Falk L, Villermaux J (1996) A new parallel competing reaction system for assessing micro mixing efficiency—experimental approach. Chem Eng Sci 51:5053–5064

    Article  Google Scholar 

  • Guichardon P, Falk L (2000) Characterisation of micro mixing efficiency by the iodide-iodate reaction system. Part I: experimental procedure. Chem Eng Sci 55:4233–4243

    Article  Google Scholar 

  • Guo X, Fan Y, Luo L (2013) Mixing performance assessment of a multi-channel mini heat exchanger reactor with arborescent distributor and collector. Chem Eng J (in press)

    Google Scholar 

  • Haas-Santo K, Pfeifer P, Schubert K, Zech T, Honicke D (2005) Experimental evaluation of gas mixing with a static microstructure mixer. Chem Eng Sci 60:2955–2962

    Article  Google Scholar 

  • Harnby N, Edwards MF, Nierow AW (1997) Mixing in the process industries, 2nd edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Haverkamp V, Ehrfeld W, Gebauer K, Hessel V, Löwe H, Richter T, Wille C (1999) The potential of micro mixers for contacting of disperse liquid phases. Fresenius J Anal Chem 364:617–624

    Article  Google Scholar 

  • Haverkamp V, Emig G, Hessel V, Liauw MA, Löwe H (2002) Characterization of a gas/liquid micro reactor, the micro bubble column: determination of specific interfacial area. In: Proceedings of IMRET5. Springer, Berlin, pp 202–213

    Google Scholar 

  • Herskowits D, Herskowits V, Stephan K, Tamir A (1990) Characterization of a two-phase impinging jet absorber-II. Absorption with chemical reaction of CO2 in NaOH solutions. Chem Eng Sci 45:1281–1287

    Article  Google Scholar 

  • Heyouni A, Roustan M, Do-Quang Z (2002) Hydrodynamics and mass transfer in gas–liquid flow through static mixers. Chem Eng Sci 57:3325–3333

    Article  Google Scholar 

  • Hou X, Qian G, Zhou X (2011) Gas-liquid mixing in a multi-scale micro mixer with arborescence structure. Chem Eng J 167:475–482

    Article  Google Scholar 

  • Inoue T, Schmidt MA, Jensen KF (2007) Microfabricated multiphase reactors for the direct synthesis of hydrogen peroxide from hydrogen and oxygen. Ind Eng Chem Res 46:1153–1160

    Article  Google Scholar 

  • Jähnisch K, Baerns M, Hessel V, Ehrfeld W, Haverkamp V, Löwe H, Wille Ch, Guber A (2000) Direct fluorination of toluene using elemental fluorine in gas/liquid micro reactors. J Fluorine Chem 105:117–128

    Article  Google Scholar 

  • Janicke MT, Kestenbaum H, Hagendorf U, Schuth F, Fichtner M, Schubert K (2000) The controlled oxidation of hydrogen from an explosive mixture of gases using a micro structured reactor/heat exchanger and Pt/Al2O3 catalyst. J Catal 191:282–293

    Article  Google Scholar 

  • Kestenbaum H, de Oliveira AL, Schmidt W, Schuth F, Ehrfeld W, Gebauer K, Löwe H, Richter T, Lebiedz D, Untiedt I, Zuchner H (2002) Silver-catalyzed oxidation of ethylene to ethylene oxide in a micro reaction system. Ind Eng Chem Res 41:710–719

    Article  Google Scholar 

  • Kies FK, Benadda B, Otterbein M (2004) Experimental study on mass transfer of a co-current gas–liquid contactor performing under high gas velocities. Chem Eng Process 43:1389–1395

    Article  Google Scholar 

  • Knight JB, Vishwanath A, Brody JP, Austin RH (1998) Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds. Phys Rev Lett 80:3863–3866

    Article  Google Scholar 

  • Kobayashi J, Mori Y, Okamoto K, Akiyama R, Ueno M, Kitamori T, Kobayashi S (2004) A microfluidic device for conducting gas–liquid–solid hydrogenation reactions. Science 304:1305–1308

    Article  Google Scholar 

  • Kursawe A, Dietzsch E, Kah S, Hönicke D, Fichtner M, Schubert K, Wieβmeier G (2000) Selective reactions in microchannel reactors. In: Proceedings of IMRET3. Springer, Berlin, pp 213–223

    Google Scholar 

  • Laddha GS, Degaleesan TE (1978) Transport phenomena in liquid extraction. Tata McGraw-Hill Pub. Co. Ltd., New Delhi

    Google Scholar 

  • Lerou JJ, Ng KM (1996) Chemical reaction engineering: a multiscale approach to a multiobjective task. Chem Eng Sci 51:1595–1614

    Article  Google Scholar 

  • Löb P, Löwe H, Hessel V (2004) Fluorinations, chlorinations and brominations of organic compounds in micro reactors. J Fluorine Chem 125:1677–1694

    Article  Google Scholar 

  • Losey MW, Schmidt MA, Jensen KF (2001) Microfabricated multiphase packed-bed reactors: characterization of mass transfer and reactions. Ind Eng Chem Res 40:2555–2562

    Article  Google Scholar 

  • Luo L, Fan Y (2012) Module de circulation de fluides. WO/2012/010620

    Google Scholar 

  • Luo L, Tondeur D, Le Gall H, Corbel S (2007) Constructal approach and multi-scale components. Appl Therm Eng 27:1708–1714

    Article  Google Scholar 

  • Maurer R, Renken A (2003) Dehydrogenation of methanol to anhydrous formaldehyde in a micro structured reactor system. Chem Eng Res Design 81:730–734

    Article  Google Scholar 

  • Men Y, Hessel V, Löb P, Löwe H, Werner B, Baier T (2007) Determination of the segregation index to sense the mixing quality of pilot and production-scale microstructured mixers. Chem Eng Res Design 85:605–611

    Google Scholar 

  • Panic S, Loebbecke S, Tuercke T, Antes J, Boskovic D (2004) Experimental approaches to a better understanding of mixing performance of microfluidic devices. Chem Eng J 101:409–419

    Article  Google Scholar 

  • Pennemann H, Forster S, Kinkel J, Hessel V, Löwe H, Wu L (2005) Improvement of dye properties of the azo pigment yellow 12 using a micro mixer-based process. Org Process Res Dev 9:188–192

    Article  Google Scholar 

  • Renken A, Hessel V, Löb P, Miszczuk R, Uerdingen M, Kiwi-Minsker L (2007) Ionic liquid synthesis in a micro structured reactor for process intensification. Chem Eng Process 46:840–845

    Article  Google Scholar 

  • Rosenfeld C, Serra C, Brochon C, Hessel V, Hadziioannou G (2008) Use of micro mixers to control the molecular weight distribution in continuous two-stage nitroxide-mediated co polymerizations. Chem Eng J 135(Supplement 1):S242–S246

    Article  Google Scholar 

  • Rouge A, Spoetzl B, Gebauer K, Schenk R, Renken A (2001) Micro channel reactors for fast periodic operation: the catalytic dehydration of isopropanol. Chem Eng Sci 56:1419–1427

    Article  Google Scholar 

  • Saien J, Zonouzian AE, Dehkordi AM (2006) Investigation of a two impinging-jets contacting device for liquid–liquid extraction processes. Chem Eng Sci 61:3942–3950

    Article  Google Scholar 

  • Schönfeld F, Hessel V, Hofmann C (2004) An optimised split-and-recombine micro-mixer with uniform ‘chaotic’ mixing. Lab Chip 4:65–69

    Article  Google Scholar 

  • Schubert K, Bier W, Linder G, Dieter S (1998) Static micro mixer with heat exchanger. US Patent 5803600

    Google Scholar 

  • Schubert K, Bier W, Herrmann E, Menzel T, Linder G (2000) Static micromixer. US Patent 6082891

    Google Scholar 

  • Schubert K, Fichtner M, Wiessmeier G, Ehlers S, Elgeti K (2002) Static micro mixer. US Patent 2002057627

    Google Scholar 

  • Seris ELC, Abramowitz G, Johnston AM, Haynes BS (2007) Scaleable, micro structured plant for steam reforming of methane. Chem Eng J 135 (supplement 1):S9–S19

    Article  Google Scholar 

  • Stroock AD, Dertinger SKW, Ajdari A, Mezic I, Stone HA, Whitesides GM (2002) Chaotic mixer for micro channels. Science 295:647–651

    Article  Google Scholar 

  • Tamir A (1994) Impinging streams reactors: fundamentals and applications. Elsevier, Amsterdam

    Google Scholar 

  • Tegrotenhuis WE, Cameron RJ, Viswanathan VV, Wegeng RS (2000) Solvent extraction and gas absorption using microchannel contactors. In: Proceedings of IMRET3. Springer, Berlin, pp 541–549

    Google Scholar 

  • Tondeur D, Fan Y, Commenge JM, Luo L (2011) Uniform flows in rectangular lattice networks. Chem Eng Sci 66:5301–5312

    Article  Google Scholar 

  • Tonkovich Y, Zilka JL, LaMont MJ, Wang Y, Wegeng RS (1999) Microchannel reactors for fuel processing applications. I. Water gas shift reactor. Chem Eng Sci 54:2947–2951

    Article  Google Scholar 

  • Treybal RE (1963) Liquid extraction. McGraw-Hill Book Co., Inc., New York

    Google Scholar 

  • Veser G (2001) Experimental and theoretical investigation of H2 oxidation in a high-temperature catalytic micro reactor. Chem Eng Sci 56:1265–1273

    Article  Google Scholar 

  • Werner B, Hessel V, Lob P (2005) Mixers with micro structured foils for chemical production purposes. Chem Eng Tech 28:401–407

    Article  Google Scholar 

  • Wille C, Gabski HP, Haller T, Kim H, Unverdorben L, Winter R (2004) Synthesis of pigments in a three-stage micro reactor pilot plant-an experimental technical report. Chem Eng J 101:179–185

    Article  Google Scholar 

  • Wong SH, Ward MCL, Wharton CW (2004) Micro T-mixer as a rapid mixing micro mixer. Sens Actuators B 100:359–379

    Article  Google Scholar 

  • Yeong KK, Gavriilidis A, Zapf R, Kost H-J, Hessel V, Boyde A (2006) Characterisation of liquid film in a micro structured falling film reactor using laser scanning confocal microscopy. Exp Therm Fluid Sci 30:463–472

    Article  Google Scholar 

  • Yuan Y, Zhou X, Wu W, Zhang Y, Yuan W, Luo L (2005) Propylene epoxidation in a micro reactor with electric heating. Catal Today 105:544–550

    Article  Google Scholar 

  • Yue J, Chen G, Yuan Q (2004) Principles and applications of micro mixing technology. Chem Ind Eng Progress 12:1271–1275

    Google Scholar 

  • Yue J, Chen G, Yuan Q, Luo L, Gonthier Y (2007) Hydrodynamics and mass transfer characteristics in gas–liquid flow through a rectangular micro channel. Chem Eng Sci 62:2096–2108

    Article  Google Scholar 

  • Yue J, Luo L, Gonthier Y, Chen G, Yuan Q (2009) An experimental study of air–water Taylor flow and mass transfer inside square microchannels. Chem Eng Sci 64:3697–3708

    Google Scholar 

  • Yue J, Boichot R, Luo L, Gonthier Y, Chen G, Yuan Q (2010) Flow distribution and mass transfer in a parallel microchannel contactor integrated with constructal distributors. AIChE J 56:298–317

    Google Scholar 

  • Zhang T, Cao B, Fan Y, Gonthier Y, Luo L, Wang S (2011) Gas–liquid flow in circular micro channel. Part I: influence of liquid physical properties and channel diameter on flow patterns. Chem Eng Sci 66:5791–5803

    Article  Google Scholar 

  • Zhou X, Fan Z, Qian G (2007) Fluid mixer and its mixing principle. China Patent

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingai Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Luo, L., Fan, Y., Zhou, X. (2013). Mass Transfer Intensification in Micro-Fluidic Devices. In: Luo, L. (eds) Heat and Mass Transfer Intensification and Shape Optimization. Springer, London. https://doi.org/10.1007/978-1-4471-4742-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4742-8_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4741-1

  • Online ISBN: 978-1-4471-4742-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics