Skip to main content

Advertisement

Log in

Investigation on the structural, electrical and thermistor parameters of La-doped BiFeO3–PbZrO3 for energy storage devices

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The solid-state reaction technique was used to prepare the sample 0.5(BiLayFe1–yO3)–0.5(PbZrO3) at different concentrations y = 0.05, 0.10, 0.15, 0.20. Structural parameters such as percent crystallinity, average crystallite size, dislocation density and microstrain were calculated from the X-ray diffraction data at room temperature. The scanning electron microscope micrographs reveal the spherical, densely packed natures of the samples with low porosity. The energy density with efficiency of the prepared samples was calculated from P–E loop. The performance of the composites as an NTC thermistor at high temperatures (275–400°C) was discussed. Thermistor constant, sensitivity index and activation energies were calculated to understand the characteristics of the NTC thermistor. The high value of density of states was determined from the frequency and temperature-dependent ac conductivity of the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Catalan G and Scott J F 2009 Adv. Mater. 21 2463

    Article  CAS  Google Scholar 

  2. Wu H, Zhou J, Liang L, Li L and Zhu X 2014 J. Nanomater. 2014 471

    Google Scholar 

  3. Hilczer B, Pankiewicz R, Pietraszko A, Cieluch P, Matelski F and Andrzejewski B 2014 J. Mater. Sci. 49 1

    Article  Google Scholar 

  4. Wang N, Luo X, Han L, Zhang Z, Zhang R, Olin H et al 2020 Nano-Micro Lett. 12 1

    Article  Google Scholar 

  5. Ray A, Behera B, Basu T, Vajandar S, Satpathy S K and Nayak P 2018 J. Adv. Dielectr. 8 1

    Article  Google Scholar 

  6. Kohli P S, Devi P, Reddy P, Raina K K and Singla M L 2012 J. Mater. Sci. Mater. Electron. 23 1891

    Article  CAS  Google Scholar 

  7. Sahu A K, Mallick P, Satpathy S K and Behera B 2021 Adv. Mater. Lett. 12 1

    Google Scholar 

  8. Raj N P M J, Alluri N R, Chandrasekhar A, Khandelwal G and Kim S J 2019 Nano Energy 62 329

    Article  Google Scholar 

  9. Ivanov S A 2008 Solid State Sci. 10 1875

    Article  CAS  Google Scholar 

  10. Satpathy S K, Sen S and Behera B 2017 J. Mater. Sci. Mater. Electron. 28 9102

    Article  CAS  Google Scholar 

  11. Mallick P, Sahu A K, Biswal S K, Satpathy S K and Behera B 2022 Trans. Electr. Electron. Mater. 3 1

    Google Scholar 

  12. Lewin S Z 1963 J. Chem. Educ. 40 167

    Article  Google Scholar 

  13. Schubert M, Münch C, Schuurman S, Poulain V, Kita J and Moos R 2019 Sensors (Switzerland) 19 1

    Article  Google Scholar 

  14. Lan Y, Yu L, Chen G, Yang S and Chang A 2010 Int. J. Thermophys. 31 1456

    Article  CAS  Google Scholar 

  15. Becker A, Green C B and Pearson G L 1946 Electrical Engineer. 65 711

    Article  Google Scholar 

  16. Schmidt R, Basu A and Brinkman A W 2004 J. Eur. Ceram. Soc. 24 1233

    Article  CAS  Google Scholar 

  17. Satpathy S K, Mohanty N K, Behera A K, Sen S, Behera B and Nayak P 2015 J. Electron. Mater. 44 4290

    Article  CAS  Google Scholar 

  18. Begum A, Hussain A and Rahman A 2012 Beilstein J. Nanotechnol. 3 438

    Article  Google Scholar 

  19. Saad Y, Álvarez-Serrano I, López M L and Hidouri M 2018 Ceram. Int. 44 18560

    Article  CAS  Google Scholar 

  20. Mahani R M and Aziz D A A 2019 J. Phys. Conf. Ser. 1280 022052

    Article  Google Scholar 

  21. Setteringtons R A 1960 Proc. Inst. Electr. Eng. Part B 107 395

    Google Scholar 

  22. Kamat R K and Naik G M 2002 Sens. Rev. 22 334

    Article  Google Scholar 

  23. Nenova Z P and Nenov T G 2009 IEEE Trans. Instrum. Meas. 58 441

    Article  Google Scholar 

  24. Sahoo S 2018 J. Adv. Ceram. 7 99

    Article  CAS  Google Scholar 

  25. Kulawik J, Szwagierczak D, Gröger B and Skwarek A 2007 Microelectron. Int. 24 14

    Article  CAS  Google Scholar 

  26. Jadhav R N, Mathad S N and Puri V 2012 Ceram. Int. 38 5181

    Article  CAS  Google Scholar 

  27. Xiong X 2014 Ceram. Int. 40 10505

    Article  CAS  Google Scholar 

  28. Jagtap S, Rane S, Mulik U and Amalnerkar D 2007 Microelectron. Int. 24 7

    Article  Google Scholar 

  29. Roy A K, Singh A, Kumari K, Amar Nath K, Prasad A and Prasad K 2012 ISRN Ceram. 2012 1

    Article  Google Scholar 

  30. Ali A A and Shaaban M H 2010 Solid State Sci. 12 2148

    Article  CAS  Google Scholar 

  31. Ajili O, Louati B and Guidara K 2018 J. Mater. Sci. Mater. Electron. 29 8649

    Article  CAS  Google Scholar 

  32. Amine Fersi M, Chaabane I and Gargouri M 2014 Phys. B Condens. Matter 444 89

    Article  CAS  Google Scholar 

  33. Jamil A, Batool S S, Sher F and Rafiq M A 2016 AIP Adv. 6 1

    Article  Google Scholar 

  34. Kumari K, Prasad K and Choudhary R N P 2008 J. Alloys compd. 453 325

    Article  Google Scholar 

  35. Roy A K, Singh A, Kumari K, Amar Nath K, Prasad A and Prasad K 2012 Int. Sch. Res. Notices 2012 10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Kumar Satpathy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallick, P., Satpathy, S.K. & Behera, B. Investigation on the structural, electrical and thermistor parameters of La-doped BiFeO3–PbZrO3 for energy storage devices. Bull Mater Sci 45, 198 (2022). https://doi.org/10.1007/s12034-022-02775-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-022-02775-5

Keywords

Navigation