Skip to main content

Consort Interactions of the Root Endophytes Serendipita spp. (Sebacinales, Agaricomycetes, Basidiomycota) with Crop Plants

  • Chapter
  • First Online:
Sustainable Agrobiology

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 43))

Abstract

Various microorganisms may be formulated and applied to enhance plant growth and vigor, e.g., the symbiotic fungal root endophytes Serendipita indicia and S. vermifera (Serendipitaceae, Agaricomycetes, Basidiomycota), which interact with a broad range of host plants. These symbionts have a wide range of beneficial effects on plants, such as induction of resistance to fungal pathogens and different insects/pests as well as overall unspecific growth-promoting effects. Unlike arbuscular mycorrhiza (AM) fungi, Serendipita spp. can grow axenically on synthetic media, which presents a potential for producing quantities of active inoculum for large-scale formulation and field use. This makes the Serendipita-based products promising candidates for application in sustainable agriculture. Fungal endophytes support crops in different crucial ways. However, the endophytes are not always beneficial to the plants, as the symbiosis may range from mutualism to antagonism. The host–endophytic relation presents an intricate balance between plant defenses and fungal virulence. Thus, the application of high concentrations of S. indica inoculum may lead to severe infection and strong negative effects on the plant. In this review, we address the importance of “inoculum quantity” as an often-overlooked factor in the study of plant–endophyte interactions. We also highlight the benefits of the endophyte-mediated interaction of plants and Serendipita spp. singly or in aggregates with other plant growth-promoting microorganisms. Finally, we discuss the potential advantages of using carrier-based formulations of the bioinoculants, especially for large-scale commercial seed production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott LK, Robson AD (1982) The role of vesicular arbuscular mycorrhizal fungi in agriculture and the selection of fungi for inoculation. Aust J Agric Res 33(2):389–408

    Article  Google Scholar 

  • Abdollahi L, Yaghoubian Y, Alavi SM (2015) Effect of Piriformospora indica and Trichoderma tomentosum fungi on basil (Ocimum basilicum L.) growth under copper nitrate levels. J Soil Manag Sustain Product 5(1):113–127

    Google Scholar 

  • Abin N, Rokni N, Shafeinia AR, Borhan MH (2021) Quantification of endophyte Serendipita indica in Brassica napus roots by qPCR. Crop Pasture Sci 72(12):985–993. https://doi.org/10.1071/CP21265

    Article  CAS  Google Scholar 

  • Achatz B, von Rüden S, Andrade D, Neumann E, Pons-Kühnemann J, Kogel KH, Franken P, Waller F (2010) Root colonization by Piriformospora indica enhances grain yield in barley under diverse nutrient regimes by accelerating plant development. Plant Soil 333(1–2):59–70

    Article  CAS  Google Scholar 

  • Andrade-Linares DR, Müller A, Fakhro A, Schwarz D, Franken P (2013) Impact of Piriformospora indica on tomato. In: Piriformospora indica. Springer, Berlin, pp 107–117

    Chapter  Google Scholar 

  • Anith KN, Faseela KM, Archana PA, Prathapan KD (2011) Compatibility of Piriformospora indica and Trichoderma harzianum as dual inoculants in black pepper (Piper nigrum L.). Symbiosis 55(1):11–17

    Article  Google Scholar 

  • Arora M, Saxena P, Choudhary DK, Abdin MZ, Varma A (2016) Dual symbiosis between Piriformospora indica and Azotobacter chroococcum enhances the artemisinin content in Artemisia annua L. World J Microbiol Biotechnol 32(2):19

    Article  PubMed  Google Scholar 

  • Bajaj R, Agarwal A, Rajpal K, Asthana S, Kumar R, Prasad R, Kharkwal AC, Sherameti I, Oelmüller R, Varma A (2014) Co-cultivation of Curcuma longa with Piriformospora indica enhances the yield and active ingredients. Am J Curr Microbiol 2(1):6–17

    Google Scholar 

  • Baldi A, Jain A, Gupta N, Srivastava AK, Bisaria VS (2008) Co-culture of arbuscular mycorrhiza-like fungi (Piriformospora indica and Sebacina vermifera) with plant cells of Linum album for enhanced production of podophyllotoxins: a first report. Biotechnol Lett 30(9):1671

    Article  CAS  PubMed  Google Scholar 

  • Baltruschat H, Fodor J, Harrach BD, Niemczyk E, Barna B, Gullner G, Janeczko A, Kogel KH, Schäfer P, Schwarczinger I, Zuccaro A (2008) Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol 180(2):501–510

    Article  CAS  PubMed  Google Scholar 

  • Banhara A, Ding Y, Kühner R, Zuccaro A, Parniske M (2015) Colonization of root cells and plant growth promotion by Piriformospora indica occurs independently of plant common symbiosis genes. Front Plant Sci 6:667

    Article  PubMed  PubMed Central  Google Scholar 

  • Barazani O, Benderoth M, Groten K, Kuhlemeier C, Baldwin IT (2005) Piriformospora indica and Sebacina vermifera increase growth performance at the expense of herbivore resistance in Nicotiana attenuata. Oecologia 146(2):234–243

    Article  PubMed  Google Scholar 

  • Barazani O, von Dahl CC, Baldwin IT (2007) Sebacina vermifera promotes the growth and fitness of Nicotiana attenuata by inhibiting ethylene signaling. Plant Physiol 144(2):1223–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16(4):729–770

    Article  CAS  Google Scholar 

  • Bashan Y, Hernandez JP, Leyva LA, Bacilio M (2002) Alginate microbeads as inoculant carriers for plant growth-promoting bacteria. Biol Fertil Soils 35(5):359–368

    Article  Google Scholar 

  • Bashan Y, Bustillos JJ, Leyva LA, Hernandez JP, Bacilio M (2006) Increase in auxiliary photoprotective photosynthetic pigments in wheat seedlings induced by Azospirillum brasilense. Biol Fertil Soils 42(4):279–285

    Article  CAS  Google Scholar 

  • Bashan Y, de Bashan LE, Prabhu SR, Hernandez JP (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378(1–2):1–33

    Article  CAS  Google Scholar 

  • Bashan Y, de Bashan LE, Prabhu SR (2016) Superior polymeric formulations and emerging innovative products of bacterial inoculants for sustainable agriculture and the environment. In: Agriculturally important microorganisms. Springer, Singapore, pp 15–46

    Google Scholar 

  • Basiewicz M, Weiss M, Kogel KH, Langen G, Zorn H, Zuccaro A (2012) Molecular and phenotypic characterization of Sebacina vermifera strains associated with orchids, and the description of Piriformospora williamsii sp. nov. Fungal Biol 116(2):204–213

    Article  CAS  PubMed  Google Scholar 

  • Berruti A, Lumini E, Balestrini R, Bianciotto V (2016) Arbuscular mycorrhizal fungi as natural biofertilizers: let’s benefit from past successes. Front Microbiol 6:1559

    Article  PubMed  PubMed Central  Google Scholar 

  • Bodles WJA, Fossdal C-G, Woodward S (2006) Multiplex real-time PCR detection of pathogen colonization in the bark and wood of Picea sitchensis clones differing in resistance to Heterobasidion annosum. Tree Physiol 26:775–782

    Article  CAS  PubMed  Google Scholar 

  • Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320(1–2):37–77

    Article  CAS  Google Scholar 

  • Buwalda JG, Stribley DP, Tinker PB (1984) The development of endomycorrhizal root systems V. the detailed pattern of development of infection and the control of infection level by host in young leek plants. New Phytol 96(3):411–427

    Article  Google Scholar 

  • Caravaca F, Diaz E, Barea JM, Azcón-Aguilar C, Roldan A (2003) Photosynthetic and transpiration rates of Olea europaea subsp. sylvestris and Rhamnus lycioides as affected by water deficit and mycorrhiza. Biol Plant 46(4):637

    Article  Google Scholar 

  • Carling DE, Brown M, Brown RA (1979) Colonization rates and growth responses of soybean plants infected by vesicular–arbuscular mycorrhizal fungi. Can J Bot 57(17):1769–1772

    Article  Google Scholar 

  • Dabral S, Saxena SC, Choudhary DK, Bandyopadhyay P, Sahoo RK, Tuteja N, Nath M (2020) Synergistic inoculation of Azotobacter vinelandii and Serendipita indica augmented rice growth. Symbiosis 81:139–148

    Article  CAS  Google Scholar 

  • Daniels BA, McCool PM, Menge JA (1981) Comparative inoculum potential of spores of six vesicular-arbuscular mycorrhizal fungi. New Phytol 89(3):385–391

    Article  Google Scholar 

  • Das A, Kamal S, Shakil NA, Sherameti I, Oelmüller R, Dua M, Tuteja N, Johri AK, Varma A (2012) The root endophyte fungus Piriformospora indica leads to early flowering, higher biomass and altered secondary metabolites of the medicinal plant, Coleus forskohlii. Plant Signal Behav 7(1):103–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • del Barrio-Duque A, Ley J, Samad A, Antonielli L, Sessitsch A, Compant S (2019) Beneficial endophytic bacteria-Serendipita indica interaction for crop enhancement and resistance to phytopathogens. Front Microbiol 10:2888

    Article  PubMed  PubMed Central  Google Scholar 

  • Den Herder G, Van Isterdael G, Beeckman T, De Smet I (2010) The roots of a new green revolution. Trends Plant Sci 15(11):600–607

    Article  Google Scholar 

  • Dolatabadi HK, Goltapeh EM (2013) Effect of inoculation with Piriformospora indica and Sebacina vermifera on growth of selected Brassicaceae plants under greenhouse conditions. J Hortic Res 21(2):115–124

    Article  Google Scholar 

  • Dolatabadi HK, Goltapeh EM, Jaimand K, Rohani N, Varma A (2011) Effects of Piriformospora indica and Sebacina vermifera on growth and yield of essential oil in fennel (Foeniculum vulgare) under greenhouse conditions. J Basic Microbiol 51(1):33–39

    Article  CAS  PubMed  Google Scholar 

  • Douglas AE (2016) How multi-partner endosymbioses function. Nat Rev Microbiol 14(12):731

    Article  CAS  PubMed  Google Scholar 

  • Druege U, Baltruschat H, Franken P (2007) Piriformospora indica promotes adventitious root formation in cuttings. Sci Hortic 112(4):422–426

    Article  Google Scholar 

  • Fakhro A, Andrade-Linares DR, von Bargen S, Bandte M, Büttner C, Grosch R, Schwarz D, Franken P (2010) Impact of Piriformospora indica on tomato growth and on interaction with fungal and viral pathogens. Mycorrhiza 20(3):191–200

    Article  PubMed  Google Scholar 

  • Gerdemann JW (1975) Vesicular-arbuscular mycorrhizae. Dev Funct Roots 576:591

    Google Scholar 

  • Ghimire SR, Craven KD (2011) Enhancement of switchgrass (Panicum virgatum L.) biomass production under drought conditions by the ectomycorrhizal fungus Sebacina vermifera. Appl Environ Microbiol 77(19):7063–7067. https://doi.org/10.1128/AEM.05225-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghimire SR, Charlton ND, Craven KD (2009) The mycorrhizal fungus, Sebacina vermifera, enhances seed germination and biomass production in switchgrass (Panicum virgatum L). Bioenergy Res 2(1–2):51–58

    Article  Google Scholar 

  • Gill SS, Gill R, Trivedi DK, Anjum NA, Sharma KK, Ansari MW, Ansari AA, Johri AK, Prasad R, Pereira E, Varma A (2016) Piriformospora indica: potential and significance in plant stress tolerance. Front Microbiol 7:332

    Article  PubMed  PubMed Central  Google Scholar 

  • Haas JH, Krikun J (1985) Efficacy of endomycorrhizal-fungus isolates and inoculum quantities required for growth response. New Phytol 100(4):613–621

    Article  Google Scholar 

  • Hardoim PR, Van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79(3):293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Hart MM, Forsythe J, Oshowski B, Bücking H, Jansa J, Kiers ET (2013) Hiding in a crowd—does diversity facilitate persistence of a low-quality fungal partner in the mycorrhizal symbiosis? Symbiosis 59(1):47–56

    Article  Google Scholar 

  • Hill TW, Kafer E (2001) Improved protocols for Aspergillus minimal medium: trace element and minimal medium salt stock solutions. Fungal Genetics Rep 48(1):20–21

    Article  Google Scholar 

  • Hubbard A, Lewis CM, Yoshida K, Ramirez-Gonzalez RH, de Vallavieille-Pope C, Thomas J, Kamoun S, Bayles R, Uauy C, Saunders DG (2015) Field pathogenomics reveals the emergence of a diverse wheat yellow rust population. Genome Biol 16(1):23

    Article  PubMed  PubMed Central  Google Scholar 

  • Jafari M, Yari M, Ghabooli M, Sepehri M, Ghasemi E, Jonker A (2018) Inoculation and co-inoculation of alfalfa seedlings with root growth promoting microorganisms (Piriformospora indica, Glomus intraradices and Sinorhizobium meliloti) affect molecular structures, nutrient profiles and availability of hay for ruminants. Anim Nutr 4(1):90–99

    Article  PubMed  Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37(1):1–16

    Article  Google Scholar 

  • Jogawat A, Saha S, Bakshi M, Dayaman V, Kumar M, Dua M, Varma A, Oelmüller R, Tuteja N, Johri AK (2013) Piriformospora indica rescues growth diminution of rice seedlings during high salt stress. Plant Signal Behav 8(10):e26891

    Article  PubMed  PubMed Central  Google Scholar 

  • John RP, Tyagi RD, Brar SK, Surampalli RY, Prévost D (2011) Bio-encapsulation of microbial cells for targeted agricultural delivery. Crit Rev Biotechnol 31(3):211–226

    Article  CAS  PubMed  Google Scholar 

  • Käfer E (1977) Meiotic and mitotic recombination in Aspergillus and its chromosomal aberrations. Adv Genet 19:33–131

    Article  PubMed  Google Scholar 

  • Kaldorf M, Koch B, Rexer KH, Kost G, Varma A (2005) Patterns of interaction between Populus Esch5 and Piriformospora indica: a transition from mutualism to antagonism. Plant Biol 7(02):210–218

    Article  CAS  PubMed  Google Scholar 

  • Kapoor R, Giri B, Mukerji KG (2002) Glomus macrocarpum: a potential bioinoculant to improve essential oil quality and concentration in Dill (Anethum graveolens L.) and Carum (Trachyspermum ammi (Linn.) Sprague). World J Microbiol Biotechnol 18(5):459–463

    Article  CAS  Google Scholar 

  • Kesh H, Yadav AS (2016) Synergetic effect of Rhizobium sp. and Piriformospora indica on bioenhancing activity, symbiotic parameters and grain yield in pigeon pea (Cajanus cajan L.). applied. Biol Res 18(3):239–245

    Google Scholar 

  • Kumar M, Yadav V, Tuteja N, Johri AK (2009) Antioxidant enzyme activities in maize plants colonized with Piriformospora indica. Microbiology 155(3):780–790

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Sahai V, Bisaria VS (2011a) High-density spore production of Piriformospora indica, a plant growth-promoting endophyte, by optimization of nutritional and cultural parameters. Bioresour Technol 102(3):3169–3175

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Yadav V, Kumar H, Sharma R, Singh A, Tuteja N, Johri AK (2011b) Piriformospora indica enhances plant growth by transferring phosphate. Plant Signal Behav 6(5):723–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambers H, Teste FP (2013) Interactions between arbuscular mycorrhizal and non-mycorrhizal plants: do non-mycorrhizal species at both extremes of nutrient availability play the same game. Plant Cell Environ 36(11):1911–1915

    PubMed  Google Scholar 

  • Malik KA, Hafeez FY, Mirza MS, Hameed S, Rasul G, Bilal R (2005) Rhizospheric plant—microbe interactions for sustainable Griculture. In: Biological nitrogen fixation, sustainable agriculture and the environment. Springer, Dordrecht, pp 257–260

    Book  Google Scholar 

  • Mamoun M, Olivier JM (1995) Receptivity of cloned hazels to artificial ectomycorrhizal infection by Tuber melanosporum and symbiotic competitors. Mycorrhiza 6(1):15–19

    Article  Google Scholar 

  • Mathur N, Vyas A (1995) I. Influence of VA mycorrhizae on net photosynthesis and transpiration of Ziziphus mauritiana. J Plant Physiol 147(3–4):328–330

    Article  CAS  Google Scholar 

  • Meena KK, Mesapogu S, Kumar M, Yandigeri MS, Singh G, Saxena AK (2010) Co-inoculation of the endophytic fungus Piriformospora indica with the phosphate-solubilising bacterium Pseudomonas striata affects population dynamics and plant growth in chickpea. Biol Fertil Soils 46(2):169–174

    Article  CAS  Google Scholar 

  • Menge JA (1983) Utilization of vesicular–arbuscular mycorrhizal fungi in agriculture. Can J Bot 61(3):1015–1024

    Article  Google Scholar 

  • Mills PR, Fermor T, Muthumeenakshi S, Lincoln S (2000) Cell wall degrading enzymes produced by verticillium spp. and their relationship to infection in Agaricus bisporus. Mushroom Sci 15:601–605

    CAS  Google Scholar 

  • Mishra J, Arora NK (2016) Bioformulations for plant growth promotion and combating phytopathogens: a sustainable approach. In: Bioformulations: for sustainable agriculture. Springer, New Delhi, pp 3–33

    Google Scholar 

  • Mishra M, Prasad R, Varma A (2014) Rootonic with bio-zinc to accelerate Pennisetum glaucum seed germination and plant growth. Int J Plant Anim Environ Sci 4:552–561

    Google Scholar 

  • Mohammadi KF, Pirdashti H, Yaghoubian Y (2018) Inoculation with Trichoderma virens and Piriformospora indica for improving the morphological and physiological traits related to grain yield of rice under different rates of phosphorus fertilizer. J Crop Ecophysiol 11(44):857–874

    Google Scholar 

  • Morsy M (2015) Microbial symbionts: a potential bio-boom. J Investig Genomics 2:00015

    Google Scholar 

  • Mosse B (1972) The influence of soil type and Endogone strain on the growth of mycorrhizal plants in phosphate deficient soils. Rev Ecol Sol 9:529–537

    CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • Nautiyal CS, Chauhan PS, DasGupta SM, Seem K, Varma A, Staddon WJ (2010) Tripartite interactions among Paenibacillus lentimorbus NRRL B-30488, Piriformospora indica DSM 11827, and Cicer arietinum L. World J Microbiol Biotechnol 26(8):1393–1399

    Article  Google Scholar 

  • Oelmüller R, Sherameti I, Tripathi S, Varma A (2009) Piriformospora indica, a cultivable root endophyte with multiple biotechnological applications. Symbiosis 49(1):1–17

    Article  Google Scholar 

  • Osman M, Stigloher C, Mueller MJ, Waller F (2020) An improved growth medium for enhanced inoculum production of the plant growth-promoting fungus Serendipita indica. Plant Methods 16(1):1–7

    Article  Google Scholar 

  • Peškan-Berghöfer T, Shahollari B, Giong PH, Hehl S, Markert C, Blanke V, Kost G, Varma A, Oelmüller R (2004) Association of Piriformospora indica with Arabidopsis thaliana roots represents a novel system to study beneficial plant-microbe interactions and involves early plant protein modifications in the endoplasmic reticulum and at the plasma membrane. Physiol Plant 122(4):465–477

    Article  Google Scholar 

  • Petrini O (1991) Fungal endophytes of tree leaves. In: Microbial ecology of leaves. Springer, New York, NY, pp 179–197

    Book  Google Scholar 

  • Pham GH, Singh A, Malla R, Kumari R, Prasad R, Sachdev M, Luis P, Kaldorf M, Tatjana P, Harrmann S, Hehl S, Declerck S, Buscot F, Oelmuller R, Rexer KH, Kost G, Varma A (2004a) Interaction of P. indica with other microorganisms and plants. In: Varma A, Abbott L, Werner D, Hampp R (eds) Plant surface microbiology. Springer, Berlin Heidelberg/New York, pp 237–265

    Google Scholar 

  • Pham GH, Kumari R, Singh A, Sachdev M, Prasad R, Kaldorf M, Buscot F, Oelmuller R, Tatjana P, Weiβ M, Hampp R, Varma A (2004b) Axenic cultures of Piriformospora indica. In: Varma A, Abbott L, Werner D, Hampp R (eds) Plant surface microbiology. Springer, Berlin Heidelberg/New York, pp 593–616

    Google Scholar 

  • Pham GH, Srivastava A, Saxena AK, Pareek A, Varma A (2004c) Protocol to understand the interaction between rhizobacteria and symbiotic fungus: Piriformospora indica. In: Podila G, Varma A (eds) Basic research and applications: mycorrhizae, Microbiology series, vol 1. IK International, New York, pp 425–450

    Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55(1):158–161

    Article  Google Scholar 

  • Pirdashti H, Yaghoubian Y, Goltapeh E, Hosseini S (2012) Effect of mycorrhiza-like endophyte (Sebacina vermifera) on growth, yield and nutrition of rice (Oryza sativa L.) under salt stress. J Agric Technol 8:1651–1661

    CAS  Google Scholar 

  • Rai M, Varma A (2005) Arbuscular mycorrhiza-like biotechnological potential of Piriformospora indica, which promotes the growth of Adhatoda vasica Nees. Electron J Biotechnol 8(1):1–6

    Article  Google Scholar 

  • Rai M, Acharya D, Singh A, Varma A (2001) Positive growth responses of the medicinal plants Spilanthes calva and Withania somnifera to inoculation by Piriformospora indica in a field trial. Mycorrhiza 11(3):123–128

    Article  PubMed  Google Scholar 

  • Rathod DP, Brestic M, Shao HB (2011) Chlorophyll a fluorescence determines the drought resistance capabilities in two varieties of mycorrhized and non-mycorrhized Glycine max Linn

    Google Scholar 

  • Ray JG, Valsalakumar N (2010) Arbuscular mycorrhizal fungi and Piriformospora indica individually and in combination with rhizobium on green gram. J Plant Nutr 33(2):285–298

    Article  CAS  Google Scholar 

  • Riess K, Oberwinkler F, Bauer R, Garnica S (2014) Communities of endophytic Sebacinales associated with roots of herbaceous plants in agricultural and grassland ecosystems are dominated by Serendipita herbamans sp. nov. PLoS One 9(4):e94676

    Article  PubMed  PubMed Central  Google Scholar 

  • Roe AD, Rice AV, Coltman DW, Cooke JE, Sperling FA (2011) Comparative phylogeography, genetic differentiation and contrasting reproductive modes in three fungal symbionts of a multipartite bark beetle symbiosis. Mol Ecol 20(3):584–600

    Article  PubMed  Google Scholar 

  • Rokni N, Goltapeh EM (2019) Tolerance to dry bubble disease (Lecanicillium fungicola) in Iranian wild germplasm of button mushroom (Agaricus bisporus). Mycoscience 60(2):125–131

    Article  Google Scholar 

  • Rokni N, Alizadeh HS, Bazgir E, Darvishnia M, Mirzaei-Najafgholi H (2021) The tripartite consortium of Serendipita indica, Trichoderma simmonsii, and bell pepper (Capsicum annum). Biol Control 158:104608

    Article  CAS  Google Scholar 

  • Sahay NS, Varma A (1999) Piriformospora indica: a new biological hardening tool for micropropagated plants. FEMS Microbiol Lett 181(2):297–302

    Article  CAS  PubMed  Google Scholar 

  • Sanders FE, Sheikh NA (1983) The development of vesicular-arbuscular mycorrhizal infection in plant root systems. In: Tree root systems and their mycorrhizas. Springer, Dordrecht, pp 223–246

    Chapter  Google Scholar 

  • Sarma MVRK, Kumar V, Saharan K, Srivastava R, Sharma AK, Prakash A, Sahai V, Bisaria VS (2011) Application of inorganic carrier-based formulations of fluorescent pseudomonads and Piriformospora indica on tomato plants and evaluation of their efficacy. J Appl Microbiol 111(2):456–466

    Article  CAS  PubMed  Google Scholar 

  • Satheesan J, Narayanan AK, Sakunthala M (2012) Induction of root colonization by Piriformospora indica leads to enhanced asiaticoside production in Centella asiatica. Mycorrhiza 22(3):195–202

    Article  CAS  PubMed  Google Scholar 

  • Schulz B, Römmert AK, Dammann U, Aust HJ, Strack D (1999) The endophyte-host interaction: a balanced antagonism? Mycol Res 103(10):1275–1283

    Article  Google Scholar 

  • Selosse MA, Setaro S, Glatard F, Richard F, Urcelay C, Weiss M (2007) Sebacinales are common mycorrhizal associates of Ericaceae. New Phytol 174(4):864–878

    Article  CAS  PubMed  Google Scholar 

  • Serfling A, Wirsel SG, Lind V, Deising HB (2007) Performance of the biocontrol fungus Piriformospora indica on wheat under greenhouse and field conditions. Phytopathology 97(4):523–531

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Kumar V, Tripathi RB (2011) Isolation of phosphate solubilizing microorganism (PSMs) from soil. J Microbiol Biotechnol Res 1(2):90–95

    Google Scholar 

  • Sherameti I, Shahollari B, Venus Y, Altschmied L, Varma A, Oelmüller R (2005) The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters. J Biol Chem 280(28):26241–26247

    Article  CAS  PubMed  Google Scholar 

  • Sieber TN (2007) Endophytic fungi in forest trees: are they mutualists? Fungal Biol Rev 21(2–3):75–89

    Article  Google Scholar 

  • Singleton P, Keyser H, Sande E (2002) Development and evaluation of liquid inoculants. Inoculants and nitrogen fixation of legumes in Vietnam. ACIAR Proceedings 109e, Canberra, pp. 52–66

    Google Scholar 

  • Smith FA, Smith SE (1981) Mycorrhizal infection and growth of Trifolium subterraneum: use of sterilized soil as a control treatment. New Phytol 88(2):299–309

    Article  CAS  Google Scholar 

  • Stone JK, Polishook JD, White JF (2004) Endophytic fungi, p. 241–270.In G. M. Mueller, G. F. bills, and M. S. Foster (ed.), biodiversity of fungi. Elsevier, Amsterdam, Netherlands function of NPR1. Plant Cell Physiol 49(11):1747–1751

    Google Scholar 

  • Su ZZ, Wang T, Shrivastava N, Chen YY, Liu X, Sun C, Yin Y, Gao QK, Lou BG (2017) Piriformospora indica promotes growth, seed yield and quality of Brassica napus L. Microbiol Res 199:29–39

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Li K, Sirois E (2010) Simulated elliptical bioprosthetic valve deformation: implications for asymmetric transcatheter valve deployment. J Biomech 43(16):3085–3090

    Article  PubMed  Google Scholar 

  • Toussaint JP (2007) Investigating physiological changes in the aerial parts of AM plants: what do we know and where should we be heading? Mycorrhiza 17(4):349–353

    Article  PubMed  Google Scholar 

  • Tripathi S, Das A, Chandra A, Varma A (2015) Development of carrier-based formulation of root endophyte Piriformospora indica and its evaluation on Phaseolus vulgaris L. World J Microbiol Biotechnol 31(2):337–344

    Article  CAS  PubMed  Google Scholar 

  • Varma A, Verma S, Sahay N, Bütehorn B, Franken P (1999) Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl Environ Microbiol 65(6):2741–2744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varma A, Singh A, Sudha Sahay N, Sharma J, Roy A, Kumari M, Rana D, Thakran S, Deka D, Bharti K, Franken P, Hurek T, Blechert O, Rexer KH, Kost G, Hahn A, Hock B, Maier W, Walter M, Strack D, Kranner I (2001) Piriformospora indica: a cultivable mycorrhiza-like endosymbiotic fungus. In: Hock B (ed) Mycota IX. Springer, Germany, pp 123–150

    Google Scholar 

  • Varma A, Bakshi M, Lou B, Hartmann A, Oelmueller R (2012) Piriformospora indica: a novel plant growth-promoting mycorrhizal fungus. Agric Res 1(2):117–131

    Article  Google Scholar 

  • Varma A, Fekete A, Srivastava A, Saxena AK, Frommberger M, Li D, Gschwendter S, Sherameti I, Oelmueller R, Schmitt-Kopplin P, Tripathi S (2013) Inhibitory interactions of rhizobacteria with the symbiotic fungus Piriformospora indica. In: Piriformospora indica. Springer, Berlin, Heidelberg, pp 201–219

    Chapter  Google Scholar 

  • Vassilev N, Vassileva M, Azcon R, Medina A (2001) Application of free and ca-alginate-entrapped Glomus deserticola and Yarowia lipolytica in a soil–plant system. J Biotechnol 91(2–3):237–242

    Article  CAS  PubMed  Google Scholar 

  • Walker P, Smith S (1984) Stroop interference based on the synaesthetic qualities of auditory pitch. Perception 13(1):75–81

    Article  CAS  PubMed  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, von Wettstein D, Franken P (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci U S A 102(38):13386–13391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warcup JH, Talbot PHB (1967) Perfect states of Rhizoctonias associated with orchids. New Phytol 66(4):631–641

    Article  Google Scholar 

  • Wardle DA (2006) The influence of biotic interactions on soil biodiversity. Ecol Lett 9(7):870–886

    Article  PubMed  Google Scholar 

  • Werner GD, Cornwell WK, Cornelissen JH, Kiers ET (2015) Evolutionary signals of symbiotic persistence in the legume–rhizobia mutualism. Proc Natl Acad Sci 112(33):10262–10269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss M, Sýkorová Z, Garnica S, Riess K, Martos F, Krause C, Oberwinkler F, Bauer R, Redecker D (2011) Sebacinales everywhere: previously overlooked ubiquitous fungal endophytes. PLoS One 6(2):e16793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiß M, Waller F, Zuccaro A, Selosse MA (2016) Sebacinales–one thousand and one interactions with land plants. New Phytol 211(1):20–40

    Article  PubMed  Google Scholar 

  • Yadav V, Kumar M, Deep DK, Kumar H, Sharma R, Tripathi T, Tuteja N, Saxena AK, Johri AK (2010) A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in phosphate transport to the host plant. J Biol Chem 285(34):26532–26544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yaghoubian Y, Goltapeh EM, Pirdashti H, Esfandiari E, Feiziasl V, Dolatabadi HK, Varma A, Hassim MH (2014) Effect of Glomus mosseae and Piriformospora indica on growth and antioxidant defense responses of wheat plants under drought stress. Agric Res 3(3):239–245

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader Rokni .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of interest: The authors declare that they have no competing interests.

Ethical approval: This article does not contain any studies with human participants or animals performed by any of the authors.

Declaration of funding: This research did not receive any specific funding.

Data availability statement: Data sharing is not applicable as no new data were generated or analyzed during this study.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rokni, N., Ekelund, F., Borhan, M.H. (2023). Consort Interactions of the Root Endophytes Serendipita spp. (Sebacinales, Agaricomycetes, Basidiomycota) with Crop Plants. In: Maheshwari, D.K., Dheeman, S. (eds) Sustainable Agrobiology. Microorganisms for Sustainability, vol 43. Springer, Singapore. https://doi.org/10.1007/978-981-19-9570-5_12

Download citation

Publish with us

Policies and ethics