Skip to main content

Different Cyclins and Their Significance in Breast Cancer

  • Chapter
  • First Online:
Therapeutic potential of Cell Cycle Kinases in Breast Cancer

Abstract

The cooperation of cyclins and their particular cyclin-dependent kinases (CDKs) controls the progression of the cell cycle. This cyclin–CDK complex triggers a series of processes that move in a straight line from the resting state (G0), through the growth phase (G1), DNA replication (S), the growth phase gap 2 (G2), and cell division at the end (M). Any irregularity in any cell cycle phase results in arrest, which lasts until the problem is fixed. Cell divisions that are out of control are one of cancer's key characteristics. Cancer cells divide abnormally because cell proliferation is unchecked and cell cycle checkpoints are damaged. In addition to cyclins and CDKs, a number of additional proteins, most of which are either oncogenes or tumor suppressor genes, are also implicated in the abnormal activation of cell proliferation. The cyclins function as the complex's regulatory subunit and regulate the cell cycle. There are various types of cyclins that function with respect to the different cell cycle phases such as cyclin A, cyclin B, cyclin E, cyclin T, cyclin H, cyclin F, and cyclin G.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bai C et al (1996) SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86(2):263–274

    Article  CAS  PubMed  Google Scholar 

  • Bakhoum SF, Compton DA (2012) Chromosomal instability and cancer: a complex relationship with therapeutic potential. J Clin Investig 122(4):1138–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldini E et al (2006) Cyclin A and E2F1 overexpression correlate with reduced disease-free survival in node-negative breast cancer patients. Anticancer Res 26(6B):4415–4421

    CAS  PubMed  Google Scholar 

  • Bartkowiak B et al (2010) CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1. Genes Dev 24(20):2303–2316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellan C et al (2004) CDK9/CYCLIN T1 expression during normal lymphoid differentiation and malignant transformation. J Pathol 203(4):946–952

    Article  CAS  PubMed  Google Scholar 

  • Beroukhim R et al (2010) The landscape of somatic copy-number alteration across human cancers. Nature 463(7283):899–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bienvenu F et al (2005) Transcriptional regulation by a DNA-associated form of cyclin D1. Mol Biol Cell 16(4):1850–1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blazek D et al (2011) The Cyclin K/Cdk12 complex maintains genomic stability via regulation of expression of DNA damage response genes. Genes Dev 25(20):2158–2172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown AJ et al (1994) Expression and activity of p40MO15, the catalytic subunit of cdk-activating kinase, during Xenopus oogenesis and embryogenesis. Mol Biol Cell 5(8):921–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown NE et al (2012) Cyclin D1 activity regulates autophagy and senescence in the mammary epithelium cyclin D1 activity and autophagy. Cancer Res 72(24):6477–6489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckley MF et al (1993) Expression and amplification of cyclin genes in human breast cancer. Oncogene 8(8):2127–2133

    CAS  PubMed  Google Scholar 

  • Cardozo T, Pagano M (2004) The SCF ubiquitin ligase: insights into a molecular machine. Nat Rev Mol Cell Biol 5(9):739–751

    Article  CAS  PubMed  Google Scholar 

  • Casimiro MC et al (2012) Cyclins and cell cycle control in cancer and disease. Genes Cancer 3(11-12):649–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casimiro MC, Pestell RG (2012) Cyclin d1 induces chromosomal instability. Oncotarget 3(3):224

    Article  PubMed  PubMed Central  Google Scholar 

  • Casimiro MC et al (2014) Overview of cyclins D1 function in cancer and the CDK inhibitor landscape: past and present. Expert Opin Investig Drugs 23(3):295–304

    Article  CAS  PubMed  Google Scholar 

  • Castilho PV et al (2009) The M phase kinase Greatwall (Gwl) promotes inactivation of PP2A/B55δ, a phosphatase directed against CDK phosphosites. Mol Biol Cell 20(22):4777–4789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhury R et al (2016) APC/C and SCF cyclin F constitute a reciprocal feedback circuit controlling S-phase entry. Cell Rep 16(12):3359–3372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cowling VH, Cole MD (2010) Myc regulation of mRNA cap methylation. Genes Cancer 1(6):576–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Angiolella V et al (2013) A cyclin without cyclin-dependent kinases: cyclin F controls genome stability through ubiquitin-mediated proteolysis. Trends Cell Biol 23(3):135–140

    Article  PubMed  Google Scholar 

  • Dai Q et al (2012) Cyclin K-containing kinase complexes maintain self-renewal in murine embryonic stem cells. J Biol Chem 287(30):25344–25352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson L et al (2014) 3′ end formation of pre-mRNA and phosphorylation of Ser2 on the RNA polymerase II CTD are reciprocally coupled in human cells. Genes Dev 28(4):342–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desai D et al (1995) Effects of phosphorylation by CAK on cyclin binding by CDC2 and CDK2. Mol Cell Biol 15(1):345–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devault A et al (1995) MAT1 (‘menage à trois’) a new RING finger protein subunit stabilizing cyclin H-cdk7 complexes in starfish and Xenopus CAK. EMBO J 14(20):5027–5036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards MC et al (1998) Human cyclin K, a novel RNA polymerase II-associated cyclin possessing both carboxy-terminal domain kinase and Cdk-activating kinase activity. Mol Cell Biol 18(7):4291–4300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egloff S, Murphy S (2008) Cracking the RNA polymerase II CTD code. Trends Genet 24(6):280–288

    Article  CAS  PubMed  Google Scholar 

  • Emanuele MJ et al (2020) Complex cartography: regulation of E2F transcription factors by cyclin F and ubiquitin. Trends Cell Biol 30(8):640–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feldman RMR et al (1997) A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 91(2):221–230

    Article  CAS  PubMed  Google Scholar 

  • Fu M et al (2004) Minireview: Cyclin D1: normal and abnormal functions. Endocrinology 145(12):5439–5447

    Article  CAS  PubMed  Google Scholar 

  • Fu M et al (2005) Cyclin D1 represses p300 transactivation through a cyclin-dependent kinase-independent mechanism. J Biol Chem 280(33):29728–29742

    Article  CAS  PubMed  Google Scholar 

  • Furuno N et al (1999) Human cyclin A is required for mitosis until mid prophase. J Cell Biol 147(2):295–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuss JO, Tainer JA (2011) XPB and XPD helicases in TFIIH orchestrate DNA duplex opening and damage verification to coordinate repair with transcription and cell cycle via CAK kinase. DNA Repair 10(7):697–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garriga J et al (1998) Upregulation of cyclin T1/CDK9 complexes during T cell activation. Oncogene 17(24):3093–3102

    Article  CAS  PubMed  Google Scholar 

  • Gegonne A et al (2008) TFIID component TAF7 functionally interacts with both TFIIH and P-TEFb. Proc Natl Acad Sci 105(14):5367–5372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geisen C, Möröy T (2002) The oncogenic activity of cyclin E is not confined to Cdk2 activation alone but relies on several other, distinct functions of the protein. J Biol Chem 277(42):39909–39918

    Article  CAS  PubMed  Google Scholar 

  • Geng Y et al (2003) Cyclin E ablation in the mouse. Cell 114(4):431–443

    Article  CAS  PubMed  Google Scholar 

  • Ghose R et al (2001) Induction of TAK (cyclin T1/P-TEFb) in purified resting CD4+ T lymphocytes by combination of cytokines. J Virol 75(23):11336–11343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goel S et al (2017) CDK4/6 inhibition triggers anti-tumour immunity. Nature 548(7668):471–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong D et al (2007) Cyclin A2 regulates nuclear-envelope breakdown and the nuclear accumulation of cyclin B1. Curr Biol 17(1):85–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helenius K et al (2009) Mat1 inhibits peroxisome proliferator-activated receptor γ-mediated adipocyte differentiation. Mol Cell Biol 29(2):315–323

    Article  CAS  PubMed  Google Scholar 

  • Herrmann CH et al (1998) Tat-associated kinase, TAK, activity is regulated by distinct mechanisms in peripheral blood lymphocytes and promonocytic cell lines. J Virol 72(12):9881–9888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holstege FCP et al (1998) Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95(5):717–728

    Article  CAS  PubMed  Google Scholar 

  • Horne MC et al (1996) Cyclin G1 and cyclin G2 comprise a new family of cyclins with contrasting tissue-specific and cell cycle-regulated expression (∗). J Biol Chem 271(11):6050–6061

    Article  CAS  PubMed  Google Scholar 

  • Hunt T (1989) Maturation promoting factor, cyclin and the control of M-phase. Curr Opin Cell Biol 1(2):268–274

    Article  CAS  PubMed  Google Scholar 

  • Hwang HC, Clurman BE (2005) Cyclin E in normal and neoplastic cell cycles. Oncogene 24(17):2776–2786

    Article  CAS  PubMed  Google Scholar 

  • Ito Y et al (2000) Expression and prognostic role of cyclin-dependent kinase 1 (cdc2) in hepatocellular carcinoma. Oncology 59(1):68–74

    Article  CAS  PubMed  Google Scholar 

  • Jirawatnotai S et al (2011) A function for cyclin D1 in DNA repair uncovered by protein interactome analyses in human cancers. Nature 474(7350):230–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalaszczynska I et al (2009) Cyclin A is redundant in fibroblasts but essential in hematopoietic and embryonic stem cells. Cell 138(2):352–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kayaselcuk F et al (2006) Expression of cyclin H in normal and cancerous endometrium, its correlation with other cyclins, and association with clinicopathologic parameters. Int J Gynecol Cancer 16(1):402

    Article  CAS  PubMed  Google Scholar 

  • Keyomarsi K et al (1994) Cyclin E, a potential prognostic marker for breast cancer. Cancer Res 54(2):380–385

    CAS  PubMed  Google Scholar 

  • Keyomarsi K, Pardee AB (1993) Redundant cyclin overexpression and gene amplification in breast cancer cells. Proc Natl Acad Sci 90(3):1112–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura SH et al (2001) Cyclin G1 is involved in G2/M arrest in response to DNA damage and in growth control after damage recovery. Oncogene 20(25):3290–3300

    Article  CAS  PubMed  Google Scholar 

  • Klein EA, Assoian RK (2008) Transcriptional regulation of the cyclin D1 gene at a glance. J Cell Sci 121(23):3853–3857

    Article  CAS  PubMed  Google Scholar 

  • Koff A et al (1991) Human cyclin E, a new cyclin that interacts with two members of the CDC2 gene family. Cell 66(6):1217–1228

    Article  CAS  PubMed  Google Scholar 

  • Kornberg RD (2005) Mediator and the mechanism of transcriptional activation. Trends Biochem Sci 30(5):235–239

    Article  CAS  PubMed  Google Scholar 

  • Laphanuwat P et al (2018) Cyclin D1 depletion interferes with oxidative balance and promotes cancer cell senescence. J Cell Sci 131(12):jcs214726

    Article  PubMed  Google Scholar 

  • Larochelle S et al (2001) T-loop phosphorylation stabilizes the CDK7–cyclin H–MAT1 complex in vivo and regulates its CTD kinase activity. EMBO J 20(14):3749–3759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J-Q et al (2002) Cyclin a correlates with carcinogenesis and metastasis, and p27kip1 correlates with lymphatic invasion, in colorectal neoplasms. Hum Pathol 33(10):1006–1015

    Article  CAS  PubMed  Google Scholar 

  • Li Z et al (2010) Alternative cyclin D1 splice forms differentially regulate the DNA damage response cyclin D1 on DNA damage response. Cancer Res 70(21):8802–8811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z et al (2008) Alternate cyclin D1 mRNA splicing modulates p27KIP1 binding and cell migration. J Biol Chem 283(11):7007–7015

    Article  CAS  PubMed  Google Scholar 

  • Löbrich M, Jeggo PA (2007) The impact of a negligent G2/M checkpoint on genomic instability and cancer induction. Nat Rev Cancer 7(11):861–869

    Article  PubMed  Google Scholar 

  • Lohka MJ et al (1988) Purification of maturation-promoting factor, an intracellular regulator of early mitotic events. Proc Natl Acad Sci 85(9):3009–3013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Y et al (2007) Transgenic cyclin E triggers dysplasia and multiple pulmonary adenocarcinomas. Proc Natl Acad Sci 104(10):4089–4094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malik S, Roeder RG (2010) The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation. Nat Rev Genet 11(11):761–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malumbres M (2014) Cyclin-dependent kinases. Genome Biol 15(6):1–10

    Article  Google Scholar 

  • Malumbres M, Barbacid M (2005) Mammalian cyclin-dependent kinases. Trends Biochem Sci 30(11):630–641

    Article  CAS  PubMed  Google Scholar 

  • Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9(3):153–166

    Article  CAS  PubMed  Google Scholar 

  • Marshall RM et al (2005) Cyclin T1 expression is regulated by multiple signaling pathways and mechanisms during activation of human peripheral blood lymphocytes. J Immunol 175(10):6402–6411

    Article  CAS  PubMed  Google Scholar 

  • Mavrommati I et al (2018) β-TrCP-and casein kinase II-mediated degradation of cyclin F controls timely mitotic progression. Cell Rep 24(13):3404–3412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehraj U et al (2022a) Expression pattern and prognostic significance of baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5) in breast cancer: a comprehensive analysis. Adv Cancer Biol Metastasis 4:100037

    Article  CAS  Google Scholar 

  • Mehraj U et al (2021a) Tumor microenvironment promotes breast cancer chemoresistance. Cancer Chemother Pharmacol 87(2):147–158

    Article  PubMed  Google Scholar 

  • Mehraj U et al (2021b) Prognostic significance and targeting tumor-associated macrophages in cancer: new insights and future perspectives. Breast Cancer 28(3):539–555

    Article  PubMed  Google Scholar 

  • Mehraj U et al (2022b) Expression pattern and prognostic significance of CDKs in breast cancer: an integrated bioinformatic study. Cancer Biomark 34:1–15

    Article  Google Scholar 

  • Mir MA (2015) Developing costimulatory molecules for immunotherapy of diseases. Academic Press. https://doi.org/10.1016/C2014-0-02898-5

    Book  Google Scholar 

  • Mir MA, Agrewala JN (2008) Signaling through CD80: an approach for treating lymphomas. Expert Opin Ther Targets 12(8):969–979

    Article  CAS  PubMed  Google Scholar 

  • Mir MA, Mehraj U (2019) Double-crosser of the immune system: macrophages in tumor progression and metastasis. Curr Immunol Rev 15(2):172–184

    Article  CAS  Google Scholar 

  • Mir MA et al (2020a) Nanobodies: the “magic bullets” in therapeutics, drug delivery and diagnostics. Hum Antibodies 28(1):29–51

    Article  CAS  PubMed  Google Scholar 

  • Mir MA et al (2020b) Targeting different pathways using novel combination therapy in triple negative breast cancer. Curr Cancer Drug Targets 20(8):586–602

    Article  CAS  PubMed  Google Scholar 

  • Mir MA, Sofi S, Qayoom H (2022) Conventional adjuvant chemotherapy in combination with surgery, radiotherapy, and other specific targets. In: Combinational therapy in triple negative breast cancer. Elsevier, San Diego, pp 95–120. https://doi.org/10.1016/B978-0-323-96136-3.00008-X

    Chapter  Google Scholar 

  • Moiola C et al (2010) Cyclin T1 overexpression induces malignant transformation and tumor growth. Cell Cycle 9(15):3191–3198

    Article  Google Scholar 

  • Murakami H et al (1999) Determination of the prognostic significance of cyclin B1 overexpression in patients with esophageal squamous cell carcinoma. Virchows Arch 434(2):153–158

    Article  CAS  PubMed  Google Scholar 

  • Murali A et al (2014) Association of single nucleotide polymorphisms in cell cycle regulatory genes with oral cancer susceptibility. Br J Oral Maxillofac Surg 52(7):652–658

    Article  PubMed  Google Scholar 

  • Nelsen CJ et al (2005) Short term cyclin D1 overexpression induces centrosome amplification, mitotic spindle abnormalities, and aneuploidy. J Biol Chem 280(1):768–776

    Article  CAS  PubMed  Google Scholar 

  • Neumeister P et al (2003) Cyclin D1 governs adhesion and motility of macrophages. Mol Biol Cell 14(5):2005–2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamoto K, Beach D (1994) Cyclin G is a transcriptional target of the p53 tumor suppressor protein. EMBO J 13(20):4816–4822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamoto K et al (1996) p53-dependent association between cyclin G and the B' subunit of protein phosphatase 2A. Mol Cell Biol 16(11):6593–6602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pagano M, Draetta G (1991) Cyclin A, cell cycle control and oncogenesis. Prog Growth Factor Res 3(4):267–277

    Article  CAS  PubMed  Google Scholar 

  • Pagano M et al (1992) Cyclin A is required at two points in the human cell cycle. EMBO J 11(3):961–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palugulla S et al (2018) Genetic polymorphisms in cyclin H gene are associated with oxaliplatin-induced acute peripheral neuropathy in South Indian digestive tract cancer patients. Cancer Chemother Pharmacol 82(3):421–428

    Article  CAS  PubMed  Google Scholar 

  • Patel H et al (2016) Expression of CDK7, Cyclin H, and MAT1 is elevated in breast cancer and is prognostic in estrogen receptor–positive breast cancer. Clin Cancer Res 22(23):5929–5938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng J et al (1998) Identification of multiple cyclin subunits of human P-TEFb. Genes Dev 12(5):755–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfau SJ, Amon A (2012) Chromosomal instability and aneuploidy in cancer: from yeast to man: ‘exploring aneuploidy: the significance of chromosomal imbalance’ review series. EMBO Rep 13(6):515–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phatnani HP, Greenleaf AL (2006) Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev 20(21):2922–2936

    Article  CAS  PubMed  Google Scholar 

  • Pines J, Hunter T (1990) Human cyclin A is adenovirus E1A-associated protein p60 and behaves differently from cyclin B. Nature 346(6286):760–763

    Article  CAS  PubMed  Google Scholar 

  • Pines J, Hunter T (1991) Human cyclins A and B1 are differentially located in the cell and undergo cell cycle-dependent nuclear transport. J Cell Biol 115(1):1–17

    Article  CAS  PubMed  Google Scholar 

  • Poon RY et al (1994) Cell cycle regulation of the p34cdc2/p33cdk2-activating kinase p40MO15. J Cell Sci 107(10):2789–2799

    Article  CAS  PubMed  Google Scholar 

  • Porter DC, Keyomarsi K (2000) Novel splice variants of cyclin E with altered substrate specificity. Nucleic Acids Res 28(23):e101–e101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porter DC et al (2001) Tumor-specific proteolytic processing of cyclin E generates hyperactive lower-molecular-weight forms. Mol Cell Biol 21(18):6254–6269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price DH (2000) P-TEFb, a cyclin-dependent kinase controlling elongation by RNA polymerase II. Mol Cell Biol 20(8):2629–2634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qayoom H et al (2022) Expression patterns and therapeutic implications of CDK4 across multiple carcinomas: a molecular docking and MD simulation study. Med Oncol 39(10):1–13

    Article  Google Scholar 

  • Qayoom H et al (2021) An insight into the cancer stem cell survival pathways involved in chemoresistance in triple-negative breast cancer. Future Oncol 17(31):4185–4206

    Article  CAS  PubMed  Google Scholar 

  • Redon R et al (2002) Amplicon mapping and transcriptional analysis pinpoint cyclin L as a candidate oncogene in head and neck cancer. Cancer Res 62(21):6211–6217

    CAS  PubMed  Google Scholar 

  • Reutens AT et al (2001) Cyclin D1 binds the androgen receptor and regulates hormone-dependent signaling in a p300/CBP-associated factor (P/CAF)-dependent manner. Mol Endocrinol 15(5):797–811

    Article  CAS  PubMed  Google Scholar 

  • Roy R et al (1994) The MO15 cell cycle kinase is associated with the TFIIH transcription-DNA repair factor. Cell 79(6):1093–1101

    Article  CAS  PubMed  Google Scholar 

  • Rudolph P et al (2003) Differential prognostic impact of the cyclins E and B in premenopausal and postmenopausal women with lymph node-negative breast cancer. Int J Cancer 105(5):674–680

    Article  CAS  PubMed  Google Scholar 

  • Sakamaki T et al (2006) Cyclin D1 determines mitochondrial function in vivo. Mol Cell Biol 26(14):5449–5469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sala A et al (1997) Activation of human B-MYB by cyclins. Proc Natl Acad Sci 94(2):532–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos SDM et al (2012) Spatial positive feedback at the onset of mitosis. Cell 149(7):1500–1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherr CJ et al (2016) Targeting CDK4 and CDK6: from discovery to therapy. Cancer Discov 6:353–367. https://doi.org/10.1158/2159-8290.CD-15-0894

    Article  CAS  PubMed  Google Scholar 

  • Shiekhattar R et al (1995) Cdk-activating kinase complex is a component of human transcription factor TFIIH. Nature 374(6519):283–287

    Article  CAS  PubMed  Google Scholar 

  • Shimizu A et al (1998) Cyclin G contributes to G2/M arrest of cells in response to DNA damage. Biochem Biophys Res Commun 242(3):529–533

    Article  CAS  PubMed  Google Scholar 

  • Shoker BS et al (2001) Immunodetectable cyclin D1is associated with oestrogen receptor but not Ki67 in normal, cancerous and precancerous breast lesions. Br J Cancer 84(8):1064–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sikorski TW, Buratowski S (2009) The basal initiation machinery: beyond the general transcription factors. Curr Opin Cell Biol 21(3):344–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sivakumar S, Gorbsky GJ (2015) Spatiotemporal regulation of the anaphase-promoting complex in mitosis. Nat Rev Mol Cell Biol 16(2):82–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skotzko M et al (1995) Retroviral vector-mediated gene transfer of antisense cyclin G1 (CYCG1) inhibits proliferation of human osteogenic sarcoma cells. Cancer Res 55(23):5493–5498

    CAS  PubMed  Google Scholar 

  • Smith ML et al (1997) The p53-regulated cyclin G gene promotes cell growth: p53 downstream effectors cyclin G and Gadd45 exert different effects on cisplatin chemosensitivity. Exp Cell Res 230(1):61–68

    Article  CAS  PubMed  Google Scholar 

  • Smits VAJ, Medema RH (2001) Checking out the G2/M transition. Biochim Biophy Acta 1519(1-2):1–12

    Article  CAS  Google Scholar 

  • Sofi S et al (2022a) Targeting cyclin-dependent kinase 1 (CDK1) in cancer: molecular docking and dynamic simulations of potential CDK1 inhibitors. Med Oncol 39(9):1–15

    Article  Google Scholar 

  • Sofi S et al (2022b) Cyclin-dependent kinases in breast cancer: expression pattern and therapeutic implications. Med Oncol 39(6):1–16

    Article  Google Scholar 

  • Sofi S, Mir MA (2021) Novel biomarkers in breast cancer. In: Combination therapies and their effectiveness in breast cancer treatment. Elsevier, San Diego, pp 47–92

    Google Scholar 

  • Soria J-C et al (2000) Overexpression of cyclin B1 in early-stage non-small cell lung cancer and its clinical implication. Cancer Res 60(15):4000–4004

    CAS  PubMed  Google Scholar 

  • Spruck CH et al (1999) Deregulated cyclin E induces chromosome instability. Nature 401(6750):297–300

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T et al (2007) Nuclear cyclin B1 in human breast carcinoma as a potent prognostic factor. Cancer Sci 98(5):644–651

    Article  CAS  PubMed  Google Scholar 

  • Tassan J-P et al (1994) Cell cycle analysis of the activity, subcellular localization, and subunit composition of human CAK (CDK-activating kinase). J Cell Biol 127(2):467–478

    Article  CAS  PubMed  Google Scholar 

  • Tchakarska G et al (2011) Cyclin D1 inhibits mitochondrial activity in B cells. Cancer Res 71(5):1690–1699

    Article  CAS  PubMed  Google Scholar 

  • Van Diest PJ et al (1997) Cyclin D1 expression in invasive breast cancer. Correlations and prognostic value. Am J Pathol 150(2):705

    PubMed  PubMed Central  Google Scholar 

  • Wang A et al (1997) Overexpression of cyclin B1 in human colorectal cancers. J Cancer Res Clin Oncol 123(2):124–127

    Article  CAS  PubMed  Google Scholar 

  • Wang G et al (2018) Cyclin D1-mediated microRNA expression signature predicts breast cancer outcome. Theranostics 8(8):2251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wegiel B et al (2008) Multiple cellular mechanisms related to cyclin A1 in prostate cancer invasion and metastasis. J Natl Cancer Inst 100(14):1022–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wingate H et al (2009) Low molecular weight cyclin E is specific in breast cancer and is associated with mechanisms of tumor progression. Cell Cycle 8(7):1062–1068

    Article  CAS  PubMed  Google Scholar 

  • Winters ZE et al (2001) Subcellular localisation of cyclin B, Cdc2 and p21WAF1/CIP1 in breast cancer: association with prognosis. Eur J Cancer 37(18):2405–2412

    Article  CAS  PubMed  Google Scholar 

  • Wu LT et al (1994) Molecular-cloning of the human CYCG1 gene encoding a G-type cyclin-overexpression in human osteosarcoma cells. Oncol Rep 1(4):705–711

    Article  CAS  PubMed  Google Scholar 

  • Xiang X et al (2014) A distinct expression pattern of cyclin K in mammalian testes suggests a functional role in spermatogenesis. PLoS One 9(7):e101539

    Article  PubMed  PubMed Central  Google Scholar 

  • Yankulov KY, Bentley DL (1997) Regulation of CDK7 substrate specificity by MAT1 and TFIIH. EMBO J 16(7):1638–1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zauberman A et al (1995) Identification of p53 target genes through immune selection of genomic DNA: the cyclin G gene contains two distinct p53 binding sites. Oncogene 10(12):2361–2366

    CAS  PubMed  Google Scholar 

  • Zeng X et al (2010) The Ras oncogene signals centrosome amplification in mammary epithelial cells through cyclin D1/Cdk4 and Nek2. Oncogene 29(36):5103–5112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J et al (2018) Cyclin D–CDK4 kinase destabilizes PD-L1 via cullin 3–SPOP to control cancer immune surveillance. Nature 553(7686):91–95

    Article  CAS  PubMed  Google Scholar 

  • Zhong Z et al (2010) Cyclin D1/cyclin-dependent kinase 4 interacts with filamin A and affects the migration and invasion potential of breast cancer cells cyclin D1 and filamin A in breast cancer cell migration. Cancer Res 70(5):2105–2114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zwijsen RML et al (1998) Ligand-independent recruitment of steroid receptor coactivators to estrogen receptor by cyclin D1. Genes Dev 12(22):3488–3498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manzoor Ahmad Mir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mir, M.A., Qayoom, H. (2023). Different Cyclins and Their Significance in Breast Cancer. In: Mir, M. (eds) Therapeutic potential of Cell Cycle Kinases in Breast Cancer. Springer, Singapore. https://doi.org/10.1007/978-981-19-8911-7_17

Download citation

Publish with us

Policies and ethics