Skip to main content

Magnetic Properties of Biological Samples

  • Chapter
  • First Online:
Biological Effects of Static Magnetic Fields
  • 419 Accesses

Abstract

Magnetic properties of materials determine their response to the externally applied magnetic field. Although most living organisms, including human bodies, are diamagnetic as a whole, they have a very complexed composition. The purpose of this chapter is to summarize the known facts about the magnetic properties of biological samples, including the magnetic susceptibility, magnetic anisotropy of biomolecules (nucleic acid, proteins and lipids, etc.), organisms, tissues, and cells. Although there are still not enough data in this aspect, especially live biological samples in physiological conditions, current evidences already show that biological samples at different states show different magnetism. For example, the oxygenated red blood cells are diamagnetic while the deoxygenated red blood cells are paramagnetic, which are mainly due to their hemoglobin at different states and have been used in magnetic resonance imaging to diagnose different types of bleeding. The chain-like ferromagnetic magnetosome in magnetotactic bacteria is also the tool for their orientation in earth magnetic field. Therefore, systematic examination of magnetic properties of biological samples is not only essential to avoid ambiguities, complexities, and limitations to the interpretations of magnetic field-induced bioeffects, but also critical for the magnetic field-based technical development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aisen P, Koenig SH, Lilienthal HR (1967) Low temperature magnetic susceptibility of ceruloplasmin. J Mol Biol 28(2):225–231

    Article  CAS  PubMed  Google Scholar 

  • Aisen P, Aasa R, Redfield AG (1969) The chromium, manganese, and cobalt complexes of transferrin. J Biol Chem 244(17):4628–4633

    Article  CAS  PubMed  Google Scholar 

  • Allen P, St Pierre T, Chua-Anusorn W, Ström V, Rao K (2000) Low-frequency low-field magnetic susceptibility of ferritin and hemosiderin. BBA-Mol Basis Dis 1500(2):186–196

    Article  CAS  Google Scholar 

  • Amos LA, Baker TS (1979) The three-dimensional structure of tubulin protofilaments. Nature 279(5714):607–612

    Article  CAS  PubMed  Google Scholar 

  • Amos L, Klug A (1974) Arrangement of subunits in flagellar microtubules. J Cell Sci 14(3):523–549

    Article  CAS  PubMed  Google Scholar 

  • Anusiem A (1975) Magnetic susceptibility of ferrihemoglobin in water and 5% t-butanol. Biopolymers 14(6):1293–1304

    Article  CAS  PubMed  Google Scholar 

  • Apalkov V, Chakraborty T (2008) Influence of correlated electrons on the paramagnetism of DNA. Phys Rev B 78(10):104424

    Article  Google Scholar 

  • Azanza M, Blott B, Del Moral A, Peg M (1993) Measurement of the red blood cell membrane magnetic susceptibility. Bioelectrochem Bioenerg 30:43–53

    Article  CAS  Google Scholar 

  • Balkwill DL, Maratea D, Blakemore RP (1980) Ultrastructure of a magnetotactic spirillum. J Bacteriol 141(3):1399–1408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banci L, Bertini I, Huber JG, Luchinat C, Rosato A (1998) Partial orientation of oxidized and reduced cytochrome b5 at high magnetic fields: magnetic susceptibility anisotropy contributions and consequences for protein solution structure determination. J Am Chem Soc 120(49):12903–12909

    Article  CAS  Google Scholar 

  • Bauer E, Raskin A (1936) Increase of diamagnetic susceptibility on the death of living cells. Nature 138(3497):801–801

    Article  CAS  Google Scholar 

  • Bauman JH, Harris JW (1967) Estimation of hepatic iron stores by in vivo measurement of magnetic susceptibility. J Lab Clin Med 70(2):246–257

    CAS  PubMed  Google Scholar 

  • Bazylinski DA, Frankel RB (2004) Magnetosome formation in prokaryotes. Nat Rev Microbiol 2(3):217–230

    Article  CAS  PubMed  Google Scholar 

  • Bazylinski DA, Williams TJ (2006) Ecophysiology of magnetotactic bacteria. In: Magnetoreception and magnetosomes in bacteria. Springer, New York, pp 37–75

    Google Scholar 

  • Blakemore R (1975) Magnetotactic bacteria. Science 190(4212):377–379

    Article  CAS  PubMed  Google Scholar 

  • Blomstrom D, Knight E Jr, Phillips W, Weiher J (1964) The nature of iron in ferredoxin. Proc Natl Acad Sci U S A 51(6):1085–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boeri E, Ehrenberg A, Paul K, Theorell H (1953) On the compounds of ferricytochrome c appearing in acid solution. Biochim Biophys Acta 12(1–2):273–282

    Article  CAS  PubMed  Google Scholar 

  • Boroske E, Helfrich W (1978) Magnetic anisotropy of egg lecithin membranes. Biophys J 24(3):863–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bras W, Diakun GP, Díaz JF, Maret G, Kramer H, Bordas J, Medrano FJ (1998) The susceptibility of pure tubulin to high magnetic fields: a magnetic birefringence and X-ray fiber diffraction study. Biophys J 74(3):1509–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bras W, Torbet J, Diakun GP, Rikken GL, Diaz JF (2014) The diamagnetic susceptibility of the tubulin dimer. J Biophys 2014:985082

    PubMed  PubMed Central  Google Scholar 

  • Brem F, Hirt AM, Winklhofer M, Frei K, Yonekawa Y, Wieser H-G, Dobson J (2006) Magnetic iron compounds in the human brain: a comparison of tumour and hippocampal tissue. J R Soc Interface 3(11):833–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broman L, Malmstrrim BG, Aasa R, Vanngard T (1962) Quantitative electron spin resonance studies on native and denatured ceruloplasmin and laccase. J Mol Biol 5(3):301–310

    Article  CAS  PubMed  Google Scholar 

  • Chalazonitis N, Chagneux R, Arvanitaki A (1970) Rotation of external segments of photoreceptors in constant magnetic field. C R Acad Hebd Seances Acad Sci D 271(1):130–133

    CAS  PubMed  Google Scholar 

  • Chance B, Estabrook RW, Yonetani R (1966) Hemes and hemoproteins. Science 152(3727):1409–1411

    Article  CAS  PubMed  Google Scholar 

  • Coryell CD, Stitt F, Pauling L (1937) The magnetic properties and structure of ferrihemoglobin (methemoglobin) and some of its compounds. J Am Chem Soc 59(4):633–642

    Article  CAS  Google Scholar 

  • Dibb R, Xie L, Wei H, Liu C (2017) Magnetic susceptibility anisotropy outside the central nervous system. NMR Biomed 30(4):e3544

    Article  Google Scholar 

  • Eaton S, Eaton G (1980) Magnetic susceptibility of porphyrins. Inorg Chem 19(4):1095–1096

    Article  CAS  Google Scholar 

  • Ehrenberg A, Kamen M (1965) Magnetic and optical properties of some bacterial haem proteins. Biochim Biophys Acta 102(2):333–340

    Article  CAS  PubMed  Google Scholar 

  • Ehrenberg A, Laurell C-B (1955) Magnetic measurements on crystallized Fe-transferrin isolated from the blood plasma of swine. Acta Chem Scand 9:68–72

    Article  CAS  Google Scholar 

  • Ehrenberg A, Yonetani T (1961) Magnetic properties of iron and copper in cytochrome oxidase. Acta Chem Scand 15(5):8

    Google Scholar 

  • Ehrenberg A, Malmström BG, Broman L, Mosbach R (1962) A magnetic susceptibility study of copper valence in ceruloplasmin and laccase. J Mol Biol 5(4):450–452

    Article  CAS  Google Scholar 

  • Faivre D, Schuler D (2008) Magnetotactic bacteria and magnetosomes. Chem Rev 108(11):4875–4898

    Article  CAS  PubMed  Google Scholar 

  • Freyssinet J, Torbet J, Hudry-Clergeon G, Maret G (1983) Fibrinogen and fibrin structure and fibrin formation measured by using magnetic orientation. Proc Natl Acad Sci U S A 80(6):1616–1620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaffney BJ, McConnell HM (1974) Effect of a magnetic field on phospholipid membranes. Chem Phys Lett 24(3):310–313

    Article  CAS  Google Scholar 

  • Gamgee A (1901) On the behaviour of oxy-hemoglobin, carbonic-oxide-hemoglobin, methemoglobin, and certain of their derivatives, in the magnetic field, with a preliminary note on the electrolysis of the hemoglobin compounds. Lancet 158(4070):588–591

    Article  Google Scholar 

  • Gómez-Pastora J, Kim J, Multanen V, Weigand M, Walters NA, Reátegui E, Palmer AF, Yazer MH, Zborowski M, Chalmers JJ (2021) Intrinsically magnetic susceptibility in human blood and its potential impact on cell separation: non-classical and intermediate monocytes have the strongest magnetic behavior in fresh human blood. Exp Hematol 99:21–31

    Article  PubMed  PubMed Central  Google Scholar 

  • Granick S, Michaelis L (1942) Ferritin and apoferritin. Science 95(2469):439–440

    Article  CAS  PubMed  Google Scholar 

  • Hambright WP, Thorpe AN, Alexander CC (1968) Magnetic susceptibilities of metalloporphyrins. J Inorg Nucl Chem 30(11):3139–3142

    Article  CAS  Google Scholar 

  • Hametner S, Endmayr V, Deistung A, Palmrich P, Prihoda M, Haimburger E, Menard C, Feng X, Haider T, Leisser M (2018) The influence of brain iron and myelin on magnetic susceptibility and effective transverse relaxation—a biochemical and histological validation study. Neuroimage 179:117–133

    Article  CAS  PubMed  Google Scholar 

  • Han K-H, Han A, Frazier AB (2006) Microsystems for isolation and electrophysiological analysis of breast cancer cells from blood. Biosens Bioelectron 21(10):1907–1914

    Article  CAS  PubMed  Google Scholar 

  • Havemann R, Haberditzl W, Rabe G (1962) Untersuchungen über den diamagnetismus von O2- und CO-hämoglobin, globin und aminosäuren. Z Phys Chem 218(5/6):417–425

    Article  Google Scholar 

  • Higashi T, Yamagishi A, Takeuchi T, Kawaguchi N, Sagawa S, Onishi S, Date M (1993) Orientation of erythrocytes in a strong static magnetic field. Blood 82(4):1328–1334

    Article  CAS  PubMed  Google Scholar 

  • Hong FT, Mauzerall D, Mauro A (1971) Magnetic anisotropy and the orientation of retinal rods in a homogeneous magnetic field. Proc Natl Acad Sci U S A 68(6):1283–1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain V, Abdulmalik O, Propert KJ, Wehrli FW (2012) Investigating the magnetic susceptibility properties of fresh human blood for noninvasive oxygen saturation quantification. Magn Reson Med 68(3):863–867

    Article  CAS  PubMed  Google Scholar 

  • Jin X, Yazer MH, Chalmers JJ, Zborowski M (2011) Quantification of changes in oxygen release from red blood cells as a function of age based on magnetic susceptibility measurements. Analyst 136(14):2996–3003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kashevskii B, Kashevskii S, Prokhorov I, Aleksandrova E, Istomin YP (2006) Magnetophoresis and the magnetic susceptibility of HeLa tumor cells. Biophysics 51(6):902–907

    Article  Google Scholar 

  • Kim J, Gómez-Pastora J, Weigand M, Potgieter MA, Walters N, Reátegui E, Palmer FA, Yazer M, Zborowski M, Chalmers JJ (2019) A subpopulation of monocytes in normal human blood has significant magnetic susceptibility: quantification and potential implications. Cytometry A 95(5):478–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirschvink JL, Kobayashi-Kirschvink A, Woodford BJ (1992) Magnetite biomineralization in the human brain. Proc Natl Acad Sci U S A 89(16):7683–7687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klohs J, Hirt AM (2021) Investigation of the magnetic susceptibility properties of fresh and fixed mouse heart, liver, skeletal muscle and brain tissue. Phys Med 88:37–44

    Article  PubMed  Google Scholar 

  • Kopani M, Miglierini M, Lancok A, Dekan J, Caplovicova M, Jakubovsky J, Boca R, Mrazova H (2015) Iron oxides in human spleen. Biometals 28(5):913–928

    Article  CAS  PubMed  Google Scholar 

  • Kopáni M, Hlinková J, Ehrlich H, Valigura D, Boca R (2017) Magnetic properties of iron oxides in the human globus pallidus. J Bioanal Biomed 9(2):80–90

    Article  Google Scholar 

  • Kwon Y-W, Lee CH, Choi D-H, Jin J-I (2009) Materials science of DNA. J Mater Chem 19(10):1353–1380

    Article  CAS  Google Scholar 

  • Lee JC, Corfman D, Frigon RP, Timasheff SN (1978) Conformational study of calf brain tubulin. Arch Biochem Biophys 185(1):4–14

    Article  CAS  PubMed  Google Scholar 

  • Lee CH, Kwon YW, Do ED, Choi D, Jin JI, Oh DK, Kim J (2006) Electron magnetic resonance and SQUID measurement study of natural A-DNA in dry state. Phys Rev B 73(22):224417

    Article  Google Scholar 

  • Lefevre CT, Abreu F, Lins U, Bazylinski DA (2011) A bacterial backbone: magnetosomes in magnetotactic bacteria. In: Metal nanoparticles in microbiology. Springer, New York, pp 75–102

    Chapter  Google Scholar 

  • Lonsdale KY (1939) Diamagnetic anisotropy of organic molecules. Proc R Soc 171(947):541–568

    CAS  Google Scholar 

  • Lumry R, Solbakken A, Sullivan J, Reyerson LH (1962) Studies of rack mechanisms in heme-proteins. I. The magnetic susceptibility of cytochrome c in relation to hydration. J Am Chem Soc 84(2):142–149

    Article  CAS  Google Scholar 

  • Luo J, He X, Yablonskiy D (2014) Magnetic susceptibility induced white matter MR signal frequency shifts—experimental comparison between Lorentzian sphere and generalized Lorentzian approaches. Magn Reson Med 71(3):1251–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maret G, Dransfeld K (1977) Macromolecules and membranes in high magnetic fields. Physica B+ C 86(3):1077–1083

    Article  Google Scholar 

  • Maret G, Dransfeld K (1985) Biomolecules and polymers in high steady magnetic fields. In: Strong and ultrastrong magnetic fields and their applications. Springer, Berlin, pp 143–204

    Chapter  Google Scholar 

  • Melnik K, Sun J, Fleischman A, Roy S, Zborowski M, Chalmers JJ (2007) Quantification of magnetic susceptibility in several strains of bacillus spores: implications for separation and detection. Biotechnol Bioeng 98(1):186–192

    Article  CAS  PubMed  Google Scholar 

  • Mizoguchi K, Tanaka S, Sakamoto H (2006) Intrinsic low temperature paramagnetism in b-DNA. Phys Rev Lett 96(8):089801

    Article  PubMed  Google Scholar 

  • Mueller A, Hotz G, Zimmer KG (1961) Electron spin resonances in bacteriophage: alive, dead, and irradiated. Biochem Biophys Res Commun 4(3):214–217

    Article  CAS  PubMed  Google Scholar 

  • Mulay IL, Mulay LN (1967) Magnetic susceptibility and electron spin resonance absorption spectra of mouse melanomas S91 and 591A. J Natl Cancer Inst 39(4):735–743

    CAS  PubMed  Google Scholar 

  • Nakamae S, Cazayous M, Sacuto A, Monod P, Bouchiat H (2005) Intrinsic low temperature paramagnetism in b-DNA. Phys Rev Lett 94(24):248102

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T (1958) Magnetic susceptibility of oxidized and reduced laccase. Biochim Biophys Acta 30(3):640–641

    Article  CAS  PubMed  Google Scholar 

  • Omerzu A, Anželak B, Turel I, Štrancar J, Potočnik A, Arčon D, Arčon I, Mihailović D, Matsui H (2010) Strong correlations in highly electron-doped Zn(II)-DNA complexes. Phys Rev Lett 104(15):156804

    Article  PubMed  Google Scholar 

  • Paul F, Roath S, Melville D, Warhurst D, Osisanya J (1981) Separation of malaria-infected erythrocytes from whole blood: use of a selective high-gradient magnetic separation technique. Lancet 2(8237):70–71

    Article  CAS  PubMed  Google Scholar 

  • Pauling L (1936) The diamagnetic anisotropy of aromatic molecules. J Chem Phys 4(10):673–677

    Article  CAS  Google Scholar 

  • Pauling L (1979) Diamagnetic anisotropy of the peptide group. Proc Natl Acad Sci U S A 76(5):2293–2294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauling L, Coryell CD (1936a) The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin. Proc Natl Acad Sci U S A 22(4):210–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauling L, Coryell CD (1936b) The magnetic properties and structure of the hemochromogens and related substances. Proc Natl Acad Sci U S A 22(3):159–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poe M, Phillips W, McDonald C, Lovenberg W (1970) Proton magnetic resonance study of ferredoxin from Clostridium pasteurianum. Proc Natl Acad Sci U S A 65(4):797–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rawlinson W, Scutt P (1952) The magnetic properties and chemical structures of solid haemins. Aust J Chem 5(1):173–188

    Article  Google Scholar 

  • Rich P, Maréchal A (2012) Electron transfer chains: structures, mechanisms and energy coupling. In: Comprehensive biophysics. Elsevier, Amsterdam, pp 72–93

    Chapter  Google Scholar 

  • Samulski E, Tobolsky A (1971) Distorted α-helix for poly(γ-benzyl l-glutamate) in the nematic solid stale. Biopolymers 10(6):1013–1019

    Article  CAS  Google Scholar 

  • Sant’Ovaia H, Marques G, Santos A, Gomes C, Rocha A (2015) Magnetic susceptibility and isothermal remanent magnetization in human tissues: a study case. Biometals 28(6):951–958

    Article  PubMed  Google Scholar 

  • Savicki J, Lang G, Ikeda-Saito M (1984) Magnetic susceptibility of oxy-and carbonmonoxyhemoglobins. Proc Natl Acad Sci U S A 81(17):5417–5419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schenck JF (1996) The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys 23(6):815–850

    Article  CAS  PubMed  Google Scholar 

  • Schoffa G, Scheler W (1957) Magnetische untersuchungen über zwei energetische formen des hämins und des hämatins. Naturwissenschaften 44(17):464–465

    Article  CAS  Google Scholar 

  • Scholz F, Boroske E, Helfrich W (1984) Magnetic anisotropy of lecithin membranes. A new anisotropy susceptometer. Biophys J 45(3):589–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senftle FE, Hambright WP (1969) Magnetic susceptibility of biological materials. In: Biological effects of magnetic fields. Springer, Berlin, pp 261–306

    Chapter  Google Scholar 

  • Senftle FE, Thorpe A (1961) Magnetic susceptibility of normal liver and transplantable hepatoma tissue. Nature 190(4774):410–413

    Article  CAS  PubMed  Google Scholar 

  • Sosnytskyy V, Budnik N, Minov Y, Sutkovoj P, Vojtovich I (2000) System for magnetic susceptibility investigations of human blood and liver. In: Biomag 96. Springer, New York, pp 683–686

    Chapter  Google Scholar 

  • Starikov E (2003) Role of electron correlations in deoxyribonucleic acid duplexes: is an extended Hubbard Hamiltonian a good model in this case? Philos Mag Lett 83(11):699–708

    Article  CAS  Google Scholar 

  • Sugiura Y, Koga S (1964a) A magnetic method for determining volume fraction in yeast suspension. J Gen Appl Microbiol 10(2):127–131

    Article  Google Scholar 

  • Sugiura Y, Koga S (1964b) Magnetic study on yeast cells. J Gen Appl Microbiol 10(1):57–60

    Article  CAS  Google Scholar 

  • Sullivan S, Hambright P, Evans BJ, Thorpe A, Weaver JA (1970) The magnetic susceptibility of hemin 303–4.5 °K. Arch Biochem Biophys 137(1):51–58

    Article  CAS  PubMed  Google Scholar 

  • Svennerholm L, Boström K, Fredman P, Jungbjer B, Månsson J-E, Rynmark B-M (1992) Membrane lipids of human peripheral nerve and spinal cord. Biochim Biophys Acta 1128(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi T, Mizuno T, Higashi T, Yamagishi A, Date M (1995) Orientation of red blood cells in high magnetic field. J Magn Magn Mater 140(2):1462–1463

    Article  Google Scholar 

  • Tao Q, Zhang L, Han X, Chen H, Ji X, Zhang X (2020) Magnetic susceptibility difference-induced nucleus positioning in gradient ultrahigh magnetic field. Biophys J 118(3):578–585

    CAS  PubMed  Google Scholar 

  • Taylor DS (1939) The magnetic properties of myoglobin and ferrimyoglobin, and their bearing on the problem of the existence of magnetic interactions in hemoglobin. J Am Chem Soc 61(8):2150–2154

    Article  CAS  Google Scholar 

  • Taylor DS, Coryell CD (1938) The magnetic susceptibility of the iron in ferrohemoglobin. J Am Chem Soc 60(5):1177–1181

    Article  CAS  Google Scholar 

  • Torbet J, Ronziere M-C (1984) Magnetic alignment of collagen during self-assembly. Biochem J 219(3):1057–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Gelderen P, Mandelkow H, de Zwart JA, Duyn JH (2015) A torque balance measurement of anisotropy of the magnetic susceptibility in white matter. Magn Reson Med 74(5):1388–1396

    Article  PubMed  Google Scholar 

  • Vassilev PM, Dronzine RT, Vassileva MP, Georgiev GA (1982) Parallel arrays of microtubules formed in electric and magnetic fields. Biosci Rep 2(12):1025–1029

    Article  CAS  PubMed  Google Scholar 

  • Ventilla M, Cantor CR, Shelanski M (1972) Circular dichroism study of microtubule protein. Biochemistry 11(9):1554–1561

    Article  CAS  PubMed  Google Scholar 

  • Walsh W, Shulman R, Heidenreich R (1961) Ferromagnetic inclusions in nucleic acid samples. Nature 192(4807):1041–1043

    Article  CAS  Google Scholar 

  • Wang JH, Nakahara A, Fleischer EB (1958) Hemoglobin studies. I. The combination of carbon monoxide with hemoglobin and related model compounds. J Am Chem Soc 80(5):1109–1113

    Article  CAS  Google Scholar 

  • Weissbluth M (1967) The physics of hemoglobin. In: Structure and bonding. Springer, Berlin, pp 1–125

    Google Scholar 

  • Wickstead B, Gull K (2011) The evolution of the cytoskeleton. J Cell Biol 194(4):513–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie L, Dibb R, Cofer GP, Li W, Nicholls PJ, Johnson GA, Liu C (2015) Susceptibility tensor imaging of the kidney and its microstructural underpinnings. Magn Reson Med 73(3):1270–1281

    Article  PubMed  Google Scholar 

  • Xue W, Moore LR, Nakano N, Chalmers JJ, Zborowski M (2019) Single cell magnetometry by magnetophoresis vs. bulk cell suspension magnetometry by SQUID-MPMS—a comparison. J Magn Magn Mater 474:152–160

    Article  CAS  PubMed  Google Scholar 

  • Yamagashi A, Takeuchi T, Hagashi T, Date M (1992) Diamagnetic orientation of blood cells in high magnetic field. Physica B 177(1–4):523–526

    Article  Google Scholar 

  • Zborowski M, Ostera GR, Moore LR, Milliron S, Chalmers JJ, Schechter AN (2003) Red blood cell magnetophoresis. Biophys J 84(4):2638–2645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou KX, Ionescu A, Wan E, Ho YN, Barnes CH, Christie G, Wilson DI (2018) Paramagnetism in bacillus spores: opportunities for novel biotechnological applications. Biotechnol Bioeng 115(4):955–964

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guo, R., Zhang, L., Chen, H., Du, H., Qu, Z., Zhang, X. (2023). Magnetic Properties of Biological Samples. In: Zhang, X. (eds) Biological Effects of Static Magnetic Fields. Springer, Singapore. https://doi.org/10.1007/978-981-19-8869-1_3

Download citation

Publish with us

Policies and ethics