Skip to main content

Magnetic Susceptibility of Biological Materials

  • Chapter
Biological Effects of Magnetic Fields

Abstract

Although the field of biomagnetism is a relatively young branch of science, an extensive bibliography on various aspects of the subject(1) has developed within recent years. If one examines this bibliography, it is evident that a rather small part of this work has been expended in obtaining fundamental quantitative magnetic data on biological materials, such as magnetic susceptibilities of tissue, cell fluids, etc. In part, this is due to the nature of the material. Biological specimens are usually very complex and variable, and hence it is difficult to attach a meaningful quantitative value to such specimens. Moreover, biological specimens generally contain considerable water and other fluids which make significant measurements more difficult to obtain than on solid samples. Nevertheless, if the science of biomagnetism is to progress, one must interpret and explain the ever-increasing number of biological effects produced by magnetic fields. Ultimately one must examine these results in the light of the magnetic properties of the constituents of tissue, cells, blood, etc., and the biochemicals which constitute them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Gross, in: Biological Effects of Magnetic Fields (M. F. Barnothy, ed.) Vol. 1, p. 27, Plenum Press, New York (1964).

    Google Scholar 

  2. L. M. Mulay, Anal. Chem. 34: 343R (1962).

    Article  Google Scholar 

  3. R. S. Nyholm, J. Inorg. Nucl. Chem. 8: 401 (1958).

    Article  Google Scholar 

  4. A. R. Kauffmann, “Magnetic methods of analysis,” in: Physical Methods in Chemical Analysis ( W. G. Berl, ed.) Academic Press, New York (1951).

    Google Scholar 

  5. B. N. Figgis and J. Lewis, in: Modern Coordination Chemistry (J. Lewis and R. G. Wilkins, ed.) Chap. 6, Interscience Publishers Inc., New York (1960).

    Google Scholar 

  6. W. Klemm, Magnetochemie, Akademische Verlagsgesellschaft, Leipzig (1936).

    Google Scholar 

  7. P. W. Selwood, Magnetochemistry, Interscience Publishers Inc., New York, 2nd ed. (1956).

    Google Scholar 

  8. L. F. Bates, Modern Magnetism, Cambridge University Press, Cambridge (1961).

    Google Scholar 

  9. E. C. Stoner, Magnetism and Matter, Methnen and Co., Ltd., London (1934).

    Google Scholar 

  10. J. H. Van Vleck, Electric and Magnetic Susceptibilities, Oxford University Press, London (1932).

    Google Scholar 

  11. P. Pascal, Ann. Chin. Phys. 19: 5 (1910);

    Google Scholar 

  12. P. Pascal, Ann. Chin. Phys. 25: 289 (1912);

    Google Scholar 

  13. P. Pascal, Ann. Chin. Phys. 29: 218 (1913).

    Google Scholar 

  14. L. Pauling, J. Am. Chem. Soc. 53: 1367 (1931);

    Article  Google Scholar 

  15. L. Pauling, J. Am. Chem. Soc. 54: 988 (1932).

    Article  Google Scholar 

  16. L. E. Orgel, An Introduction to Transition-Metal Chemistry: Ligand Field Theory, Methuen and Co., Ltd., London (1962).

    Google Scholar 

  17. C. J. Ballhausen, Introduction to Ligand Field Theory, McGraw Hill Book Co., New York (1962).

    Google Scholar 

  18. B. N. Figgis, Introduction to Ligand Fields, Interscience Publishers, Inc., New York (1966).

    Google Scholar 

  19. L. Pauling and C. D. Coryell, Proc. Natl. Acad. Sci. U.S. 22: 210 (1936).

    Article  Google Scholar 

  20. J. M. Barnothy, Medical Physics, (U. Glasser, ed.) Vol. 3, p. 61, The Year Book Publisher (1960).

    Google Scholar 

  21. I. L. Mulay and L. N. Mulay, 190: 1019 (1961).

    Article  Google Scholar 

  22. F. E. Senftle and A. Thorpe, Nature 190: 410 (1961).

    Article  Google Scholar 

  23. M. Faraday, Phil. Trans. Part 1 (1846).

    Google Scholar 

  24. F. E. Senftle and A. Thorpe, Nature 194: 673 (1962).

    Article  Google Scholar 

  25. F. E. Senftle and A. Thorpe, Proc. Instr. Soc. Am. 8: 51–52 (1962);

    Google Scholar 

  26. F. E. Senftle and A. Thorpe, Trans. Instr. Soc. Am. 2: 117–120 (1963).

    Google Scholar 

  27. M. Blackman and N. D. Lisgarten, Proc. Roy. Soc. (London) A239: 93 (1957).

    Google Scholar 

  28. H. T. Meryman, Science 124: 515 (1956).

    Article  Google Scholar 

  29. C. V. Lusena, Arch. Biochem. Biophys. 57: 277 (1955).

    Article  Google Scholar 

  30. C. V. Lusena, Ann. N. Y. Acad. Sci. 85: 541 (1960).

    Article  Google Scholar 

  31. A. Thorpe and F. E. Senftle, unpublished data.

    Google Scholar 

  32. T. J. Gray, The Defect Solid State, p. 283, Interscience Publishers, New York (1957).

    Google Scholar 

  33. S. S. Gill, C. P. Malone, and M. Downing, Rev. Sci. Instr. 31: 1209 (1960).

    Article  Google Scholar 

  34. S. S. Gill and M. Downing, University of Colorado Annual Progress Report Contribution Nonr. 1147(08) Nov. 27 (1961).

    Google Scholar 

  35. Y. Sugiura and S. Koga, J. Gen. Appl. Microbio. (Tokyo) 10: 57 (1964).

    Article  Google Scholar 

  36. E. Bauer and A. Raskin, Nature 138: 801 (1936).

    Article  Google Scholar 

  37. N. Perakis, Compt. Rend. 208: 1534 (1939).

    Google Scholar 

  38. J. H. Bauman and J. W. Harris, J. Lab. Clin. Med. 70: 246 (1967).

    Google Scholar 

  39. J. E. Falk, Porphyrins and Metalloporphyrins, Elsevier Publishing Co., New York (1964).

    Google Scholar 

  40. R. Lemberg and J. W. Legge, Hematin Compounds and Bile Pigments, Interscience Publishers, Inc., New York (1949).

    Google Scholar 

  41. J. Plücker, Poggen. Ann. d. Physik u. Chemie 73: 575 (1848).

    Google Scholar 

  42. A. Gamgee, Proc. Roy. Soc. (London) 68: 503 (1901).

    Article  Google Scholar 

  43. H. Kudo, Acta Med. Scand. 81: 511 (1934).

    Article  Google Scholar 

  44. F. Haurowitz and H. Kittel, Ber. Deut. Chem. Ges. 66B: 1046 (1933).

    Article  Google Scholar 

  45. C. Courty, Thesis, Faculty of Sciences, University of Paris (1935).

    Google Scholar 

  46. L. Cambi and L. Szegö, Rend. Ist. Lombardo Sci. 67: 275 (1934).

    Google Scholar 

  47. D. Brocq-Rousser, Le Progres Medical, No. 27, p. 1018 (1937).

    Google Scholar 

  48. R. Jonnard, Compt. Rend. 204: 121 (1921).

    Google Scholar 

  49. L. Pauling and C. D. Coryell, Proc. Natl. Acad. Sci. U.S. 22: 159 (1936).

    Article  Google Scholar 

  50. C. D. Coryell, L. Pauling, and R. W. Dodson, J. Phys. Chem. 43: 825 (1939).

    Article  Google Scholar 

  51. C. D. Coryell, F. Stitt, and L. Pauling, J. Am. Chem. Soc. 59: 633 (1937).

    Article  Google Scholar 

  52. C. D. Coryell and F. Stitt, J. Am. Chem. Soc. 62: 2942 (1940).

    Article  Google Scholar 

  53. C. D. Russell and L. Pauling, Proc. Natl. Acad. Sci. U.S. 25: 517 (1939).

    Article  Google Scholar 

  54. C. D. Coryell and L. Pauling, J. Biol. Chem. 132: 769 (1940).

    Google Scholar 

  55. F. Stitt and C. D. Coryell, J. Am. Chem. Soc. 61: 1263 (1939).

    Article  Google Scholar 

  56. D. S. Taylor and C. D. Coryell, J. Am. Chem. Soc. 60: 1177 (1938).

    Article  Google Scholar 

  57. E. Hartree, Ann. Rept. Prog. Chem. 63: 295 (1948).

    Google Scholar 

  58. J. L. Hoard, in: Hemes and Hemoproteins ( B. Chance, R. W. Estabrook, and T. Yonetani,) pp. 9–24, Academic Press, New York (1966).

    Google Scholar 

  59. R. Havemann, W. Haberditzl, and K. H. Mader, Z. Phys. Chem. 218: 71–91 (1961).

    Google Scholar 

  60. R. Havemann and W. Haberditzl, Z. Phys. Chem. 217: 91–109 (1961).

    Google Scholar 

  61. P. Hambright, A. Thorpe, and C. Alexander, J. Inorg. Nucl. Chem. 30: 3139 (1968).

    Article  Google Scholar 

  62. G. Schoffa and W. Scheler, Naturwiss. 44: 464 (1957).

    Article  Google Scholar 

  63. L. Cambi and L. Szegö, Rend. Ist. Lombardo Sci. 67: 275 (1934).

    Google Scholar 

  64. G. Schoffa, Nature 203: 640 (1964).

    Article  Google Scholar 

  65. A. J. Bearden, T. H. Moss, W. H. Caughey, and C. A. Beaudreau, Proc. Natl. Acad. Sci. U.S. 53: 1246 (1965).

    Article  Google Scholar 

  66. A. B. P. Lever, J. Chem. Soc. 1821 (1965).

    Google Scholar 

  67. W. A. Rawlinson and P. B. Scutt, Australian J. Sci. Res. 5A: 173 (1952).

    Google Scholar 

  68. G. Harris, J. Chem. Phys. 48: 2191 (1968).

    Article  Google Scholar 

  69. W. A. Rawlinson, Australian J. Exptl. Biol. Med. Sci. 18: 185 (1940).

    Article  Google Scholar 

  70. G. Blauer and A. Ehrenberg, Biochim. Biophys. Acta 112: 496 (1966).

    Article  Google Scholar 

  71. L. M. Epstein, D. K. Straub, and C. Maricondi, Inorg. Chem. 6: 1720 (1967).

    Article  Google Scholar 

  72. G. Blauer and A. Ehrenberg, Acta Chem. Scand. 17: 8 (1963).

    Article  Google Scholar 

  73. J. H. Wang, A. Nakahara, E. B. Fleischer, J. Am. Chem. Soc. 80: 1109 (1958).

    Article  Google Scholar 

  74. P. A. Loach and M. Calvin, Biochem. 2: 361 (1963).

    Article  Google Scholar 

  75. W. E. Blumberg and J. Peisach, J. Biol. Chem. 240: 870 (1965).

    Google Scholar 

  76. M. Zener and M. Gouterman, Theor. Chem. Acta 4: 44 (1966).

    Article  Google Scholar 

  77. D. S. Taylor, J. Am. Chem. Soc. 61: 2150 (1939).

    Article  Google Scholar 

  78. R. Havemann, W. Haberditzl, and G. Rabe, Z. Phys. Chem. 218: 417 (1961).

    Google Scholar 

  79. J. S. Griffith, Biochim. Biophys. Acta 28: 439 (1958).

    Article  Google Scholar 

  80. T. G. Klumpp, J. Clin. Inv. 14: 351 (1935).

    Article  Google Scholar 

  81. M. Kotani, Prog. Theoret. Phys. (Kyoto) Suppl. 17: 4 (1961).

    Article  Google Scholar 

  82. G. Schoffa, in: The Structure and Properties of Biomolecules and Biological Systems (J. Duchesne, ed.) Chap. 4, Interscience Publishers, Inc., New York (1964).

    Google Scholar 

  83. J. S. Griffith, Biopolymers Symp. No. 1, p. 35 (1964).

    Google Scholar 

  84. M. Weissbluth, in: Structure and Bonding (C. K. Jorgensen, J. B. Neilands, R. S. Nyholm, D. Reinen, R. J. P. Williams,) Chap. 1, Springer-Verlag, New York (1967).

    Google Scholar 

  85. A. Tasaki, J. Otsuka, and M. Kotani, Biochim. Biophys. Acta 140: 284 (1967).

    Google Scholar 

  86. G. Schoffa, W. Scheller, O. Pistau, and F. Jung, Acta Biol. Med. Ger. 3: 65 (1959).

    Google Scholar 

  87. H. Morimoto, T. Iazuka, J. Otsuka, and M. Kotani, Biochim. Biophys. Acta 102: 624 (1965).

    Article  Google Scholar 

  88. H. Theorell and A. Ehrenberg, Acta Chem. Scand. 5: 823 (1951).

    Article  Google Scholar 

  89. J. H. Austin and D. L. Drabkin, J. Biol. Chem. 112: 67 (1935).

    Google Scholar 

  90. P. George, J. Beetlestone, and J. S. Griffith, Rev. Mod. Phys. 36: 441 (1964).

    Article  Google Scholar 

  91. J. S. Griffith, J. Inorg. Nucl. Chem. 2: 1, 229 (1956).

    Article  Google Scholar 

  92. C. Manwell, Ann. Rev. Physiol. 22: 191 (1960).

    Article  Google Scholar 

  93. E. Bayer and P. Schrezmann, in: Structure and Bonding ( C. K. Jorgensen, J. B. Neilands, R. S. Nyholm, D. Reinen, R. J. P. Williams,) p. 181, Springer-Verlag, New York (1967).

    Book  Google Scholar 

  94. H. Theorell and A. Ehrenberg, Arch. Biochem. Biophys. 41: 442 (1952).

    Article  Google Scholar 

  95. I. F. Gibson and D. J. Ingram, Nature 178: 871 (1956).

    Article  Google Scholar 

  96. I. F. Gibson, D. J. Ingram, and P. Nicholls, Nature 181: 1398 (1958).

    Article  Google Scholar 

  97. D. P. Craig and D. P. Mellor, J. Roy. Soc. New South Wales 78: 258 (1944).

    Google Scholar 

  98. R. Havemann and W. Haberditzl, Z. Phys. Chem. (Leipzig) 209: 135 (1958).

    Google Scholar 

  99. A. S. Brill and R. J. Williams, Biochem. J. 78: 246 (1961).

    Google Scholar 

  100. W. Scheler, J. Blanck, and W. Graf, Naturwiss. 50: 500 (1963).

    Article  Google Scholar 

  101. W. Scheler, G. Schoffa, and F. Jung, Biochem. Z. 329: 232 (1957).

    Google Scholar 

  102. W. Scheler, Biochem. Z. 330: 538 (1958).

    Google Scholar 

  103. A. Wishnia, J. Chem. Phys. 32: 871 (1960).

    Article  Google Scholar 

  104. K. Gersonde, A. Seidel, and H. Netter, J. Mol. Biol. 14: 37 (1965).

    Article  Google Scholar 

  105. R. Havemann and W. Haberditzl, Z. Phys. Chem. (Leipzig) 210: 267 (1959);

    Google Scholar 

  106. R. Havemann and W. Haberditzl, Naturwiss. 44: 31 (1957).

    Google Scholar 

  107. W. Haberditzl, Abhandl. Deut. Akad. Wiss. Berlin KI. Med. 6: 137 (1964).

    Google Scholar 

  108. W. S. Caughey, W. Y. Fujimoto, A. J. Beardin, and T. H. Moss. Biochem. 5: 1255 (1966).

    Article  Google Scholar 

  109. W. Scheler, H. J. Thiele, and I. Scheler, Biochim. Biophys. Acta 66: 282 (1963).

    Article  Google Scholar 

  110. H. Theorell, J. Amer. Chem. Soc. 63: 1820 (1941).

    Article  Google Scholar 

  111. B. Boeri, A. Ehrenberg, K. G. Paul, and H. Theorell, Biochim. Biophys. Acta 12: 142, 273 (1953).

    Article  Google Scholar 

  112. R. Lumry, A. Solbakken, J. Sullivan, and L. H. Reyerson, J. Chem. Soc. 84: 142 (1961).

    Google Scholar 

  113. S. Paleus, A. Ehrenberg, and H. Tuppy, Acta Chem. Scand. 9: 365 (1955).

    Article  Google Scholar 

  114. A. Ehrenberg and M. D. Kamen, Biochim. Biophys. Acta 102: 333 (1965).

    Article  Google Scholar 

  115. A. Ehrenberg and T. Yonetani, Acta Chem. Scand. 15: 1071 (1961).

    Article  Google Scholar 

  116. A. S. Brill, R. B. Martin, and R. J. P. Williams, in Electronic Aspects of Biochemistry ( B. Pullman, ed.) p. 519, Academic Press, New York (1964).

    Google Scholar 

  117. E. Frieden, in Horizons in Biochemistry ( M. Kasha and B. Pullman,) p. 461, Academic Press, New York (1962).

    Google Scholar 

  118. T. Nakamura, Biochim. Biophys. Acta 30: 640 (1958).

    Article  Google Scholar 

  119. T. Nakamura, Biochim. Biophys. Acta 30: 538 (1958).

    Article  Google Scholar 

  120. L. Broman, B. G. Malmström, R. Aasa, and T. Vanngard, J. Mol. Biol. 5: 301 (1962).

    Article  Google Scholar 

  121. A. Ehrenberg, B. G. Malmström, L. Broman, and R. Mosbach, J. Mol. Biol. 5: 450 (1962).

    Article  Google Scholar 

  122. P. Aisen, S. H. Koenig, and H. R. Lilienthal, J. Mol. Biol. 28: 225 (1967).

    Article  Google Scholar 

  123. L. Michaelis and S. Granick, J. Gen. Physiol. 25: 325 (1941).

    Article  Google Scholar 

  124. H. Theorell and K. Agner, Arkiv. Kemi., Mineral Geol. 16A: (7) (1943).

    Google Scholar 

  125. H. F. Deutsch and A. Ehrenberg, Acta Chem. Scand. 6: 1522 (1952).

    Article  Google Scholar 

  126. H. Theorell, Arkiv_ Kemi, Mineral Geol. 16A (3) (1942).

    Google Scholar 

  127. A. Ehrenberg, in: The Structure and Properties of Biomolecules and Biological Systems (J. Duchesne, ed.) Chap. 16, Interscience Publishers, Inc., New York (1964).

    Google Scholar 

  128. A. Ehrenberg, in: Hemes and Hemoproteins ( B. Chance, R. W. Estabrook, and T. Yonetani,) p. 331, Academic Press, New York (1966).

    Google Scholar 

  129. D. C. Blomstrom, E. Knight, W. D. Phillips, and J. F. Weiher, Proc. Natl. Acad. Sci. U.S. 51: 1085 (1964).

    Article  Google Scholar 

  130. L. H. Jensen and L. C. Sieker, Science 150: 376 (1965).

    Google Scholar 

  131. H. M. Thornley, J. F. Gibson, F. R. Whatley, and D. O. Hall, Biochem. Biophys. Res. Comm. 24: 877 (1966).

    Article  Google Scholar 

  132. M. Kubo, Bull. Chem. Soc. Japan 26: 244 (1953).

    Article  Google Scholar 

  133. R. C. Bray, R. Pettersson, and A. Ehrenberg, Biochem. J. 81: 178 (1961).

    Google Scholar 

  134. R. C. Bray, B. G. Malström, and T. Vanngard, Biochem. J. 73: 193 (1959).

    Google Scholar 

  135. A. Ehrenberg and R. C. Bray, Arch. Biochem. Biophys. 109: 199 (1965).

    Article  Google Scholar 

  136. R. Aasa, B. Malstrom, P. Saltman, and J. Vanngard, Biochem. Biophys. Acta 88: 430 (1964).

    Google Scholar 

  137. H. Beinert, in: Hemes and Hemoproteins ( B. Chance, R. W. Estabrook, and T. Yonetani,) p. 23, Academic Press, New York (1966).

    Google Scholar 

  138. P. Weisel and P. Allen, see Ref. 60.

    Google Scholar 

  139. J. B. Neilands, J. Am. Chem. Soc. 74: 4846 (1962).

    Google Scholar 

  140. A. Ehrenberg, Nature 178: 379 (1956).

    Article  Google Scholar 

  141. H. H. Wickman, M. P. Klein, D. A. Shirley, Phys. Rev. 152: 345 (1966).

    Article  Google Scholar 

  142. S. Granick and L. Michaelis, Science 95: 439 (1942).

    Article  Google Scholar 

  143. L. Michaelis, C. D. Coryell, and S. Granick, J. Biol. Chem. 148: 463 (1943).

    Google Scholar 

  144. E. Bayer and K. H. Hauser, Experientia 11: 254 (1955).

    Article  Google Scholar 

  145. G. Schoffa, Z. Naturforsch. 206: 167 (1965).

    Google Scholar 

  146. J. L. Gilchrist, W. H. Orme-Johnson, and R. L. Collins, Bull. Am. Phys. Soc. 11 (11): 50 (1966).

    Google Scholar 

  147. R. C. Warner and I. Weber, J. Am. Chem. Soc. 75: 5094 (1953).

    Article  Google Scholar 

  148. A. Ehrenberg and C. B. Laurell, Acta Chem. Scand. 9: 68 (1955).

    Article  Google Scholar 

  149. L. I. Nekrasov, N. I. Kobozev, N. G. Pichugina, and N. A. Prodosheva, Vestnik Moskov. Univ. Ser. 11, Khim. 16, No. 2, p. 9 (1961).

    Google Scholar 

  150. D. L. Woernley, Arch. Biochem. Biophys. 54: 378 (1955).

    Article  Google Scholar 

  151. H. Diehl, R. W. V. Haar, and R. R. Sealock, J. Am. Chem. Soc. 72: 5512 (1950).

    Article  Google Scholar 

  152. E. Grün and R. Menasse, Experientia 6: 263 (1950).

    Article  Google Scholar 

  153. J. C. Wallmann, B. B. Cunningham, and M. Calvin, Science 118: 55 (1951).

    Article  Google Scholar 

  154. H. Diehl, R. W. Haar, and R. R. Sealock, J. of Sci. Iowa State Coll. 26: 19 (1951).

    Google Scholar 

  155. E. Kaczka, D. E. Wolf, and K. Folkers, J. Am. Chem. Soc. 71: 9514 (1949).

    Article  Google Scholar 

  156. J. V. Pierce, A. C. Page, E. L. Stokstad, and T. H. Jukes, J. Am. Chem. Soc. 71: 2952 (1949).

    Article  Google Scholar 

  157. O. Schmidt, Z. Phys. Chem. 39: 59 (1938);

    Google Scholar 

  158. O. Schmidt, Z. Phys. Chem. 42: 83 (1939);

    Google Scholar 

  159. O. Schmidt, Z. Phys. Chem. 44: 185 (1939);

    Google Scholar 

  160. O. Schmidt, Z. Phys. Chem. 44: 194 (1939);

    Google Scholar 

  161. O. Schmidt, Naturwiss. 29: 146 (1941).

    Article  Google Scholar 

  162. A. Pullman and B. Pullman, Experientia 2: 364 (1946).

    Article  Google Scholar 

  163. B. Dandel and A. Pullman, Compt. Rend. 222: 663 (1946).

    Google Scholar 

  164. A. Pullman, Ann. Chim. 2: 309 (1948).

    Google Scholar 

  165. G. M. Badger, Brit. J. Cancer 2: 309 (1948).

    Google Scholar 

  166. C. A. Coulson, Adv. in Cancer Res. 1:1 (1953).

    Google Scholar 

  167. P. Rondoni, G. Mayr, and E. Gallico, Experientia 5: 357 (1959).

    Article  Google Scholar 

  168. D. L. Woernley, Arch. Biochem. Biophys. 50: 199 (1954).

    Google Scholar 

  169. G. Mayr and G. C. Rabotti, Experientia 13: 252 (1957).

    Article  Google Scholar 

  170. A. Veillard, B. Pullman, and G. Berthier, Compt. Rend. 252: 2321 (1961).

    Google Scholar 

  171. R. G. Shulman, W. M. Walsh, H. J. Williams, and J. P. Wright, Biochem. Biophys. Res. Comm. 5: 52 (1961).

    Article  Google Scholar 

  172. I. Isenberg, Biochem. Biophys. Res. Comm. 5: 139 (1961).

    Article  Google Scholar 

  173. J. M. Walsh, R. G. Shulman, and R. D. Heidenreich, Nature 192: 1041 (1961).

    Article  Google Scholar 

  174. G. C. Rabotti and G. Mayr, Giorn. liai. Chemioter 5: 75 (1958).

    Google Scholar 

  175. N. Perakis and F. Kern, Physik Komi. Mat. 3: 29 (1964).

    Article  Google Scholar 

  176. A. Blumenfeld, Acad. Roy. Soc. Belg. Classe Sci. 33: 93 (1961).

    Google Scholar 

  177. A. Ehrenberg and N. Ellfork, Acta Chem. Scand. 17: S343 (1963).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Plenum Press, New York

About this chapter

Cite this chapter

Senftle, F.E., Hambright, W.P. (1969). Magnetic Susceptibility of Biological Materials. In: Barnothy, M.F. (eds) Biological Effects of Magnetic Fields. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8352-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8352-9_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8354-3

  • Online ISBN: 978-1-4684-8352-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics