Skip to main content

Wide Range Applications of Fungal Pigments in Textile Dyeing

  • Chapter
  • First Online:
Fungi and Fungal Products in Human Welfare and Biotechnology

Abstract

The textile industry makes extensive use of synthetic, non-renewable colors. However, using these synthetic pigments causes the release of toxic and hazardous substances into the environment. It is a difficult task to find new pigments made from natural materials, yet doing so opens up safer textile coloring methods. A lot of attention has been paid to microbial pigments lately, particularly fungal pigments because of how safe and inexpensive they are. The sustainable manufacture and biodegradable properties of fungi-derived pigments are further benefits of their use. Fungal pigments have the potential to be used in a variety of applications, including textile colorants. A potential remedy for the hazardous side effects of synthetic pigments will be the industrial application of novel biotechnological techniques for the synthesis of fungal pigmentation. Carotenoids, flavins, indigo, melanins, monastics, phenazines, quinones, and violacein are some of the most promising fungal pigments. The numerous fungal pigments and how they are used to dye textile fibers are covered in this chapter. This chapter also emphasizes how fungal pigments will likely be used in a variety of biotechnological applications in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aishwarya AD (2014) Extraction of natural dyes from fungus – an alternate for textile dyeing. J Nat Sci Res 4(7):1–6

    Google Scholar 

  2. Sayyed I, Majumder D (2015) Pigment production from fungi. Int J Curr Microbiol App Sci Special Issue-2:103–109

    Google Scholar 

  3. Joshi VK, Attri D et al (2003) Microbial pigments. Indian. J Biotechnol 2:362–369

    CAS  Google Scholar 

  4. Lagashetti AC, Dufossé L et al (2019) Fungal pigments and their prospects in different industries. Microorganisms 7(12):604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Manikprabhu D, Lingappa K (2013) γ Actinorhodin a natural and attorney source for the synthetic dye to detect acid production of fungi. Saudi J Biol Sci 20:163–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Went FA (1895) Monascus purpureus le champignon de l’ang-quac une nouvelle thelebolee. Ann Des Sci Nat Bot Biol Veg 8:1–18

    Google Scholar 

  7. Fabre CE, Santerre AL et al (1993) Production and food applications of the red pigments of Monascus ruber. J Food Sci 58:1099–1102

    Article  CAS  Google Scholar 

  8. Caro Y, Venkatachalam M et al (2017) Pigments and colorants from filamentous fungi. In: Merillon J-M, Ramawat KG (eds) Fungal metabolites. Springer International Publishing, Cham, pp 499–568

    Chapter  Google Scholar 

  9. Dufossé L (2006) Microbial production of food grade pigments. Food Technol Biotechnol 44:313–323

    Google Scholar 

  10. Kim D, Ku S (2018) Beneficial effects of Monascus sp. KCCM 10093 pigments and derivatives: a mini review. Molecules 23:98

    Article  PubMed  PubMed Central  Google Scholar 

  11. Frandsen RJ, Rasmussen SA et al (2016) Black perithecial pigmentation in fusarium species is due to the accumulation of 5-deoxybostrycoidin-based melanin. Sci Rep 6:26206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Manon Mani V, Shanmuga Priya M et al (2015) Antioxidant and antimicrobial evaluation of bioactive pigment from fusarium sp. isolated from the stressed environment. Int J Curr Microbiol Appl Sci 4:1147–1158

    Google Scholar 

  13. Martinkova L, Juzlova P et al (1995) Biological activity of polyketide pigments produced by the fungus Monascus. J Appl Bacteriol 79:609–616

    Article  CAS  Google Scholar 

  14. Patil SA, Sivanandhan G et al (2015) Effect of physical and chemical parameters on the production of red exopigment from Penicillium purpurogenum isolated from spoilt onion and study of its antimicrobial activity. Int J Curr Microbiol Appl Sci 4:599–609

    CAS  Google Scholar 

  15. Saravanan D, Radhakrishnan M (2016) Antimicrobial activity of pigments produced by fungi from the Western Ghats. J Chem Pharm Res 8:634–638

    CAS  Google Scholar 

  16. Sibero MT, Triningsih DW et al (2016) Evaluation of antimicrobial activity and identification of yellow pigmented marine sponge-associated fungi from Teluk Awur, Jepara, Central Java. Indones J Biotechnol 21:1–11

    Article  Google Scholar 

  17. Suryanarayanan TS, Ravishankar JP et al (2004) Characterization of the melanin pigment of a cosmopolitan fungal endophyte. Mycol Res 108:974–978

    Article  CAS  PubMed  Google Scholar 

  18. Vendruscolo F, Tosin I et al (2014) Antimicrobial activity of Monascus pigments produced in submerged fermentation. J Food Process Preserv 38:1860–1865

    Article  CAS  Google Scholar 

  19. Yolmeh M, Hamedi H et al (2016) Antimicrobial activity of pigments extracted from Rhodotorula glutinis against some bacteria and fungi. Zahedan J Res Med Sci 18:e4954

    Google Scholar 

  20. Malik K, Tokas J et al (2016) Characterization and cytotoxicity assay of pigment-producing microbes. Int J Curr Microbiol Appl Sci 5:370–376

    Article  CAS  Google Scholar 

  21. Sajid S, Akbar N (2018) 1. Applications of fungal pigments in biotechnology. Pure Applied Biology (PAB) 7:922–930

    CAS  Google Scholar 

  22. Poorniammal R, Prabhu S et al (2019) Evaluation of in vitro antioxidant activity of fungal pigments. Pharma Innov J 8:326–330

    CAS  Google Scholar 

  23. Li F, Xue F et al (2017) FTIR and Raman analysis of antioxidant components of red pigments from Stemphylium lycopersici. Curr Microbiol 74:532–539

    Article  CAS  PubMed  Google Scholar 

  24. Ramesh C, Vinithkumar NV et al (2019) Multifaceted applications of microbial pigments: current knowledge, challenges and future directions for public health implications. Microorganisms 7:186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sen T, Barrow CJ, Deshmukh SK (2019) Microbial pigments in the food industry challenges and the way forward. Front Nutr 6:7

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tuli HS, Chaudhary P et al (2015) Microbial pigments as natural color sources: current trends and future perspectives. J Food Sci Technol 52:4669–4678

    Article  CAS  PubMed  Google Scholar 

  27. Vendruscolo F, Buhler RM et al (2016) Monascus: a reality on the production and application of microbial pigments. J Appl Biochem Biotechnol 178:211–223

    Article  CAS  Google Scholar 

  28. Akihisa T, Tokuda H et al (2005) Anti-tumor-initiating effects of Monascin, an azaphilonoid pigment from the extract of Monascus pilosus fermented rice (red-mold rice). Chem Biodivers 2:1305–1309

    Article  CAS  PubMed  Google Scholar 

  29. Su N-W, Lin Y-L et al (2005) Ankaflavin from Monascus-fermented red rice exhibits selective cytotoxic effect and induces cell death on Hep G2 cells. J Agric Food Chem 53:1949–1954

    Article  CAS  PubMed  Google Scholar 

  30. Cai Y, Ding Y et al (2008) Production of 1, 5-dihydroxy-3-methoxy-7-methylanthracene-9, 10-dione by submerged culture of Shiraia bambusicola. J Microbiol Biotechnol 18:322–327

    CAS  PubMed  Google Scholar 

  31. Fang LZ, Qing C et al (2006) Hypocrellin D, a cytotoxic fungal pigment from fruiting bodies of the ascomycete Shiraia bambusicola. J Antibiot 59:351–354

    Article  CAS  Google Scholar 

  32. Feng Y, Shao Y et al (2012) Monascus pigments. J. Appl Microbiol Biotechnol 96:1421–1440

    Article  CAS  PubMed  Google Scholar 

  33. Soumya K, Narasimha Murthy K et al (2018) Characterization of a red pigment from Fusarium chlamydosporum exhibiting selective cytotoxicity against human breast cancer MCF-7 cell lines. J Appl Microbiol 125:148–158

    Article  CAS  PubMed  Google Scholar 

  34. Shahid M, Mohammad F (2013) Recent advancements in natural dye applications: a review. J Clean Prod 53:310–331

    Article  CAS  Google Scholar 

  35. Gunasekaran S, Poorniammal R (2008) Optimization of fermentation conditions for red pigment production from Penicillium sp. under submerged cultivation. Afr J Biotechnol 7(12):1–12

    Article  Google Scholar 

  36. Suhr KI, Haasum I et al (2002) Factors affecting growth and pigmentation of Penicillium caseifulvum. J Dairy Sci 85(11):2786–2794

    Article  CAS  PubMed  Google Scholar 

  37. Méndez-Zavala A, Contreras-Esquivel JC et al (2007) Fungal production of the red pigment using a xerophilic strain Penicillium purpurogenum GH-2. Revista mexicana de ingeniería química 6(3):267–273

    Google Scholar 

  38. Ahmed EF, Elkhateeb WA et al (2018) Wool and silk fabrics dyeing by mannitol-assisted pigment produced from Penicillium purpurogenum. Der Pharma Chemica 10(10):166–175

    CAS  Google Scholar 

  39. Khan S, Malik A (2014) Environmental and health effects of textile industry wastewater. In: Environmental deterioration and human health. Springer, Dordrecht, pp 55–71

    Chapter  Google Scholar 

  40. Hernández-Rivera J, Méndez-Zavala A et al (2008) Culture conditions to improve the red pigment production by Penicillium purpurogenum GH2. In: Advance in food science and food biotechnology in developing countries. Mex Asoc Food Sci Editions, Saltillo, pp 108–112

    Google Scholar 

  41. Elkhateeb WA, Morsi SS et al (2020) Immobilization of Penicillium purpurogenum and application of the produced pigment in paint industry. Plant Arch 20(1):857–862

    Google Scholar 

  42. Jiang Y, Li HB et al (2005) Production potential of water-soluble Monascus red pigment by a newly isolated Penicillium sp. J Agric Technol 1(1):113–126

    Google Scholar 

  43. Unagul P, Wongsa P et al (2005) Production of red pigments by the insect pathogenic fungus Cordyceps unilateralis BCC 1869. J Ind Microbiol Biotechnol 32(4):135–140

    Article  CAS  PubMed  Google Scholar 

  44. Zain ul Arifeen M, Ma Y-N et al (2020) Deep-sea fungi could be the new arsenal for bioactive molecules. Mar Drugs 18:1–9

    Google Scholar 

  45. Eisenman HC, Casadevall A (2012) Synthesis and assembly of fungal melanin. Appl Microbiol Biotechnol 93:931–940

    Article  CAS  PubMed  Google Scholar 

  46. Silva TR, Tavares RS et al (2019) Chemical characterization and biotechnological applicability of pigments isolated from Antarctic bacteria. Mar Biotechnol 21:416–429

    Article  CAS  Google Scholar 

  47. Venil CK, Devi PR et al (2020) Agro-industrial waste as substrates for the production of bacterial pigment. In: Valorisation of Agro-industrial Residues–Volume I: Biological Approaches. Springer, pp 149–162

    Chapter  Google Scholar 

  48. Dufosse L, Fouillaud M et al (2014) Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Curr Opin Biotechnol 26:56–61

    Article  CAS  PubMed  Google Scholar 

  49. Weber G, Chen HL et al (2014) Pigments extracted from the wood-staining fungi Chlorociboria aeruginosa, Scytalidium cuboideum, and S. ganodermophthorum show potential for use as textile dyes. Color Technol 130:445–452

    Article  CAS  Google Scholar 

  50. Devi S, Karuppan P (2015) Reddish brown pigments from Alternaria alternata for textile dyeing and printing. Ind J Fibre Textile Res 40(3):315–319

    Google Scholar 

  51. Sardaryan E, Zihlova H et al (2004) Arpink red–meet a new natural red food colorant of microbial origin. In: Pigments in food, more than colours, pp 207–208

    Google Scholar 

  52. Atalla MM, Elkhrisy E et al (2011) Production of textile reddish brown dyes by fungi. Malaysian J Microbiol 7:33–40

    Google Scholar 

  53. Hernández VA, Galleguillos F et al (2019) Fungal dyes for textile applications: testing of industrial conditions for wool fabrics dyeing. J Textile Institute 110:61–66

    Article  Google Scholar 

  54. Shibila S, Nanthini A (2019) Extraction and characterization of red pigment from Talaromyces australis and its application in dyeing cotton yarn. Int Arch App Sci Technol 10:81–91

    CAS  Google Scholar 

  55. Chiba S, Tsuyoshi N et al (2006) Magenta pigment produced by fungus. J Gen Appl Microbiol 52:201–207

    Article  CAS  PubMed  Google Scholar 

  56. Chadni Z, Rahaman MH et al (2017) Extraction and optimisation of red pigment production as secondary metabolites from Talaromyces verruculosus and its potential use in textile industries. Mycology 8:48–57

    Article  CAS  Google Scholar 

  57. De Santis D, Moresi M et al (2005) Assessment of the dyeing properties of pigments from Monascus purpureus. J Chem Technol Biotechnol Int Res Proc Environ Clean Technol 80:1072–1079

    Google Scholar 

  58. Hinsch EM, Robinson SC (2016) Mechanical color reading of wood-staining fungal pigment textile dyes: an alternative method for determining colorfastness. Coatings 6:25

    Article  Google Scholar 

  59. Sharma D, Gupta C et al (2012) Pigment extraction from fungus for textile dyeing. Ind J Fibre Textile Res 37(1):68–73

    CAS  Google Scholar 

  60. Robinson SC, Tudor D et al (2012) Utilizing pigment-producing fungi to add commercial value to American beech (Fagus grandifolia). Appl Microbiol Biotechnol 93:1041–1048

    Article  CAS  PubMed  Google Scholar 

  61. Nambela L, Haule LV et al (2020) A review on source, chemistry, green synthesis and application of textile colorants. J Clean Prod 246:119036

    Article  CAS  Google Scholar 

  62. Kumar A, Vishwakarma HS et al (2015) Microbial pigments: production and their applications in various industries. Int J Pharmaceut Chem Biol Sci 5:1–10

    Google Scholar 

  63. Räisänen R (2009) Handbook of natural colorants. John Wiley & Sons, Chichester

    Google Scholar 

  64. Perumal K, Stalin V et al (2009) Extraction and characterization of pigment from Sclerotinia sp. and its use in dyeing cotton. Text Res J 79:1178–1187

    Article  CAS  Google Scholar 

  65. Velmurugan P, Kim M-J et al (2010) Dyeing of cotton yarn with five water soluble fungal pigments obtained from five fungi. Fibers Polym 11:598–605

    Article  CAS  Google Scholar 

  66. Osmanova N, Schultze W et al (2010) Azaphilones: a class of fungal metabolites with diverse biological activities. Phytochem Rev 9:315–342

    Article  CAS  Google Scholar 

  67. Visagie C, Houbraken J et al (2014) Identification and nomenclature of the genus Penicillium. Stud Mycol 78:343–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Afshari M, Shahidi F et al (2015) Investigating the influence of pH, temperature and agitation speed on yellow pigment production by Penicillium aculeatum ATCC 10409. Nat Prod Res 29:1300–1306

    Article  CAS  PubMed  Google Scholar 

  69. Nagia F, El-Mohamedy R (2007) Dyeing of wool with natural anthraquinone dyes from fusarium oxysporum. Dyes Pigments 75:550–555

    Article  CAS  Google Scholar 

  70. Morales-Oyervides L, Oliveira J et al (2017) Assessment of the dyeing properties of the pigments produced by Talaromyces spp. J Fungi 3:38

    Article  Google Scholar 

  71. Gupta C, Sharma D et al (2013) Pigment production from Trichoderma spp. for dyeing of silk and wool. Int J Sci Nat 4:351–355

    CAS  Google Scholar 

  72. Hinsch EM, Weber G et al (2015) Colorfastness of extracted wood-staining fungal pigments on fabrics: a new potential for textile dyes. J Textile Apparel Technol Manag 9:1–10

    Google Scholar 

  73. Palomino Agurto ME, Vega Gutierrez SM et al (2017) Wood-rotting fungal pigments as colorant coatings on oil-based textile dyes. Coatings 7:152

    Article  Google Scholar 

  74. Poorniammal R, Parthiban M et al (2013) Natural dye production from Thermomyces sp fungi for textile application. Ind J Fibre Textile Res 38(3):276–279

    CAS  Google Scholar 

  75. Rugbjerg P, Naesby M et al (2013) Reconstruction of the biosynthetic pathway for the core fungal polyketide scaffold rubrofusarin in Saccharomyces cerevisiae. Microb Cell Factories 12:1–9

    Article  Google Scholar 

  76. Mapari SA, Meyer AS et al (2009) Identification of potentially safe promising fungal cell factories for the production of polyketide natural food colorants using chemotaxonomic rationale. Microb Cell Factories 8:1–15

    Article  Google Scholar 

  77. Jia XQ, Xu ZN et al (2010) Elimination of the mycotoxin citrinin production in the industrial important strain Monascus purpureus SM001. Metab Eng 12:1–7

    Article  CAS  PubMed  Google Scholar 

  78. Loto I, Gutiérrez MS et al (2012) Enhancement of carotenoid production by disrupting the C22-sterol desaturase gene (CYP61) in Xanthophyllomyces dendrorhous. BMC Microbiol 12:1–16

    Article  Google Scholar 

  79. Gmoser R, Ferreira JA et al (2017) Filamentous ascomycetes fungi as a source of natural pigments. Fung Biol Biotechnol 4:1–25

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elkhateeb, W., Elnahas, M.O., Daba, G. (2023). Wide Range Applications of Fungal Pigments in Textile Dyeing. In: Satyanarayana, T., Deshmukh, S.K. (eds) Fungi and Fungal Products in Human Welfare and Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-19-8853-0_10

Download citation

Publish with us

Policies and ethics