Skip to main content

A Review on Adsorption Mechanisms and Distribution Coefficient (Kd) of Cesium in Clay/Host Rock

  • Conference paper
  • First Online:
Proceedings of the 23rd Pacific Basin Nuclear Conference, Volume 2

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 284))

  • 667 Accesses

Abstract

For the disposal of high-level radioactive waste (HLW), the deep geological disposal is recognized as an effective method. The distribution coefficient (Kd) of radionuclides on buffer/backfill materials or host rock is one of the key parameters used in the safety assessment of geological repository. 137Cs is one of the high-yield (t1/2 = 30.1 y, 6%) fission products in spent fuels, its high solubility makes it likely to migrate through groundwater to the biosphere. Multibarrier system prevents leakage of radionuclides to the environment. The present review discusses the general mechanisms of cesium adsorption by minerals, elaborates the parameters which influence adsorption of cesium contain concentration of cesium, pH, humic acid, competitive cations and properties of minerals. Furthermore, we have collected the Kd values from cesium adsorption studies concerned with the minerals conducted during the past two decades, and analyzed by the probabilistic modelling to obtain the best-estimated Kd values of Cs adsorption on bentonite, granite and clay under different solution conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De Pourcq, K., et al.: A clay permeable reactive barrier to remove Cs-137 from groundwater: column experiments. J. Environ. Radioact. 149, 36–42 (2015)

    Article  Google Scholar 

  2. Dzene, L., et al.: Nature of the sites involved in the process of cesium desorption from vermiculite. J. Colloid Interface Sci. 455, 254–260 (2015)

    Article  ADS  Google Scholar 

  3. Barescut, J.C., et al.: Developing methodology for description of biosphere development at Olkiluoto disposal site utilising forest studies at other land uplift sites. Radioprotection 40(Suppl 1), S927–S932 (2005)

    Google Scholar 

  4. Hell, P. et al.: Safety case for the disposal of spent nuclear fuel at Olkiluoto—definition of reference and bounding groundwaters, buffer and backfill porewaters (2014)

    Google Scholar 

  5. Holgersson, et al.: Behavior of Cs in grimsel granodiorite: sorption on main minerals and crushed rock. Radiochimica Acta International Journal for Chemical Aspects of Nuclear Science & Technology (2016)

    Google Scholar 

  6. Sagar, B.: Review of safety assessment in Posiva's construction license application for a repository at Olkiluoto (2015)

    Google Scholar 

  7. Säteilyturvakeskus: STUK’s review on the construction license stage post closure safety case of the spent nuclear fuel disposal in Olkiluoto (2015)

    Google Scholar 

  8. Idemitsu, K., Akiyama, D., Matsuki, Y., Irie, Y., Inagaki, Y., Arima, T.: Migration behaviour of lanthanides in compacted bentonite with iron corrosion product using electrochemical method. MRS Online Proc. Libr. 1475(1), 611–616 (2012). https://doi.org/10.1557/opl.2012.641

    Article  Google Scholar 

  9. Lee, J.O., Cho, W.J., Choi, H.: Sorption of cesium and iodide ions onto KENTEX-bentonite. Environ. Earth Sci. 70(5), 2387–2395 (2013). https://doi.org/10.1007/s12665-013-2530-9

    Article  ADS  Google Scholar 

  10. Kuleshova, M.L., Danchenko, N.N., Sergeev, V.I., Shimko, T.G., Malashenko, Z.P.: The properties of bentonites as a material for sorptive barriers. Mosc. Univ. Geol. Bull. 69(5), 356–364 (2014). https://doi.org/10.3103/S0145875214050044

    Article  Google Scholar 

  11. Tachi, Y. et al.: Integrated sorption and diffusion model for bentonite. Part 1: clay–water interaction and sorption modeling in dispersed systems. J. Nucl. Sci. Technol. 51(10), 1177–1190 (2014)

    Google Scholar 

  12. Wu, T., et al.: Effect of organic matter on 125I diffusion in bentonite. J. Radioanal. Nucl. Chem. 303(1), 255–260 (2014)

    Article  Google Scholar 

  13. Wu, T., et al.: Diffusion behavior of Se(IV) and Re(VII) in GMZ bentonite. Appl. Clay Sci. 101, 136–140 (2014)

    Article  ADS  Google Scholar 

  14. Sawaguchi, T., et al.: Diffusion of Cs, Np, Am and Co in compacted sand-bentonite mixtures: evidence for surface diffusion of Cs cations. Clay Miner. 48(2), 411–422 (2018)

    Article  ADS  Google Scholar 

  15. Bouzidi, A., et al.: Sorption behavior of cesium on Ain Oussera soil under different physicochemical conditions. J. Hazard. Mater. 184(1–3), 640–646 (2010)

    Article  Google Scholar 

  16. Ass, A. et al.: Cs+ sorption onto Kutch clays: Influence of competing ions. Appl. Clay Sci. 166, 88–93 (2018)

    Google Scholar 

  17. Missana, T., et al.: Kinetics and irreversibility of cesium and uranium sorption onto bentonite colloids in a deep granitic environment. Appl. Clay Sci. 26(1/4), 137–150 (2004)

    Article  Google Scholar 

  18. Savoye, S., et al.: Mobility of cesium through the callovo-oxfordian claystones under partially saturated conditions. Environ. Sci. Technol. 46(5), 2633–2641 (2012)

    Article  ADS  Google Scholar 

  19. Iijima, K., et al.: Reversibility and modeling of adsorption behavior of cesium ions on colloidal montmorillonite particles. Appl. Clay Sci. 49(3), 262–268 (2010)

    Article  Google Scholar 

  20. Sasaki, T., et al.: Analysis of sorption behavior of cesium ion on mineral components of granite. J. Nucl. Sci. Technol. 44(4), 641–648 (2007)

    Article  Google Scholar 

  21. Tsai, S.C., et al.: Cesium adsorption and distribution onto crushed granite under different physicochemical conditions. J. Hazard. Mater. 161(2–3), 854–861 (2009)

    Article  Google Scholar 

  22. Lee, C.-P., Tsai, S.-C., Wu, M.-C., Tsai, T.-L., Tu, Y.-L., Kang, L.-J.: A comparative study on sorption and diffusion of Cs in crushed argillite and granite investigated in batch and through-diffusion experiment. J. Radioanal. Nucl. Chem. 311(2), 1155–1162 (2016). https://doi.org/10.1007/s10967-016-5010-3

    Article  Google Scholar 

  23. Wang, T.H., et al.: Effects of pH and concentration on Cs ions sorption and diffusion in crushed granite by using batch and modified capillary method. J. Chin. Chem. Soc. 56(4), 748–754 (2009)

    Article  Google Scholar 

  24. Jan, Y.-L., et al.: Evaluating adsorption ability of granite to radioselenium by chemical sequential extraction. J. Radioanal. Nucl. Chem. 273(2), 299–306 (2007)

    Article  Google Scholar 

  25. Tsai, S.-C., et al.: Kinetics of Cs adsorption/desorption on granite by a pseudo first order reaction model. J. Radioanal. Nucl. Chem. 275(3), 555–562 (2007)

    Article  Google Scholar 

  26. Zang, J., et al.: Sorption and desorption of Sr onto a rough single fractured granite. J Contam Hydrol 228, 103558 (2020)

    Article  Google Scholar 

  27. Lee, C.P., et al.: Sorption and diffusion of HTO and cesium in crushed granite compacted to different lengths. J. Radioanal. Nucl. Chem. 275(2), 371–378 (2008)

    Article  Google Scholar 

  28. Shapiro, Allen, M.: Effective matrix diffusion in kilometer-scale transport in fractured crystalline rock. Water Resour. Res. 37(3), 507–522 (2001)

    Google Scholar 

  29. Dai, Z. et al.: Upscaling matrix diffusion coefficients for heterogeneous fractured rocks. Geophys. Res. Lett. 34(7) (2007)

    Google Scholar 

  30. Palágyi, Š, et al.: Migration and sorption of 137Cs and 152,154Eu in crushed crystalline rocks under dynamic conditions. J. Radioanal. Nucl. Chem. 279(2), 431–441 (2009)

    Article  Google Scholar 

  31. Giannatou, S. et al.: Potassium solution concentration effect on Cs sorption in an acid soil (2012)

    Google Scholar 

  32. Kikuchi, R. et al.: Cs–sorption in weathered biotite from Fukushima granitic soil. J. Mineral. Petrol. Sci. 110(3), 126–134 (2015)

    Google Scholar 

  33. Pitkänen, P. et al.: Results of monitoring at Olkiluoto in 2007. Hydrogeochemistry (2008)

    Google Scholar 

  34. B., et al.: The sorption behavior of Cs+ ion on clay minerals and zeolite in radioactive waste management: sorption kinetics and thermodynamics. J Radioanal. Nucl. Chem. (2011)

    Google Scholar 

  35. Koarashi, J., et al.: Factors affecting vertical distribution of Fukushima accident-derived radiocesium in soil under different land-use conditions. Sci. Total Environ. 431, 392–401 (2012)

    Article  ADS  Google Scholar 

  36. Oughton, D.H., et al.: Mobilisation of 137Cs and 90Sr from sediments: Potential sources to arctic waters. Sci. Total Environ. 202(1–3), 155–165 (1997)

    Article  ADS  Google Scholar 

  37. Hakem, N.L., et al.: Sorption of cesium and strontium on hanford soil. J. Radioanal. Nucl. Chem. 246(2), 275–278 (2000)

    Article  Google Scholar 

  38. Fan, Q.H., et al.: An EXAFS study on the effects of natural organic matter and the expandability of clay minerals on cesium adsorption and mobility. Geochim. Cosmochim. Acta 135, 49–65 (2014)

    Article  ADS  Google Scholar 

  39. Bradbury, M.H., Baeyens, B.: A generalised sorption model for the concentration dependent uptake of caesium by argillaceous rocks. J. Contam. Hydrol. 42(2/4), 141–163 (2000)

    Article  ADS  Google Scholar 

  40. Bostick, B., et al.: Cesium adsorption on clay minerals: an EXAFS spectroscopic investigation. Environ. Sci. Technol. 36(12), 2670 (2002)

    Article  ADS  Google Scholar 

  41. Kruyts, N., Delvaux, B.: Soil organic horizons as a major source for radiocesium biorecycling in forest ecosystems. J. Environ. Radioact. 58(2–3), 175–190 (2002)

    Article  Google Scholar 

  42. Mckinley, J.P., et al.: Microscale distribution of cesium sorbed to biotite and muscovite. Environ. Sci. Technol. 38(4), 1017–1023 (2004)

    Article  ADS  Google Scholar 

  43. Loon, L., et al.: The sorption behaviour of caesium on opalinus clay: a comparison between intact and crushed material. Appl. Geochem. 24(5), 999–1004 (2009)

    Article  ADS  Google Scholar 

  44. Bergaoui, L., et al.: Cesium adsorption on soil clay: macroscopic and spectroscopic measurements. Appl. Clay Sci. 29(1), 23–29 (2005)

    Article  Google Scholar 

  45. Missana, T., et al.: Modelling of Cs sorption in natural mixed-clays and the effects of ion competition. Appl. Geochem. 49, 95–102 (2014)

    Article  ADS  Google Scholar 

  46. Km, A. et al.: Desorption mechanisms of cesium from illite and vermiculite—Sciencedirect. Appl. Geochem. 123 (2020)

    Google Scholar 

  47. Christophe, et al.: Experimental and modelling studies of caesium sorption on illite. Geochimica et Cosmochimica Acta (1999)

    Google Scholar 

  48. Vejsada, J., et al.: Adsorption of cesium on Czech smectite-rich clays—a comparative study. Appl. Clay Sci. 30(1), 53–66 (2005)

    Article  Google Scholar 

  49. Wang, W., et al.: Transport behaviors of Cs(+) in granite porous media: effects of mineral composition, HA, and coexisting cations. Chemosphere 268, 129341 (2021)

    Article  ADS  Google Scholar 

  50. Yin, X. et al.: Effects of NH4+, K+, and Mg2+ and Ca2+ on the cesium adsorption/desorption in binding sites of vermiculitized biotite. Environ. Sci. Technol. 51(23) (2017)

    Google Scholar 

  51. Brouwer, E., et al.: Cesium and rubidium ion equilibriums in illite clay. J. Phys. Chem. 87(7), 1213–1219 (1983)

    Article  Google Scholar 

  52. Cornell, R.M.: Adsorption of cesium on minerals: a review. J. Radioanal. Nucl. Chem. 171(2), 483–500 (1993)

    Article  Google Scholar 

  53. Steefel, C.I., et al.: Cesium migration in Hanford sediment: a multisite cation exchange model based on laboratory transport experiments. J. Contam. Hydrol. 67(1–4), 219–246 (2003)

    Article  ADS  Google Scholar 

  54. Smith, Z: A cation exchange model to describe Cs+ sorption at high ionic strength in subsurface sediments at Hanford site, USA. J. Contam. Hydrol. (2004)

    Google Scholar 

  55. Wissocq, A., et al.: Ca and Sr sorption on Ca-illite: experimental study and modelling. Procedia Earth & Planetary ence 17, 662–665 (2017)

    Article  ADS  Google Scholar 

  56. Durrant, C.B., et al.: Cesium sorption reversibility and kinetics on illite, montmorillonite, and kaolinite. Sci. Total Environ. 610–611, 511–520 (2017)

    Google Scholar 

  57. Khan, S.A.: Sorption of the long-lived radionuclides cesium-134, strontium-85 and cobalt-60 on bentonite. J. Radioanal. Nucl. Chem. 258(1), 3–6 (2003)

    Article  Google Scholar 

  58. Tameta, Y., et al.: Effect of dissolved soil organic matter on cesium adsorption by zeolite and illite. J. Environ. Manage. 289, 112477 (2021)

    Article  Google Scholar 

  59. Chang, K.-P., et al.: Basic study of137Cs sorption on soil. J. Nucl. Sci. Technol. 30(12), 1243–1247 (1993)

    Article  Google Scholar 

  60. Chiba, Y. et al.: Effect of soil organic matter on the enhancement of caesium fixation by soil mixed with minerals. Radioisotopes (2019)

    Google Scholar 

  61. Galamboš, M., et al.: Adsorption of cesium on domestic bentonites. J. Radioanal. Nucl. Chem. 281(3), 485–492 (2009)

    Article  Google Scholar 

  62. Liu, C., et al.: Desorption kinetics of radiocesium from subsurface sediments at Hanford Site, USA. Geochim. Cosmochim. Acta 67(16), 2893–2912 (2003)

    Article  ADS  Google Scholar 

  63. Zachara, J.M. et al.: Sorption of Cs+ to micaceous subsurface sediments from the Hanford site, USA. Geochim. Cosmochim. Acta (2002)

    Google Scholar 

  64. Staunton, S.: Adsorption of 137Cs on montmorillonite and illite: effect of charge compensating cation, ionic strength, concentration of Cs, K and Fulvic acid. Clays Clay Miner. 45(2), 251–260 (1997)

    Article  ADS  Google Scholar 

  65. Söderlund, et al.: Sorption of cesium on boreal forest soil I: the effect of grain size, organic matter and mineralogy. J. Radioanal. Nucl. Chem. (2016)

    Google Scholar 

  66. Ana, et al.: Inter layer collapse affects on cesium adsorption onto mate. Environ. Sci. Technol. (2014)

    Google Scholar 

  67. Sawhney, B.L.: Selective sorption and fixation of cations by clay minerals: a review. Clays Clay Miner. 20(2), 93–100 (1972). https://doi.org/10.1346/CCMN.1972.0200208

    Article  ADS  Google Scholar 

  68. Latrille, C., Bildstein, O.: Cs selectivity and adsorption reversibility on Ca-illite and Ca-vermiculite. Chemosphere 288, 132582- (2022)

    Google Scholar 

  69. Tiziana, et al.: Modeling cesium retention onto Na-, K- and Ca-smectite: effects of ionic strength, exchange and competing cations on the determination of selectivity coefficients. Geochim. Cosmochim. Acta 128(1), 266–277 (2014)

    Google Scholar 

  70. Li, S.H. et al.: Experimental study on adsorption of Cs+ and Yb3+ on calcite, kaolinite, montmorillonite, chlorite and glauconite J. Nucl. Radiochem. 70–76 (2002)

    Google Scholar 

  71. Sunkyung, et al.: Clay mineral weathering and contaminant dynamics in a caustic aqueous system: II. mineral transformation and microscale partitioning. Geochim. Cosmochim. Acta (2005)

    Google Scholar 

  72. Qin, H. et al.: Investigation of cesium adsorption on soil and sediment samples from Fukushima Prefecture by sequential extraction and EXAFS technique. Geochem. Soc. Japan (4) (2012)

    Google Scholar 

  73. Kogure, T. et al.: XRD and HRTEM evidence for fixation of cesium ions in vermiculite clay. Chem. Lett. 41(4), 380–382 (2012)

    Google Scholar 

  74. Motokawa, R., et al.: Mesoscopic structures of vermiculite and weathered biotite clays in suspension with and without cesium ions. Langmuir the Acs J. Surf. Colloids 30(50), 15127–15134 (2014)

    Article  Google Scholar 

  75. Volkov, I.N., et al.: Sorption of 90Sr and 137Cs on clays used to build safety barriers in radioactive waste storage facilities. Nucl. Eng. Technol. 7(2), 151–156 (2021)

    Article  Google Scholar 

  76. Degryse, F., et al.: Partitioning of metals (Cd Co, Cu, Ni, Pb, Zn) in soils: concepts, methodologies, prediction and applications—a review. Eur. J. Soil Sci. 60(4), 590–612 (2009)

    Article  Google Scholar 

  77. Ramirez-Guinart, O. et al.: Deriving probabilistic soil distribution coefficients (Kd). Part 1: General approach to decreasing and describing variability and example using uranium Kd values. J. Environ. Radioact. 222, 106362 (2020)

    Google Scholar 

  78. Puukko, E., et al.: Electromigration experiments for studying transport parameters and sorption of cesium and strontium on intact crystalline rock. J. Contam. Hydrol. 217, 1–7 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longcheng Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, Y., Fang, S., Zhang, J., Mo, X., Liu, L. (2023). A Review on Adsorption Mechanisms and Distribution Coefficient (Kd) of Cesium in Clay/Host Rock. In: Liu, C. (eds) Proceedings of the 23rd Pacific Basin Nuclear Conference, Volume 2. Springer Proceedings in Physics, vol 284. Springer, Singapore. https://doi.org/10.1007/978-981-19-8780-9_86

Download citation

Publish with us

Policies and ethics