Skip to main content
Log in

Migration and sorption of 137Cs and 152,154Eu in crushed crystalline rocks under dynamic conditions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In migration experiments, sorption of 137Cs and 152,154Eu in the columns of crushed crystalline rocks of 0.25–0.8 mm grain size under dynamic flow conditions from the synthetic groundwater (SGW) has been studied. Five samples of crystalline rocks from Cavernous Gas Reservoir near Příbram were taken. Plastic syringes of 8.8 cm length and 2.1 cm in diameter were used as columns. The water phase was pumped downward through the columns, using a multi-head peristaltic pump, with a seepage velocity of about 0.2 cm/min. The radioactive nuclides, containing chemical carriers, were added into the water stream individually in the form of a short pulse. Desorption experiments were carried out with 2:1 (v/v) mixture of H2SO4 and HNO3. In the columns the longitudinal distribution of the residual 137Cs and 152,154Eu activities was also determined. By the evaluation of respective breakthrough and displacement curves, the experimental and theoretical retardation factors, distribution coefficients and hydrodynamic dispersion coefficients were determined using the integrated analytical form of a simple advection-dispersion equation (ADE). Dynamic sorption experiments were also compared with the results of static sorption experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Kumata, T. T. Vandergraaf, Progress of Nuclear Research, JAERI, Tokai, 1996, p. 71.

    Google Scholar 

  2. Ch. André, M. Sardin, P. Vitorge, M. Fauré, J. Contam. Hydrol., 35 (1998) 161.

    Article  Google Scholar 

  3. R. Artinger, B. Kienzler, W. Schüssler, J. I. Kim, J. Contam. Hydrol., 35 (1998) 261.

    Article  CAS  Google Scholar 

  4. J. E. Saiers, G. M. Hornberger, J. Contam. Hydrol., 22 (1996) 255.

    Article  CAS  Google Scholar 

  5. C. Fesch, W. Simon, S. B. Haderlein, P. Reichert, R. P. Schwarzenbach, J. Contam. Hydrol., 31 (1998) 373.

    Article  CAS  Google Scholar 

  6. X. Wang, J. Du, Z. Tao, Z. Fan, J. Radioanal. Nucl. Chem., 258 (2003) 133.

    Article  CAS  Google Scholar 

  7. M. Flury, Sz. Czigány, G. Chen, J. B. Harsh, J. Contam. Hydrol., 71 (2004) 111.

    Article  CAS  Google Scholar 

  8. D. Xu, Q. L. Ning, X. Zhou, C. L. Chen, X. L. Tan, A. D. Wu, X. Wang, J. Radioanal. Nucl. Chem., 266 (2005) 419.

    Article  CAS  Google Scholar 

  9. D. J. Sims, W. S. Andrews, K. A. M. Creber, X. Wang, J. Radioanal. Nucl. Chem., 263 (2005) 619.

    Article  CAS  Google Scholar 

  10. T. Yoshida, M. Suzuki, J. Radioanal. Nucl. Chem., 270 (2006) 363.

    Article  CAS  Google Scholar 

  11. RAWRA Radioactive Waste Repository Authority, Deep Radioactive Waste Repository, SÚRAO, Prague, Czech Republic, 2006, p. 12 (www.surao.cz).

  12. NEA OECD, Nuclear Science Committee, Actinide Separation Chemistry in Nuclear Waste Streams and Materials, NEA/NSC/DOC (97) 1997, p. 19.

  13. B. Berkowitz, G. Kosakowski, G. Margolin, H. Scher, Ground Water, 39 (2001) 593.

    Article  CAS  Google Scholar 

  14. J. Šimůnek, N. J. Jarvis, M. T. Van Genuchten, A. Gärdenäs, J. Hydrol., 272 (2003) 14.

    Article  Google Scholar 

  15. C. Zheng, G. D. Bennett, Applied Contaminant Transport Modeling: Theory and Practice, Van Nostrand Reinhold, New York, NY, 1995, p. 440.

    Google Scholar 

  16. ANL National Atmospheric Deposition Program/National Trends Network, 2004 Annual & Seasonal Data Summary for Site IL19, Argonne National Laboratory, Argonne, Ill., 2005.

  17. Y. Fujikawa, M. Fukui, J. Contam. Hydrol., 8 (1991) 43.

    Article  CAS  Google Scholar 

  18. C. Hurel, N. Marmier, F. Seby, Radiochim. Acta, 90 (2006) 695.

    Article  Google Scholar 

  19. J. A. Rard, Chemistry and Thermodynamics of Europium and Some of its Simpler Inorganic Compounds and Aqueous Species, Chem. Revs, 85 (1985) 555.

    Article  CAS  Google Scholar 

  20. N. N. Greenwood, A. Earnshaw, Chemistry of the Elements, 2nd ed., Butterworth-Heinemann, Oxford, 1997.

    Google Scholar 

  21. L. Yu, X. Chen, Z. Zhao, J. Radioanal. Nucl. Chem., 274 (2007) 187.

    Article  Google Scholar 

  22. K. Štamberg, P. Beneš, J. Mizera, J. Dolanský, D. Vopálka, K. Chalupská, J. Radioanal. Nucl. Chem., 258 (2003) 329.

    Article  Google Scholar 

  23. P. Beneš, J. Mizera, Radiochim. Acta, 74 (1996) 185.

    Google Scholar 

  24. Š. Palágyi, P. Franta, V. Havlová, A. Laciok, J. Palágyiová, H. Vodičková, Laboratory Studies of Migration of Radionuclides in Natural Barriers, Research Report of the Project of Ministry of Industry and Trade of the Czech Republic No. 1H-PK/25, Part 2.5, NRI Řež plc, Reg. No. Z1798, Řež, 2006, 130 p. (in Czech).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Š. Palágyi.

Additional information

The paper was presented in part as a poster No. PB1-1 at the 11th International Conference Migration’ 07, held in Munich, Germany, August 26–31, 2007, Abstracts, p. 212.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palágyi, Š., Vodičková, H., Landa, J. et al. Migration and sorption of 137Cs and 152,154Eu in crushed crystalline rocks under dynamic conditions. J Radioanal Nucl Chem 279, 431–441 (2009). https://doi.org/10.1007/s10967-007-7331-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-007-7331-3

Keywords

Navigation