Skip to main content

Talaromyces flavus: An Important Rhizospheric Inhabitant

  • Chapter
  • First Online:
Detection, Diagnosis and Management of Soil-borne Phytopathogens

Abstract

The Talaromyces’ story started about 100 years ago, with isolation and description of the first strain, albeit under another name. It continued with taxonomic studies, secondary metabolites identification, and the study of their effect on biological models. Subsequently, it continued with attempts to apply this strain in agriculture for biocontrol of phytopathogenic microorganisms and culminated with the study of T. flavus genetic equipment. Biological studies with metabolites such as vermiculine, vermistatin, dehydrolatenusin, or purpactins have broadened our horizons in immunology, cancer treatment, or metabolic diseases. This chapter describes some of the important metabolites produced and the role of T. flavus as biocontrol agent in sustainable agriculture system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ayer WA, Racok JS (1990a) The metabolites of Talaromyces flavus. Part 1. Metabolites of organic extract. Can J Chem 68:2085–2094. https://doi.org/10.1139/v90-318

    Article  CAS  Google Scholar 

  • Ayer WA, Racok JS (1990b) The metabolites of Talaromyces flavus. Part 2. Biological activity and biosynthetic studies. Can J Chem 68:2095–2101. https://doi.org/10.1139/v90-319

    Article  CAS  Google Scholar 

  • AugustĂ­n J, Kuniak L, Zemek J, Marvanová L (1983) Czechoslovak Patent No. 205, 317. Prague: industrial property office

    Google Scholar 

  • Bahramiyam D, Naraghi L, Hidari A (2016) Effectiveness of the chemical stabilizers of fungal antagonist, Talaromyces flavus in biological control of tomato and greenhouse cucumber Rhizoctonia-induced seedling damping-off disease. Biocontrol Plant Prot 4(1):41–51

    Google Scholar 

  • Bashyal BM (2018) Etiology of an emerging disease: bakanae of rice. Indian Phytopathol 71:485

    Article  Google Scholar 

  • Bashyal BM, Zaidi NW, Singh US, Aggarwal R (2020) Effect of fungal biocontrol agents on enhancement of drought stress tolerance in rice (Oryza sativa L.). Indian J Biochem Biophys 57:101–108

    CAS  Google Scholar 

  • Benjamin CR (1955) Ascocarps of Aspergillus and Penicillium. Mycologia 47:669–687. https://doi.org/10.2307/3755578

    Article  Google Scholar 

  • Boosalis MG (1956) Effect of soil temperature and green manure amendment of unsterilized soil on parasitism of Rhizoctonia solani by Penicillium vermiculatum and Trichoderma sp. Phytopathology 46:473–478

    Google Scholar 

  • Chattopadhyay SB, Das Gupta C (1959) Arachniotus indicus sp. nov. Trans Br Mycol Soc 42:72–74. https://doi.org/10.1016/S00071536(59)80070-X

    Article  Google Scholar 

  • Dangeard PA (1907) Recherches sur le developpement duperithece chez les Ascomycetes. Le Botaniste 10:176–217

    Google Scholar 

  • Demain AL, Chemerda JM, White RF (1972) U.S. Patent No. 3,635,795. Washington, D.C.: U.S. patent and trademark office

    Google Scholar 

  • Dethoup T, Manoch L, Visarathanonth N, Chamswarng C, Kijjoa A (2007) Morphology and distribution of Talaromyces flavus from soil and potential use as a biological control agent against plant pathogenic fungi. Thai J Agric Sci 40(1-2):37–50

    Google Scholar 

  • Duo-Chuan LI, Chen S, Jing LU (2005) Purification and partial characterization of two chitinases from the mycoparasitic fungus Talaromyces flavus. Mycopathologia 159:223–229. https://doi.org/10.1007/s11046-004-9096-8

    Article  CAS  PubMed  Google Scholar 

  • Dutta BK (1981) Studies on some fungi isolated from the rhizosphere of tomato plants and the consequent prospect for control of Verticillium wilt. Plant Soil 63:209–216. https://doi.org/10.1007/BF02374599

    Article  Google Scholar 

  • Fahima T, Henis Y (1995) Quantitative assessment of the interaction between the antagonistic fungus Talaromyces flavus and the wilt pathogen Verticillium dahlia on eggplant roots. Plant Soil 176:129–137. https://doi.org/10.1007/BF00017683

    Article  CAS  Google Scholar 

  • Fahima T, Madi L, Henis Y (1992) Ultrastructure and germinability of Verticillium dahliae microsclerotia parasitized by Talaromyces flavus on agar medium and in treated soil. Biocontrol Sci Tech 2:69–78. https://doi.org/10.1080/09583159209355220

    Article  Google Scholar 

  • Fravel DR, Roberts DP (1991) In situ evidence for the role of glucose oxidase in the biocontrol of Verticillium wilt by Talaromyces flavus. Biocontrol Sci Tech 1:91–99. https://doi.org/10.1080/09583159109355189

    Article  Google Scholar 

  • Fravel DR, Davis JR, Sorensen LH (1986) Effect of Talaromyces flavus and metham on Verticillium wilt incidence and potato yield 1984–1985. In: Biological and cultural tests for control of plant diseases, vol 1. The American Phytopathological Society, St. Paul, p 17

    Google Scholar 

  • Fuska J, Nemec P, Kuhr I (1972) Vermiculine, a new antiprotozoal antibiotic from Penicillium vermiculatum. J Antibiot 25(4):208–211. https://doi.org/10.7164/antibiotics.25.208

    Article  CAS  Google Scholar 

  • Fuska J, Fuskova A, Nemec P (1979a) Vermistatin, an antibiotic with cytotoxic effects, produced from Penicillium vermiculatum. Biologia 34:735–739

    CAS  Google Scholar 

  • Fuska J, Nemec P, Fuskova A (1979b) Vermicillin, a new metabolite from Penicillium vermiculatum inhibiting tumor cells in vitro. J Antibiot 32:667–669

    Article  CAS  Google Scholar 

  • Galvez-Mariscal A, Lopez-Munguia A (1991) Production and characterization of a dextranase from an isolated Paecilomyces lilacinus strain. Appl Microbiol Biotechnol 36:327–331. https://doi.org/10.1007/BF00208151

    Article  CAS  Google Scholar 

  • Ghosh GR, Orr GF, Kuehn HH (1961) A reevaluation of Arachniotus indicus. Mycologia 53:221–227. https://doi.org/10.2307/3756269

    Article  Google Scholar 

  • Haggag WM, Kansoh AL, Aly AM (2006) Proteases from Talaromyces flavus and Trichoderma harzianum: purification, characterization and antifungal activity against brown spot disease on faba bean. Plant Pathol Bull 15:231–239

    CAS  Google Scholar 

  • Hang YD, Woodams EE (1993) Thermophilic glucoamylase from Talaromyces flavus. Lett Appl Microbiol 17:156–157. https://doi.org/10.1111/j.1472-765X.1993.tb00383.x

    Article  CAS  Google Scholar 

  • Hayashi K, Hatsutori N, Donho M, Nakajima H (1996) Japan Patent No. 08,217,673. Japan Patent Office, Tokyo

    Google Scholar 

  • He J, He Y, Zhang J-Q, Wei Y-H (2007) Studies on the chemical constituents of Lycopus europaeus L. Jiefangjun Yaoxue Xuebao 23:432–433

    CAS  Google Scholar 

  • Hendlin D, Stapley EO, Jackson M, Wallick H, Miller AK, Wolf FJ, Miller TW, Chaiet L, Kahan FM, Foltz EL, Woodruff HB, Mata JM, Hernandez S, Mochales S (1969) Phosphomycin, new antibiotic produced by strain of Streptomyces. Science 166:122–123. https://doi.org/10.1126/science.166.3901.122

    Article  CAS  PubMed  Google Scholar 

  • Inglis GD, Kawchuk LM (2002) Comparative degradation of oomycete, ascomycete, and basidiomycete cell walls by mycoparasitic and biocontrol fungi. Can J Microbiol 48:60–70. https://doi.org/10.1139/w01-130

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi K, Amao S, Nii M, Kaburagi H (1974) German Patent No. 2,408,998. German Patent and Trade Mark Office, Munich

    Google Scholar 

  • Jiang S, Li L, Zhang D, Su T (2007) China Patent No. 10,104,825. China Intellectual Property Office, Beijing

    Google Scholar 

  • Kamyschko OP (1962) De Monilialibus terrestribus novis notula. Bot Mater Otd Sporov Rast Bot Inst Komarova Akad Nauk SSSR (Not Syst Sect Cryptog Inst Bot Komarovii Acad Sci URSS) 15:137–141

    Google Scholar 

  • Kim KK, Fravel DR, Papavizas GC (1988) Identification of a metabolite produced by Talaromyces flavus as glucose oxidase and its role in the biocontrol of Verticillium dahliae. Phytopathology 78:488–492. https://doi.org/10.1094/Phyto-78-488

    Article  CAS  Google Scholar 

  • Kimura Y, Yoshinari T, Koshino H, Fujioka S, Okada K, Shimada A (2007) Rubralactone, rubralides A, B and C and rubramin produced by Penicillium rubrum. Biosci Biotechnol Biochem 71:1896–1901. https://doi.org/10.1271/bbb.70112

    Article  CAS  PubMed  Google Scholar 

  • Klocker A (1902) Gymnoascus flavus n. sp. Hedwigia 41:80–83

    Google Scholar 

  • Lamichhane JR, DĂĽrr C, Schwanck AA, Robin MH, Sarthou JP, Cellier V, MessĂ©an A, Aubertot JN (2017) Integrated management of damping-off diseases. A review. Agron Sustain Dev 37(2):1–25. https://doi.org/10.1007/s13593-017-0417-y

    Article  Google Scholar 

  • Madi L, Katan T, Henis Y (1992) Inheritance of antagonistic properties and lytic enzyme activities in sexual crosses of Talaromyces flavus. Ann Appl Biol 121:565–576. https://doi.org/10.1111/j.17447348.1992.tb03466.x

    Article  Google Scholar 

  • Madi L, Katan T, Katan J, Henis Y (1997) Biological control of Sclerotium rolfsii and Verticillium dahliae by Talaromyces flavus is mediated by different mechanisms. Phytopathology 87:1054–1060. https://doi.org/10.1094/PHYTO.1997.87.10.1054

    Article  CAS  PubMed  Google Scholar 

  • Marois JJ, Johnston SA, Dunn MT, Papavizas GC (1982) Biological control of Verticillium wilt of eggplant in the field. Plant Dis 66:1166–1168

    Article  Google Scholar 

  • Marois JJ, Fravel DR, Papavizas GC (1984) Ability of Talaromyces flavus to occupy the rhizosphere and its interaction with Verticillium dahliae. Soil Biol Biochem 6:387–390. https://doi.org/10.1016/0038-0717(84)90038-5

    Article  Google Scholar 

  • Martin WR, Foster JW (1955) Production of trans-L-epoxysuccinic acid by fungi and its microbiological conversion to meso-tartaric acid. J Bacteriol 70:405–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massias M, Molho L, Rebuffat S, Cesario M, Guilhen J, Pascard C, Bodo B (1989) Vermiculinol and vermiculidiol, macrodiolides from the Penicillium vermiculatum. Phytochemistry 28:1491–1494. https://doi.org/10.1016/S0031-9422(00)97771-9

    Article  CAS  Google Scholar 

  • Matsumoto K, Takada M (1984) U.S. Patent No. 4,425,436. Washington, D.C.: U.S. patent and trademark office

    Google Scholar 

  • McLaren DL, Huang HC, Rimmer SR (1986) Hyperparasitism of Sclerotinia sclerotiorum by Talaromyces flavus. Can J Plant Pathol 8:43–48. https://doi.org/10.1080/07060668609501840

    Article  Google Scholar 

  • McLaren DL, Huang HC, Rimmer SR, Kokko EG (1989) Ultrastructural studies on infection of sclerotia of Sclerotinia sclerotiorum by Talaromyces flavus. Can J Bot 67:2199–2205. https://doi.org/10.1139/b89-279

    Article  Google Scholar 

  • Mizuno K, Yagi A, Takada M, Matsuura K, Yamaguchi K, Asano K (1974) A new antibiotic, talaron. J Antibiot 27(7):560–563. https://doi.org/10.7164/antibiotics.27.560

    Article  CAS  Google Scholar 

  • Mohammadi S, Ghanbari L (2015) In vitro antagonistic mechanisms of trichoderma spp. and talaromyces flavus to control gaeumannomyces graminis var. tritici the causal agent of wheat take-all disease. Turkish J Agric-Food. Sci Technol 3(8):629–634. https://doi.org/10.24925/turjaf.v3i8.629-634.271

    Article  Google Scholar 

  • Mohawed SM, Badran RAM (1995) Proteinase K activities from Talaromyces flavus, with respect to its keratin hydrolyzing enzymes. Egypt J Microbiol 30:369–382

    CAS  Google Scholar 

  • Monti D, Pišvejcová A, KĹ™en V, Lama M, Riva S (2004) Generation of an α-L-rhamnosidase library and its application for the selective derhamnosylation of natural products. Biotechnol Bioeng 87:763–771. https://doi.org/10.1002/bit.20187

    Article  CAS  PubMed  Google Scholar 

  • Murray FR, Llewellyn DJ, Peacock WJ, Dennis ES (1997) Isolation of the glucose oxidase gene from Talaromyces flavus and characterization of its role in the biocontrol of Verticillium dahliae. Curr Genet 32:367–375. https://doi.org/10.1007/s002940050290

    Article  CAS  PubMed  Google Scholar 

  • Murray F, Llewellyn D, McFadden H, Last D, Dennis ES, Peacock WJ (1999) Expression of the Talaromyces flavus glucose oxidase gene in cotton and tobacco reduces fungal infection, but is also phytotoxic. Mol Breed 5:219–232. https://doi.org/10.1023/A:1009625801909

    Article  CAS  Google Scholar 

  • MycoBank (2010) Fungal databases. International Mycological Association, Paris. Retrieved March 23, 2010, from http://www.mycobank.org/MycoTaxo.aspx?Link=T&Rec=427208

    Google Scholar 

  • Nakova MB (2003) Verticillium wilt on cotton – ecological disease management possibilities. J Environ Prot Ecol 4:70–77

    CAS  Google Scholar 

  • Naraghi L, Heydari A, Rezaee S, Razavi M (2012) Biocontrol agent Talaromyces flavus stimulates the growth of cotton and potato. J Plant Growth Regul 31:471–477. https://doi.org/10.1007/s00344-011-9256-2

    Article  CAS  Google Scholar 

  • Naraghi L, Heydari A, Hesan A, Sharifi K (2014) Evaluation of Talaromyces flavus and Trichoderma harzianum in biological control of sugar beet damping-off disease in the greenhouse and field conditions. Int J Agric Sci Res 4(1):65–74

    Google Scholar 

  • Orr GF, Kuehn HH, Plunkett OA (1963) The genus Gymnoascus Baranetzky. Mycopathologia 21:1–18. https://doi.org/10.1007/BF02053249

    Article  CAS  Google Scholar 

  • Pitt JI (1979) The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces. Academic, New York, pp 1–634

    Google Scholar 

  • Pitt JI, Hocking AD (2009) Fungi and food spoilage, 3rd edn. Springer, New York, p 190

    Book  Google Scholar 

  • Proksa B, Adamcova J, Fuska J (1992a) 2-Methylsorbic acid, an antifungal metabolite of Penicillium vermiculatum. Appl Microbiol Biotechnol 37:443–445. https://doi.org/10.1007/BF00180965

    Article  CAS  Google Scholar 

  • Proksa B, Uhrin D, Adamcova J, Fuska J (1992b) Vermixocins A and B, two novel metabolites from Penicillium vermiculatum. J Antibiot 45:1268–1272

    Article  CAS  Google Scholar 

  • Proksa B, Liptaj T, Pronayova N, Fuska J (1994) (–)-Mitorubrinic acid, a new metabolite of Penicillium vermiculatum Dang. F-852. Chem Pap 48:429–432

    CAS  Google Scholar 

  • Proksa B, Ĺ turdikova M, Mojumdar SC, Fuska J (1997) Production of (–)-mitorubrinic acid by Penicillium vermiculatum. Folia Microbiol 42:133–135. https://doi.org/10.1007/BF02898722

    Article  CAS  Google Scholar 

  • Qureshi IH, Begum T, Murtaza N (1980) Microbial chemistry. III. Isolation and identification of the metabolic products of Penicillium funiculosum Thom. The chemistry of funiculosic acid. Pak J Sci Ind Res 23:16–20

    CAS  Google Scholar 

  • Ram C, Ram A (1972) Timber-attacking fungi from the state of Maranhao, Brazil. IX. Some new or interesting wood staining fungi. BrotĂ©ria Cien Nat 41:89–112

    Google Scholar 

  • Reese ET, Maguire A, Parrish FW (1972) α-1,3-Glucanases of fungi and their relationship to mycodextranase. In: Terui G (ed) Proceedings of the 4th international fermentation symposium, 19–25 March 1972. Society of fermentation technology, Osaka, Japan, pp 735–742

    Google Scholar 

  • Sakaguchi K, Inoue T, Tada S (1939) On the production of ethyleneoxide-α,β dicarboxylic acid by moulds. Zentralbl Bakteriol Parasitenkd Abt 100:302–307

    Google Scholar 

  • Sanz L, Montero M, Redondo J, Llobell A, Monte E (2004) Expression of an α-1,3-glucanase during mycoparasitic interaction of Trichoderma asperellum. FEBS J 272:493–499. https://doi.org/10.1111/j.1742-4658.2004.04491.x

    Article  CAS  Google Scholar 

  • Spagna G, Barbagallo RN, Martino A, Pifferi PG (2000) A simple method for purifying glycosidases: α-L-rhamnopyranosidase from Aspergillus niger to increase the aroma of Moscato wine. Enyzme Microb Technol 27:522–530. https://doi.org/10.1016/S0141-0229(00)00236-2

    Article  CAS  Google Scholar 

  • Siessere V, Said S (1989) Pectic enzymes production in solid-state fermentation using citrus pulp pellets by Talaromyces flavus, Tubercularia vulgaris and Penicillium charlesii. Biotechnol Lett 11:343–344. https://doi.org/10.1007/BF01024515

    Article  CAS  Google Scholar 

  • Simerská P, Kuzma M, Pišvejcová A, Weignerová L, Macková M, Riva S, KĹ™en V (2003) Application of selectively acylated glycosides for the α-galactosidase-catalyzed synthesis of disaccharides. Folia Microbiol 48:329–337. https://doi.org/10.1007/BF02931362

    Article  Google Scholar 

  • Simerská P, Monti D, ÄŚechová I, Pelantová H, Macková M, Bezouška K, Riva S, KĹ™en V (2007) Induction and characterization of an unusual α-D-galactosidase from Talaromyces flavus. J Biotechnol 128:61–71. https://doi.org/10.1016/j.jbiotec.2006.09.006

    Article  CAS  PubMed  Google Scholar 

  • Stolk AC, Samson RA (1972) The genus Talaromyces. Studies on Talaromyces and related genera II. Stud Mycol 2:1–65

    Google Scholar 

  • Stosz SK, Fravel DR, Roberts DP (1996) In vitro analysis of the role of glucose oxidase from Talaromyces flavus in biocontrol of the plant pathogen Verticillium dahliae. Appl Environ Microbiol 62:3183–3186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun JW, Cheng XL, Yan ZZ, Zhu MF, Zhang SZ (1988) Screening of dextranase-producing strains and comparison of their enzymic properties. Weishengwu Xuebao 28:45–55

    CAS  Google Scholar 

  • Tjamos EC, Fravel DR (1995) Detrimental effects of sublethal heating and Talaromyces flavus. Phytopathol 85:388–392. https://doi.org/10.1094/Phyto-85-388

    Article  Google Scholar 

  • Tozawa R, Tsuboya S, Shirosaki M, Sunahara E (1996) Japan patent No. 08, 245,691. Japan Patent Office, Tokyo

    Google Scholar 

  • Weignerová L, Hun̆ková Z, Kuzma M, Kr̆en V (2001) Enzymatic synthesis of three pNP-α-galactobiopyranosides: application of the library of fungal α-galactosidases. J Mol Catal B Enzym 11(4-6):219–224. https://doi.org/10.1016/S1381-1177(00)00076-X

    Article  Google Scholar 

  • Yadav V, Yadav PK, Yadav S, Yadav KDS (2010) α-L-Rhamnosidase: a review. Process Biochem 45:1226–1235. https://doi.org/10.1016/j.procbio.2010.05.025

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bashyal, B.M., T., P.S., Aggarwal, R. (2023). Talaromyces flavus: An Important Rhizospheric Inhabitant. In: Singh, U.B., Kumar, R., Singh, H.B. (eds) Detection, Diagnosis and Management of Soil-borne Phytopathogens. Springer, Singapore. https://doi.org/10.1007/978-981-19-8307-8_10

Download citation

Publish with us

Policies and ethics