Skip to main content

Bacillus Species as Biocontrol Agents for Fungal Plant Pathogens

  • Chapter
  • First Online:
Bacilli and Agrobiotechnology: Phytostimulation and Biocontrol

Abstract

Plant pathogenic fungi cause various plant diseases resulting in significant yield and quality losses in agricultural commodities. Additionally, filamentous fungi belonging to Aspergillus, Penicillium, and Fusarium genera can produce mycotoxins that cause adverse health effects in humans and animals. Common approaches rely on chemical agents for controlling pests and diseases. However, increasing efforts are directed to biological agents due to the environmental and sustainability concerns for chemical agents. Application of microbial species in biocontrol practices provides more environmentally friendly solutions for fungal pathogens. Bacillus, Pseudomonas, and Streptomyces have been widely used in biocontrol strategies among various bacterial genera. In this group, Bacillus species are more attractive and effective due to their resistance to adverse environmental conditions and ability to control broad range of pathogens. Bacillus species directly antagonize fungal pathogens by competition for nutrients and niches, by producing antifungal compounds (lipopeptides, antibiotics and enzymes), and indirectly by inducing systemic resistance or by promoting plant growth with different mechanisms such as siderophore production. In this chapter, recent findings about potential of Bacillus species to control phytopathogenic and toxin-producing fungi are comprehensively reviewed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover + eBook
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Available as EPUB and PDF
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ab Rahman SFS, Singh E, Pieterse CM, Schenk PM (2017) Emerging microbial biocontrol strategies for plant pathogens. Plant Sci 267:102–111

    Article  CAS  Google Scholar 

  • Abd-Allah EF, Ezzat SM, Tohamy MR (2007) Bacillus subtilis as an alternative biologically based strategy for controlling Fusarium wilt disease in tomato: a histological study. Phytoparasitica 35(5):474–478

    Article  Google Scholar 

  • Abdel-Mohsein HS, Sasaki T, Tada C, Nakai Y (2011) Characterization and partial purification of a bacteriocin-like substance produced by thermophilic Bacillus licheniformis H1 isolated from cow manure compost. Anim Sci J 82(2):340–351

    Article  CAS  PubMed  Google Scholar 

  • Agarwal M, Dheeman S, Dubey RC, Kumar P, Maheshwari DK, Bajpai VK (2017) Differential antagonistic responses of Bacillus pumilus MSUA3 against Rhizoctonia solani and Fusarium oxysporum causing fungal diseases in Fagopyrum esculentum Moench. Microbiol Res 205:40–47

    Article  PubMed  Google Scholar 

  • Akram W, Anjum T (2011) Quantitative changes in defense system of tomato induced by two strains of Bacillus against Fusarium wilt. Indian J Fundam Appl Life Sci 1:7–13

    Google Scholar 

  • Anderson AJ, Kim YC (2018) Biopesticides produced by plant-probiotic Pseudomonas chlororaphis isolates. Crop Prot 105:62–69

    Article  Google Scholar 

  • Ashworth LJ, McMeans JL (1966) Association of Aspergillus flavus and aflatoxins with a greenish yellow fluorescence of cotton seed. Phytopathology 56(9):1104–1105

    CAS  Google Scholar 

  • Ayed HB, Hmidet N, Bechet M, Chollet M, Chataigné G, Leclère V, Jacques P, Nasri M (2014) Identification and biochemical characteristics of lipopeptides from Bacillus mojavensis A21. Process Biochem 49(10):1699–1707

    Article  CAS  Google Scholar 

  • Baffoni L, Gaggia F, Dalanaj N, Prodi A, Nipoti P, Pisi A, Di Gioia D (2015) Microbial inoculants for the biocontrol of Fusarium spp. in durum wheat. BMC Microbiol 15(1):242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baquião AC, Zorzete P, Reis TA, Assunção E, Vergueiro S, Correa B (2012) Mycoflora and mycotoxins in field samples of Brazil nuts. Food Control 28(2):224–229

    Article  CAS  Google Scholar 

  • Baysal O, Çalışkan M, Yesilova O (2008) An inhibitory effect of a new Bacillus subtilis strain (EU07) against Fusarium oxysporum f. sp. radicis-lycopersici. Physiol Mol Plant Pathol 73(1):25–32

    Article  Google Scholar 

  • Berlec A (2012) Novel techniques and findings in the study of plant microbiota: search for plant probiotics. Plant Sci 193:96–102

    Article  CAS  PubMed  Google Scholar 

  • Bircan C (2005) The determination of aflatoxins in spices by immunoaffinity column extraction using HPLC. Int J Food Sci Technol 40(9):929–934

    Article  CAS  Google Scholar 

  • Bircan C, Koç M (2012) Aflatoxins in dried figs in turkey: a comparative survey on the exported and locally consumed dried figs for assessment of exposure. J Agric Sci Technol 14:1265–1274

    CAS  Google Scholar 

  • Bisutti IL, Pelz J, Büttner C, Stephan D (2017) Field assessment on the influence of RhizoVital® 42 fl. and Trichostar® on strawberries in the presence of soil-borne diseases. Crop Prot 96:195–203

    Article  CAS  Google Scholar 

  • Bradburn N, Coker RD, Blunden G (1994) The aetiology of turkey ‘X’ disease. Phytochemistry 35(3):817

    Article  CAS  Google Scholar 

  • Calvo H, Marco P, Blanco D, Oria R, Venturini ME (2017) Potential of a new strain of Bacillus amyloliquefaciens BUZ-14 as a biocontrol agent of postharvest fruit diseases. Food Microbiol 63:101–110

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Xu Z, Ling N (2012) Isolation and identification of lipopeptides produced by B. subtilis SQR 9 for suppressing Fusarium wilt of cucumber. Sci Hortic 135:32–39

    Article  CAS  Google Scholar 

  • Cawoy H, Bettiol W, Fickers P, Ongena M (2011) Bacillus-based biological control of plant diseases. In: Pesticides in the modern world-pesticides use and management. InTech, Rijkea

    Google Scholar 

  • Cawoy H, Debois D, Franzil L, De Pauw E, Thonart P, Ongena M (2015) Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/amyloliquefaciens. Microb Biotechnol 8(2):281–295

    Article  CAS  PubMed  Google Scholar 

  • Chaves-López C, Serio A, Gianotti A, Sacchetti G, Ndagijimana M, Ciccarone C, Stellarini A, Corsetti A, Paparella A (2015) Diversity of food-borne Bacillus volatile compounds and influence on fungal growth. J Appl Microbiol 119(2):487–499

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Wang L, Su C (2008) Isolation and characterization of lipopeptide antibiotics produced by Bacillus subtilis. Lett Appl Microbiol 47(3):180–186

    Article  CAS  PubMed  Google Scholar 

  • Chulze SN, Palazzini JM, Torres AM, Barros G, Ponsone ML, Geisen R, Schmidt-Heydt M, Köhl J (2015) Biological control as a strategy to reduce the impact of mycotoxins in peanuts, grapes and cereals in Argentina. Food Addit Contam Part A 32(4):471–479

    Article  CAS  Google Scholar 

  • Comby M, Gacoin M, Robineau M, Rabenoelina F, Ptas S, Dupont J, Profizi C, Baillieul F (2017) Screening of wheat endophytes as biological control agents against Fusarium head blight using two different in vitro tests. Microbiol Res 202:11–20

    Article  PubMed  Google Scholar 

  • Crane JM, Bergstrom GC (2014) Spatial distribution and antifungal interactions of a Bacillus biological control agent on wheat surfaces. Biol Control 78:23–32

    Article  Google Scholar 

  • da Rocha MEB, Freire FDCO, Maia FEF, Guedes MIF, Rondina D (2014) Mycotoxins and their effects on human and animal health. Food Control 36(1):159–165

    Article  CAS  Google Scholar 

  • Denner WHB, Gillanders TGE (1996) In: Godfrey T, West S (eds) The legislative aspects of user of industrial enzymes in the manufacture of food ingredients, 2nd edn. The Macmillan Press Ltd, Basingstoke, UK, pp 397–411

    Google Scholar 

  • Dunlap CA, Bowman MJ, Schisler DA (2013) Genomic analysis and secondary metabolite production in Bacillus amyloliquefaciens AS 43.3: a biocontrol antagonist of Fusarium head blight. Biol Control 64(2):166–175

    Article  CAS  Google Scholar 

  • Durairaj K, Velmurugan P, Park JH, Chang WS, Park YJ, Senthilkumar P, Choi KM, Lee JH, Oh BT (2018) An investigation of biocontrol activity Pseudomonas and Bacillus strains against Panax ginseng root rot fungal phytopathogens. Biol Control 125:138–146

    Article  CAS  Google Scholar 

  • El-Bendary MA, Hamed HA, Moharam ME (2016) Potential of Bacillus isolates as bio-control agents against some fungal phytopathogens. Biocatal Agric Biotechnol 5:173–178

    Article  Google Scholar 

  • El-Gremi SM, Draz IS, Youssef WAE (2017) Biological control of pathogens associated with kernel black point disease of wheat. Crop Prot 91:13–19

    Article  Google Scholar 

  • Gong Q, Zhang C, Lu F, Zhao H, Bie X, Lu Z (2014) Identification of bacillomycin D from Bacillus subtilis fmbJ and its inhibition effects against Aspergillus flavus. Food Control 36(1):8–14

    Article  CAS  Google Scholar 

  • Guardado-Valdivia L, Tovar-Pérez E, Chacón-López A, López-García U, Gutiérrez-Martínez P, Stoll A, Aguilera S (2018) Identification and characterization of a new Bacillus atrophaeus strain B5 as biocontrol agent of postharvest anthracnose disease in soursop (Annona muricata) and avocado (Persea americana). Microbiol Res 210:26–32

    Article  PubMed  Google Scholar 

  • Gutierrez-Monsalve JA, Mosquera S, González-Jaramillo LM, Mira JJ, Villegas-Escobar V (2015) Effective control of black Sigatoka disease using a microbial fungicide based on Bacillus subtilis EA-CB0015 culture. Biol Control 87:39–46

    Article  Google Scholar 

  • Hamley IW (2015) Lipopeptides: from self-assembly to bioactivity. Chem Commun 51(41):8574–8583

    Article  CAS  Google Scholar 

  • Heidarzadeh N, Baghaee-Ravari S (2015) Application of Bacillus pumilus as a potential biocontrol agent of Fusarium wilt of tomato. Arch Phytopathol Plant Protect 48(13–16):841–849

    Article  CAS  Google Scholar 

  • Heydari A, Pessarakli M (2010) A review on biological control of fungal plant pathogens using microbial antagonists. J Biol Sci 10(4):273–290

    Article  Google Scholar 

  • Hu J, Wei Z, Weidner S, Friman VP, Xu YC, Shen QR, Jousset A (2017) Probiotic Pseudomonas communities enhance plant growth and nutrient assimilation via diversity-mediated ecosystem functioning. Soil Biol Biochem 113:122–129

    Article  CAS  Google Scholar 

  • Hussein HS, Brasel JM (2001) Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology 167(2):101–134

    Article  CAS  PubMed  Google Scholar 

  • IARC Working Group on the Evaluation of the Carcinogenic Risk of Chemicals to Humans (1993) IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans, vol 35. IARC, Lyon

    Google Scholar 

  • Islam MR, Jeong YT, Lee YS, Song CH (2012) Isolation and identification of antifungal compounds from Bacillus subtilis C9 inhibiting the growth of plant pathogenic fungi. Mycobiology 40(1):59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jangir M, Pathak R, Sharma S, Sharma S (2018) Biocontrol mechanisms of Bacillus sp., isolated from tomato rhizosphere, against Fusarium oxysporum f. sp. lycopersici. Biol Control 123:60–70

    Article  CAS  Google Scholar 

  • Jiang C, Shi J, Liu Y, Zhu C (2014) Inhibition of Aspergillus carbonarius and fungal contamination in table grapes using Bacillus subtilis. Food Control 35(1):41–48

    Article  Google Scholar 

  • Juan C, Zinedine A, Molto JC, Idrissi L, Manes J (2008) Aflatoxins levels in dried fruits and nuts from Rabat-Salé area, Morocco. Food Control 19(9):849–853

    Article  CAS  Google Scholar 

  • Kamika I, Takoy LL (2011) Natural occurrence of Aflatoxin B1 in peanut collected from Kinshasa, Democratic Republic of Congo. Food Control 22(11):1760–1176

    Article  CAS  Google Scholar 

  • Khan N, Maymon M, Hirsch AM (2017) Combating Fusarium infection using Bacillus-based antimicrobials. Microorganisms 5(4):75

    Article  CAS  PubMed Central  Google Scholar 

  • Kildea S, Ransbotyn V, Khan MR, Fagan B, Leonard G, Mullins E, Doohan FM (2008) Bacillus megaterium shows potential for the biocontrol of septoria tritici blotch of wheat. Biol Control 47(1):37–45

    Article  Google Scholar 

  • Klich MA (2007) Aspergillus flavus: the major producer of aflatoxin. Mol Plant Pathol 8(6):713–722

    Article  CAS  PubMed  Google Scholar 

  • Klich MA, Lax AR, Bland JM (1991) Inhibition of some mycotoxigenic fungi by iturin A, a peptidolipid produced by Bacillus subtilis. Mycopathologia 116(2):77–80

    Article  CAS  PubMed  Google Scholar 

  • Lee S-G (2004) Fusarium species associated with ginseng (Panax ginseng) and their role in the root-rot of ginseng plant. Res Plant Dis 10(4):248–259

    Google Scholar 

  • Lee T, Park D, Kim K, Lim SM, Yu NH, Kim S, Kim HY, Jung KS, Jang JY, Park JC, Ham H, Lee S, Hong SK, Kim JC (2017) Characterization of Bacillus amyloliquefaciens DA12 showing potent antifungal activity against mycotoxigenic Fusarium species. Plant Pathol J 33(5):499–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leelasuphakul W, Hemmanee P, Chuenchitt S (2008) Growth inhibitory properties of Bacillus subtilis strains and their metabolites against the green mold pathogen (Penicillium digitatum Sacc.) of citrus fruit. Postharvest Biol Technol 48(1):113–121

    Article  CAS  Google Scholar 

  • Leslie JF, Summerell BA (2008) The Fusarium laboratory manual. Wiley, New York

    Google Scholar 

  • Logrieco A, Moretti A, Perrone G, Mulè G (2007) Biodiversity of complexes of mycotoxigenic fungal species associated with Fusarium ear rot of maize and Aspergillus rot of grape. Int J Food Microbiol 119(1–2):11–16

    Article  CAS  PubMed  Google Scholar 

  • Lucon CMM, Guzzo SD, De Jesus CO, Pascholati SF, De Goes A (2010) Postharvest harpin or Bacillus thuringiensis treatments suppress citrus black spot in ‘Valencia’ oranges. Crop Prot 29(7):766–772

    Article  Google Scholar 

  • Luo Y, Yoshizawa T, Katayama T (1990) Comparative study on the natural occurrence of Fusarium mycotoxins (trichothecenes and zearalenone) in corn and wheat from high-and low-risk areas for human esophageal cancer in China. Appl Environ Microbiol 56(12):3723–3726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majeed S, Iqbal M, Asi MR, Iqbal SZ (2013) Aflatoxins and ochratoxin A contamination in rice, corn and corn products from Punjab, Pakistan. J Cereal Sci 58(3):446–450

    Article  CAS  Google Scholar 

  • Marin S, Ramos AJ, Cano-Sancho G, Sanchis V (2013) Mycotoxins: occurrence, toxicology, and exposure assessment. Food Chem Toxicol 60:218–237

    Article  CAS  PubMed  Google Scholar 

  • Marroquín-Cardona AG, Johnson NM, Phillips TD, Hayes AW (2014) Mycotoxins in a changing global environment – a review. Food Chem Toxicol 69:220–230

    Article  CAS  PubMed  Google Scholar 

  • Mishra J, Tewari S, Singh S, Arora NK (2015) Biopesticides: where we stand? In: Plant microbes symbiosis: applied facets. Springer, New Delhi, pp 37–75

    Google Scholar 

  • Mnif I, Ghribi D (2015) Potential of bacterial derived biopesticides in pest management. Crop Prot 77:52–64

    Article  Google Scholar 

  • Moreira RR, Nesi CN, De Mio LLM (2014) Bacillus spp. and Pseudomonas putida as inhibitors of the Colletotrichum acutatum group and potential to control Glomerella leaf spot. Biol Control 72:30–37

    Article  Google Scholar 

  • Moretti A, Ferracane L, Somma S, Ricci V, Mule G, Susca A, Ritieni A, Logrieco AF (2010) Identification, mycotoxin risk and pathogenicity of Fusarium species associated with fig endosepsis in Apulia, Italy. Food Addit Contam 27(5):718–728

    Article  CAS  Google Scholar 

  • Muthomi JW, Ndung’u JK, Gathumbi JK, Mutitu EW, Wagacha JM (2008) The occurrence of Fusarium species and mycotoxins in Kenyan wheat. Crop Prot 27(8):1215–1219

    Article  CAS  Google Scholar 

  • Nguyen PA, Strub C, Fontana A, Schorr-Galindo S (2017) Crop molds and mycotoxins: alternative management using biocontrol. Biol Control 104:10–27

    Article  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16(3):115–125

    Article  CAS  PubMed  Google Scholar 

  • Palazzini JM, Dunlap CA, Bowman MJ, Chulze SN (2016) Bacillus velezensis RC 218 as a biocontrol agent to reduce Fusarium head blight and deoxynivalenol accumulation: genome sequencing and secondary metabolite cluster profiles. Microbiol Res 192:30–36

    Article  CAS  PubMed  Google Scholar 

  • Palumbo JD, O’Keeffe TL, Abbas HK (2008) Microbial interactions with mycotoxigenic fungi and mycotoxins. Toxin Rev 27(3–4):261–285

    Article  CAS  Google Scholar 

  • Pan HQ, Li QL, Hu JC (2017) The complete genome sequence of Bacillus velezensis 9912D reveals its biocontrol mechanism as a novel commercial biological fungicide agent. J Biotechnol 247:25–28

    Article  CAS  PubMed  Google Scholar 

  • Patriarca A, Pinto VF (2017) Prevalence of mycotoxins in foods and decontamination. Curr Opin Food Sci 14:50–60

    Article  Google Scholar 

  • Pereyra MG, Martínez MP, Petroselli G, Balsells RE, Cavaglieri LR (2018) Antifungal and aflatoxin-reducing activity of extracellular compounds produced by soil Bacillus strains with potential application in agriculture. Food Control 85:392–399

    Article  CAS  Google Scholar 

  • Pérez-García A, Romero D, De Vicente A (2011) Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Curr Opin Biotechnol 22(2):187–193

    Article  CAS  PubMed  Google Scholar 

  • Pitt J (2000) Toxigenic fungi and mycotoxins. Br Med Bull 56:184–192

    Article  CAS  PubMed  Google Scholar 

  • Qian S, Lu H, Sun J, Zhang C, Zhao H, Lu F, Bie X, Lu Z (2016) Antifungal activity mode of Aspergillus ochraceus by bacillomycin D and its inhibition of ochratoxin A (OTA) production in food samples. Food Control 60:281–288

    Article  CAS  Google Scholar 

  • Rahman M, Sabir AA, Mukta JA, Khan MMA, Mohi-Ud-Din M, Miah MG, Rahman M, Islam MT (2018) Plant probiotic bacteria Bacillus and Paraburkholderia improve growth, yield and content of antioxidants in strawberry fruit. Sci Rep 8(1):2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahmani A, Jinap S, Soleimany F (2010) Validation of the procedure for the simultaneous determination of aflatoxins ochratoxin A and zearalenone in cereals using HPLC-FLD. Food Addit Contam Part A 27(12):1683–1693

    Article  CAS  Google Scholar 

  • Rajaofera MJN, Jin PF, Fan YM, Sun QQ, Huang WK, Wang WB, Shen HY, Zhang CH, Lin WB, Liu FC, Zheng FC, Miao WG (2017) Antifungal activity of the bioactive substance from Bacillus atrophaeus strain HAB-5 and its toxicity assessment on Danio rerio. Pestic Biochem Physiol 147:153–161

    Article  CAS  PubMed  Google Scholar 

  • Reddy KRN, Reddy CS, Muralidharan K (2009) Detection of Aspergillus spp. and aflatoxin B1 in rice in India. Food Microbiol 26(1):27–31

    Article  CAS  PubMed  Google Scholar 

  • Rocha FYO, de Oliveira CM, da Silva PRA, de Melo LHV, do Carmo MGF, Baldani JI (2017) Taxonomical and functional characterization of Bacillus strains isolated from tomato plants and their biocontrol activity against races 1, 2 and 3 of Fusarium oxysporum f. sp. Lycopersici. Appl Soil Ecol 120:8–19

    Article  Google Scholar 

  • Schöneberg T, Jenny E, Wettstein FE, Bucheli TD, Mascher F, Bertossa M, Musa T, Seifert K, Gräfenhan T, Keller B, Vogelgsang S (2018) Occurrence of Fusarium species and mycotoxins in Swiss oats—impact of cropping factors. Eur J Agron 92:123–132

    Article  CAS  Google Scholar 

  • Senol M, Nadaroglu H, Dikbas N, Kotan R (2014) Purification of Chitinase enzymes from Bacillus subtilis bacteria TV-125, investigation of kinetic properties and antifungal activity against Fusarium culmorum. Ann Clin Microbiol Antimicrob 13(1):35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senthil R, Prabakar K, Rajendran L, Karthikeyan G (2011) Efficacy of different biological control agents against major postharvest pathogens of grapes under room temperature storage conditions. Phytopathol Mediterr 50(1):55–64

    Google Scholar 

  • Shafi J, Tian H, Ji M (2017) Bacillus species as versatile weapons for plant pathogens: a review. Biotechnol Biotechnol Equip 31(3):446–459

    Article  CAS  Google Scholar 

  • Shoda M (2000) Bacterial control of plant diseases. J Biosci Bioeng 89(6):515–521

    Article  CAS  PubMed  Google Scholar 

  • Siahmoshteh F, Hamidi-Esfahani Z, Spadaro D, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M (2018) Unraveling the mode of antifungal action of Bacillus subtilis and Bacillus amyloliquefaciens as potential biocontrol agents against aflatoxigenic Aspergillus parasiticus. Food Control 89:300–307

    Article  CAS  Google Scholar 

  • Silo-Suh LA, Lethbridge BJ, Raffel SJ, He HY, Clardy J, Handelsman J (1994) Biological activities of two fungistatic antibiotics produced by Bacillus cereus Uw85. Appl Environ Microbiol 60(6):2023–2030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silo-Suh LA, Stabb EV, Raffel SJ, Handelsman J (1998) Target range of Zwittermicin A, an aminopolyol antibiotic from Bacillus cereus. Curr Microbiol 37(1):6–11

    Article  CAS  PubMed  Google Scholar 

  • Smith KP, Havey MJ, Handelsman J (1993) Suppression of cottony leak of cucumber with Bacillus cereus strain Uw85. Plant Dis 77:139–142

    Article  Google Scholar 

  • Song M, Yun HY, Kim YH (2014) Antagonistic Bacillus species as a biological control of ginseng root rot caused by Fusarium cf. incarnatum. J Ginseng Res 38(2):136–145

    Article  PubMed  Google Scholar 

  • Suárez-Estrella F, Arcos-Nievas MA, López MJ, Vargas-García MC, Moreno J (2013) Biological control of plant pathogens by microorganisms isolated from agro-industrial composts. Biol Control 67(3):509–515

    Article  Google Scholar 

  • Tekinşen KK, Eken HS (2008) Aflatoxin M1 levels in UHT milk and kashar cheese consumed in Turkey. Food Chem Toxicol 46(10):3287–3289

    Article  CAS  PubMed  Google Scholar 

  • Tola M, Kebede B (2016) Occurrence, importance and control of mycotoxins: a review. Cogent Food Agric 2(1):1191103

    Google Scholar 

  • Van der Merwe KJ, Steyn PS, Fourie L, Scott DB, Theron JJ (1965) Ochratoxin A, a toxic metabolite produced by Aspergillus ochraceus. Nature 205(4976):1112

    Article  PubMed  Google Scholar 

  • Van Peer R, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS 417 r. Phytopathology 81(7):728–734

    Article  Google Scholar 

  • Volpon L, Besson F, Lancelin JM (2000) NMR structure of antibiotics plipastatins A and B from Bacillus subtilis inhibitors of phospholipase A2. FEBS Lett 485(1):76–80

    Article  CAS  PubMed  Google Scholar 

  • Waewthongrak W, Pisuchpen S, Leelasuphakul W (2015) Effect of Bacillus subtilis and chitosan applications on green mold (Penicillium digitatum Sacc.) decay in citrus fruit. Postharvest Biol Technol 99:44–49

    Article  CAS  Google Scholar 

  • Wang L, Jin P, Wang J, Jiang L, Zhang S, Gong H, Liu H, Zheng Y (2015) In vitro inhibition and in vivo induction of defense response against Penicillium expansum in sweet cherry fruit by postharvest applications of Bacillus cereus AR156. Postharvest Biol Technol 101:15–17

    Article  CAS  Google Scholar 

  • Wang B, Shen Z, Zhang F, Raza W, Yuan J, Huang R, Ruan Y, Li R, Shen Q (2016a) Bacillus amyloliquefaciens strain W19 can promote growth and yield and suppress Fusarium wilt in banana under greenhouse and field conditions. Pedosphere 26(5):733–744

    Article  Google Scholar 

  • Wang Y, Yuan Y, Liu B, Zhang Z, Yue T (2016b) Biocontrol activity and patulin removal effects of Bacillus subtilis, Rhodobacter sphaeroides and Agrobacterium tumefaciens against Penicillium expansum. J Appl Microbiol 121(5):1384–1393

    Article  CAS  PubMed  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  CAS  PubMed  Google Scholar 

  • Winks BL, Williams YN (1965) A wilt of strawberry caused by a new form of Fusarium oxysporum. Qld J Agric Anim Sci 22:475–479

    Google Scholar 

  • Xiao W, Yan PS, Wu HQ, Lin F (2014) Antagonizing Aspergillus parasiticus and promoting peanut growth of Bacillus isolated from peanut geocarposphere soil. J Integr Agric 13(11):2445–2451

    Article  Google Scholar 

  • Yánez-Mendizábal V, Falconí CE (2018) Efficacy of Bacillus spp. to biocontrol of anthracnose and enhance plant growth on Andean lupin seeds by lipopeptide production. Biol Control 122:67–75

    Article  CAS  Google Scholar 

  • Yu X, Ai C, Xin L, Zhou G (2011) The siderophore-producing bacterium, Bacillus subtilis CAS15 has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. Eur J Soil Biol 47(2):138–145

    Article  Google Scholar 

  • Yuan J, Zhao M, Li R, Huang Q, Rensing C, Shen Q (2017) Lipopeptides produced by B. amyloliquefaciens NJN-6 altered the soil fungal community and non-ribosomal peptides genes harboring microbial community. Appl Soil Ecol 117:96–105

    Article  Google Scholar 

  • Yuttavanichakul W, Lawongsa P, Wongkaew S, Teaumroong N, Boonkerd N, Nomura N, Tittabutr P (2012) Improvement of peanut rhizobial inoculant by incorporation of plant growth promoting rhizobacteria (PGPR) as biocontrol against the seed borne fungus, Aspergillus niger. Biol Control 63(2):87–97

    Article  Google Scholar 

  • Zain ME (2011) Impact of mycotoxins on humans and animals. J Saudi Chem Soc 15(2):129–144

    Article  CAS  Google Scholar 

  • Zalila-Kolsi I, Mahmoud AB, Ali H, Sellami S, Nasfi Z, Tounsi S, Jamoussi K (2016) Antagonist effects of Bacillus spp. strains against Fusarium graminearum for protection of durum wheat (Triticum turgidum L. subsp. durum). Microbiol Res 192:148–158

    Article  PubMed  Google Scholar 

  • Zhao P, Quan C, Wang Y, Wang J, Fan S (2014) Bacillus amyloliquefaciens Q-426 as a potential biocontrol agent against Fusarium oxysporum f. sp. spinaciae. J Basic Microbiol 54(5):448–456

    Article  CAS  PubMed  Google Scholar 

  • Zinedine A, Soriano JM, Molto JC, Manes J (2007) Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food Chem Toxicol 45(1):1–18

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Çisem Bulut Albayrak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Albayrak, Ç.B. (2019). Bacillus Species as Biocontrol Agents for Fungal Plant Pathogens. In: Islam, M., Rahman, M., Pandey, P., Boehme, M., Haesaert, G. (eds) Bacilli and Agrobiotechnology: Phytostimulation and Biocontrol. Bacilli in Climate Resilient Agriculture and Bioprospecting. Springer, Cham. https://doi.org/10.1007/978-3-030-15175-1_13

Download citation

Publish with us

Policies and ethics