Skip to main content

Multi-Omics Data Analysis for Cancer Research: Colorectal Cancer, Liver Cancer and Lung Cancer

  • Chapter
  • First Online:
Methodologies of Multi-Omics Data Integration and Data Mining

Part of the book series: Translational Bioinformatics ((TRBIO,volume 19))

  • 966 Accesses

Abstract

Cancer is a multifactorial disease caused by the malfunction and modification of numerous biological entities, including genes, proteins, mRNAs, miRNAs, and metabolites. Recent advances in high-throughput technologies have generated massive amounts of diverse biological data, allowing researchers to investigate a large number of omics markers. While analyzing single omics data sets can reveal a wealth of information in a unidirectional fashion, because DNA, RNA, protein, and metabolite frequently collaborate to perform biological functions, the complementary effects and interactions between multiple molecular layers cannot be fully assessed. As a result, only by integrating multiple types of omics data can we gain a systematic and comprehensive understanding of the functional mechanisms underlying DNA-level alterations in tumors and identify novel genes, markers, vital networks, and pathways. We will briefly discuss the current state of colorectal cancer, liver cancer, and lung cancer research in this article. Additionally, we discuss various multi-omics analyses conducted in the fields of colorectal cancer, liver cancer, and lung cancer research, which provide insight into novel cancer diagnostic and treatment approaches. We hope to inspire researchers to use multi-omics approaches to investigate cancer at the molecular, cellular, and systemic levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aarons CB, Shanmugan S, Bleier JI. Management of malignant colon polyps: current status and controversies. World J Gastroenterol. 2014;20:16178–83.

    Article  Google Scholar 

  • Ahmed Z. Practicing precision medicine with intelligently integrative clinical and multi-omics data analysis. Hum Genomics. 2020;14:35.

    Article  Google Scholar 

  • Alberg AJ, Brock MV, Samet JM. Epidemiology of lung cancer: looking to the future. J Clin Oncol. 2005;23:3175–85.

    Article  Google Scholar 

  • Alberg AJ, Samet JM. Epidemiology of lung cancer. Chest. 2003;123:21S–49S.

    Article  Google Scholar 

  • Almusawi S, Ahmed M, Nateri AS. Understanding cell-cell communication and signaling in the colorectal cancer microenvironment. Clin Transl Med. 2021;11:e308.

    Article  Google Scholar 

  • Altenbuchinger M, Weihs A, Quackenbush J, Grabe HJ, Zacharias HU. Gaussian and mixed graphical models as (multi-)omics data analysis tools. Biochim Biophys Acta Gene Regul Mech. 2020;1863:194418.

    Article  CAS  Google Scholar 

  • Antoine M, Vieira T, Fallet V, Hamard C, Duruisseaux M, Cadranel J, Wislez M. Pulmonary sarcomatoid carcinoma. Ann Pathol. 2016;36:44–54.

    Article  Google Scholar 

  • Ariff B, Lloyd CR, Khan S, Shariff M, Thillainayagam AV, Bansi DS, Khan SA, Taylor-Robinson SD, Lim AKP. Imaging of liver cancer. World J Gastroenterol. 2009;15:1289–300.

    Article  Google Scholar 

  • Arora M, Kumari S, Singh J, Chopra A, Chauhan SS. PAXX, not NHEJ1 is an independent prognosticator in colon cancer. Front Mol Biosci. 2020;7:584053.

    Article  CAS  Google Scholar 

  • Asada K, Kobayashi K, Joutard S, Tubaki M, Takahashi S, Takasawa K, Komatsu M, Kaneko S, Sese J, Hamamoto R. Uncovering prognosis-related genes and pathways by multi-omics analysis in lung cancer. Biomol Ther. 2020;10

    Google Scholar 

  • Ayiomamitis GD, Notas G, Vasilakaki T, Tsavari A, Vederaki S, Theodosopoulos T, Kouroumalis E, Zaravinos A. Understanding the interplay between COX-2 and hTERT in colorectal cancer using a multi-omics analysis. Cancers (Basel). 2019;11:1536.

    Article  CAS  Google Scholar 

  • Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehar J, Kryukov GV, Sonkin D, Reddy A, Liu M, Murray L, Berger MF, Monahan JE, Morais P, Meltzer J, Korejwa A, Jane-Valbuena J, Mapa FA, Thibault J, Bric-Furlong E, Raman P, Shipway A, Engels IH, Cheng J, Yu GK, Yu J, Aspesi P Jr, De Silva M, Jagtap K, Jones MD, Wang L, Hatton C, Palescandolo E, Gupta S, Mahan S, Sougnez C, Onofrio RC, Liefeld T, Macconaill L, Winckler W, Reich M, Li N, Mesirov JP, Gabriel SB, Getz G, Ardlie K, Chan V, Myer VE, Weber BL, Porter J, Warmuth M, Finan P, Harris JL, Meyerson M, Golub TR, Morrissey MP, Sellers WR, Schlegel R, Garraway LA. The cancer cell line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483:603–7.

    Article  CAS  Google Scholar 

  • Barta JA, Powell CA, Wisnivesky JP. Global epidemiology of lung cancer. Ann Glob Health. 2019;85:8.

    Article  Google Scholar 

  • Behjati S, Tarpey PS. What is next generation sequencing? Arch Dis Child Educ Pract Ed. 2013;98:236–8.

    Article  Google Scholar 

  • Berg KCG, Eide PW, Eilertsen IA, Johannessen B, Bruun J, Danielsen SA, Bjornslett M, Meza-Zepeda LA, Eknaes M, Lind GE, Myklebost O, Skotheim RI, Sveen A, Lothe RA. Multi-omics of 34 colorectal cancer cell lines - a resource for biomedical studies. Mol Cancer. 2017;16:116.

    Article  Google Scholar 

  • Bishayee A "The Role of Inflammation in Liver Cancer," in Inflammation and Cancer, eds. B.B. Aggarwal, B. Sung & S.C. Gupta.), 2014 401–435.

    Google Scholar 

  • Biswas N, Chakrabarti S. Artificial intelligence (AI)-based systems biology approaches in multi-omics data analysis of cancer. Front Oncol. 2020;10:588221.

    Article  Google Scholar 

  • Bosch FX, Ribes J, Borras J. Epidemiology of primary liver cancer. Semin Liver Dis. 1999;19:271–85.

    Article  CAS  Google Scholar 

  • Bosch FX, Ribes J, Diaz M, Cleries R. Primary liver cancer: worldwide incidence and trends. Gastroenterology. 2004;127:S5–S16.

    Article  Google Scholar 

  • Canzler S, Schor J, Busch W, Schubert K, Rolle-Kampczyk UE, Seitz H, Kamp H, Von Bergen M, Buesen R, Hackermuller J. Prospects and challenges of multi-omics data integration in toxicology. Arch Toxicol. 2020;94:371–88.

    Article  CAS  Google Scholar 

  • Center MM, Jemal A, Smith RA, Ward E. Worldwide variations in colorectal. Cancer. 2009;59:366–78.

    Google Scholar 

  • Chakraborty S, Hosen MI, Ahmed M, Shekhar HU. Onco-multi-OMICS approach: a new frontier in cancer research. Biomed Res Int. 2018;2018:9836256.

    Article  Google Scholar 

  • Chang MH. Prevention of hepatitis B virus infection and liver cancer. Recent Results Cancer Res. 2014;193:75–95.

    Article  CAS  Google Scholar 

  • Chaudhary K, Poirion OB, Lu L, Garmire LX. Deep learning-based multi-omics integration robustly predicts survival in liver cancer. Clin Cancer Res. 2018;24:1248–59.

    Article  CAS  Google Scholar 

  • Chauvel C, Novoloaca A, Veyre P, Reynier F, Becker J. Evaluation of integrative clustering methods for the analysis of multi-omics data. Brief Bioinform. 2020;21:541–52.

    Article  Google Scholar 

  • Chen JG, Zhang SW. Liver cancer epidemic in China: past, present and future. Semin Cancer Biol. 2011;21:59–69.

    Article  Google Scholar 

  • Chen Z, Fillmore CM, Hammerman PS, Kim CF, Wong KK. Non-small-cell lung cancers: a heterogeneous set of diseases. Nat Rev Cancer. 2014;14:535–46.

    Article  CAS  Google Scholar 

  • Cheng WC, Chung IF, Chen CY, Sun HJ, Fen JJ, Tang WC, Chang TY, Wong TT, Wang HW. DriverDB: an exome sequencing database for cancer driver gene identification. Nucleic Acids Res. 2014;42:D1048-1054.

    Article  Google Scholar 

  • Chung IF, Chen CY, Su SC, Li CY, Wu KJ, Wang HW, Cheng WC. DriverDBv2: a database for human cancer driver gene research. Nucleic Acids Res. 2016;44:D975-979.

    Article  Google Scholar 

  • Chyr J, Zhang Z, Chen X, Zhou X. PredTAD: a machine learning framework that models 3D chromatin organization alterations leading to oncogene dysregulation in breast cancer cell lines. Comput Struct Biotechnol J. 2021;19:2870–80.

    Article  CAS  Google Scholar 

  • Cieslik M, Chinnaiyan AM. Global genomics project unravels cancer's complexity at unprecedented scale. Nature. 2020;578:39–40.

    Article  CAS  Google Scholar 

  • Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, Sabedot TS, Malta TM, Pagnotta SM, Castiglioni I, Ceccarelli M, Bontempi G, Noushmehr H. TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 2016;44:e71.

    Article  Google Scholar 

  • Das T, Andrieux G, Ahmed M, Chakraborty S. Integration of online omics-data resources for cancer research. Front Genet. 2020;11:578345.

    Article  CAS  Google Scholar 

  • De Groot PM, Wu CC, Carter BW, Munden RF. The epidemiology of lung cancer. Transl Lung Cancer Res. 2018;7:220–33.

    Article  Google Scholar 

  • De Sousa VML, Carvalho L. Heterogeneity in lung cancer. Pathobiology. 2018;85:96–107.

    Article  Google Scholar 

  • Dienstmann R, Vermeulen L, Guinney J, Kopetz S, Tejpar S, Tabernero J. Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat Rev Cancer. 2017;17:79–92.

    Article  CAS  Google Scholar 

  • Dimitrakopoulos C, Hindupur SK, Colombi M, Liko D, Ng CKY, Piscuoglio S, Behr J, Moore AL, Singer J, Ruscheweyh HJ, Matter MS, Mossmann D, Terracciano LM, Hall MN, Beerenwinkel N. Multi-omics data integration reveals novel drug targets in hepatocellular carcinoma. BMC Genomics. 2021;22:592.

    Article  CAS  Google Scholar 

  • Domon B, Aebersold R. Mass spectrometry and protein analysis. Science. 2006;312:212–7.

    Article  CAS  Google Scholar 

  • Du W, Elemento O. Cancer systems biology: embracing complexity to develop better anticancer therapeutic strategies. Oncogene. 2015;34:3215–25.

    Article  CAS  Google Scholar 

  • Eicher T, Kinnebrew G, Patt A, Spencer K, Ying K, Ma Q, Machiraju R, Mathe AEA. Metabolomics and multi-omics integration: a survey of computational methods and resources. Meta. 2020;10:202.

    CAS  Google Scholar 

  • Fearon ER. "Molecular genetics of colorectal cancer," in Cancer prevention: from the laboratory to the clinic: implications of genetic, molecular, and preventive research, eds. H.L. Bradlow, M.P. Osborne & U. Veronesi.), 1995 101–110.

    Google Scholar 

  • Gao Q, Zhu HW, Dong LQ, Shi WW, Chen R, Song ZJ, Huang C, Li JQ, Dong XW, Zhou YT, Liu Q, Ma LJ, Wang XY, Zhou J, Liu YS, Boja E, Robles AI, Ma WP, Wang P, Li YZ, Ding L, Wen B, Zhang B, Rodriguez H, Gao DM, Zhou H, Fan J. Integrated proteogenomic characterization of HBV-related hepatocellular carcinoma. Cell. 2019;179:561.

    Article  CAS  Google Scholar 

  • Ghaffari S, Hanson C, Schmidt RE, Bouchonville KJ, Offer SM, Sinha S. An integrated multi-omics approach to identify regulatory mechanisms in cancer metastatic processes. Genome Biol. 2021;22:19.

    Article  Google Scholar 

  • Ghosh D, Bernstein JA, Khurana Hershey GK, Rothenberg ME, Mersha TB. Leveraging multilayered "omics" data for atopic dermatitis: a road map to precision medicine. Front Immunol. 2018;9:2727.

    Article  CAS  Google Scholar 

  • Graw S, Chappell K, Washam CL, Gies A, Bird J, Robeson MS 2nd, Byrum SD. Multi-omics data integration considerations and study design for biological systems and disease. Mol Omics. 2021;17:170–85.

    Article  CAS  Google Scholar 

  • Hao Y, Li D, Xu Y, Ouyang J, Wang Y, Zhang Y, Li B, Xie L, Qin G. Investigation of lipid metabolism dysregulation and the effects on immune microenvironments in pan-cancer using multiple omics data. BMC Bioinformatics. 2019;20:195.

    Article  CAS  Google Scholar 

  • Hausman DM. What is cancer? Perspect Biol Med. 2019;62:778–84.

    Article  Google Scholar 

  • Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature. 2018;553:446–54.

    Article  CAS  Google Scholar 

  • Holowatyj AN, Haffa M, Lin T, Scherer D, Gigic B, Ose J, Warby CA, Himbert C, Abbenhardt-Martin C, Achaintre D, Boehm J, Boucher KM, Gicquiau A, Gsur A, Habermann N, Herpel E, Kauczor HU, Keski-Rahkonen P, Kloor M, Von Knebel-Doeberitz M, Kok DE, Nattenmuller J, Schirmacher P, Schneider M, Schrotz-King P, Simon T, Ueland PM, Viskochil R, Weijenberg MP, Scalbert A, Ulrich A, Bowers LW, Hursting SD, Ulrich CM. Multi-omics analysis reveals adipose-tumor crosstalk in patients with colorectal cancer. Cancer Prev Res (Phila). 2020;13:817–28.

    Article  Google Scholar 

  • Hu W, Yang Y, Li X, Huang M, Xu F, Ge W, Zhang S, Zheng S. Multi-omics approach reveals distinct differences in left- and right-sided colon cancer. Mol Cancer Res. 2018;16:476–85.

    Article  CAS  Google Scholar 

  • Hu Z, Bi G, Sui Q, Bian Y, Du Y, Liang J, Li M, Zhan C, Lin Z, Wang Q. Analyses of multi-omics differences between patients with high and low PD1/PDL1 expression in lung squamous cell carcinoma. Int Immunopharmacol. 2020;88:106910.

    Article  CAS  Google Scholar 

  • Huang L, Brunell D, Stephan C, Mancuso J, Yu X, He B, Thompson TC, Zinner R, Kim J, Davies P, Wong STC. Driver network as a biomarker: systematic integration and network modeling of multi-omics data to derive driver signaling pathways for drug combination prediction. Bioinformatics. 2019;35:3709–17.

    Article  CAS  Google Scholar 

  • Huang S, Chaudhary K, Garmire LX. More is better: recent progress in multi-omics data integration methods. Front Genet. 2017;8:84.

    Article  CAS  Google Scholar 

  • Huang Y, Duanmu J, Liu Y, Yan M, Li T, Jiang Q. Analysis of multi-omics differences in left-side and right-side colon cancer. PeerJ. 2021;9:e11433.

    Article  Google Scholar 

  • Jahanafrooz Z, Mosafer J, Akbari M, Hashemzaei M, Mokhtarzadeh A, Baradaran B. Colon cancer therapy by focusing on colon cancer stem cells and their tumor microenvironment. J Cell Physiol. 2020;235:4153–66.

    Article  CAS  Google Scholar 

  • Jones GS, Baldwin DR. Recent advances in the management of lung cancer. Clin Med (Lond). 2018;18:s41–6.

    Article  Google Scholar 

  • Kel AE, Stegmaier P, Valeev T, Koschmann J, Poroikov V, Kel-Margoulis OV, Wingender E. Multi-omics "upstream analysis" of regulatory genomic regions helps identifying targets against methotrexate resistance of colon cancer. EuPA Open Proteom. 2016;13:1–13.

    Article  CAS  Google Scholar 

  • Kim TH, Dekker J. ChIP-seq. Cold Spring Harb Protoc; 2018.

    Book  Google Scholar 

  • Koch A, De Meyer T, Jeschke J, Van Criekinge W. MEXPRESS: visualizing expression, DNA methylation and clinical TCGA data. BMC Genomics. 2015;16:636.

    Article  Google Scholar 

  • Koch A, Jeschke J, Van Criekinge W, Van Engeland M, De Meyer T. MEXPRESS update 2019. Nucleic Acids Res. 2019;47:W561–5.

    Article  CAS  Google Scholar 

  • Kong Y, Qiao Z, Ren Y, Genchev GZ, Ge M, Xiao H, Zhao H, Lu H. Integrative analysis of membrane proteome and MicroRNA reveals novel lung cancer metastasis biomarkers. Front Genet. 2020;11:1023.

    Article  CAS  Google Scholar 

  • Lam K, Pan K, Linnekamp JF, Medema JP, Kandimalla R. DNA methylation based biomarkers in colorectal cancer: a systematic review. Biochim Biophys Acta. 2016;1866:106–20.

    CAS  Google Scholar 

  • Lee TY, Huang KY, Chuang CH, Lee CY, Chang TH. Incorporating deep learning and multi-omics autoencoding for analysis of lung adenocarcinoma prognostication. Comput Biol Chem. 2020;87:107277.

    Article  CAS  Google Scholar 

  • Li L, Wang H. Heterogeneity of liver cancer and personalized therapy. Cancer Lett. 2016;379:191–7.

    Article  CAS  Google Scholar 

  • Li P, Guo M, Sun B. Integration of multi-omics data to mine cancer-related gene modules. J Bioinforma Comput Biol. 2019;17:1950038.

    Article  CAS  Google Scholar 

  • Lin S, Yin YA, Jiang X, Sahni N, Yi S. Multi-OMICs and genome editing perspectives on liver cancer signaling networks. Biomed Res Int. 2016;2016:6186281.

    Article  Google Scholar 

  • Liu CY, Chen KF, Chen PJ. Treatment of liver cancer. Cold Spring Harb Perspect Med. 2015;5:a021535.

    Article  Google Scholar 

  • Liu SH, Shen PC, Chen CY, Hsu AN, Cho YC, Lai YL, Chen FH, Li CY, Wang SC, Chen M, Chung IF, Cheng WC. DriverDBv3: a multi-omics database for cancer driver gene research. Nucleic Acids Res. 2020a;48:D863–70.

    CAS  Google Scholar 

  • Liu X, Qin J, Gao T, Li C, Chen X, Zeng K, Xu M, He B, Pan B, Xu X, Pan Y, Sun H, Xu T, Wang S. Analysis of METTL3 and METTL14 in hepatocellular carcinoma. Aging (Albany NY). 2020b;12:21638–59.

    Article  CAS  Google Scholar 

  • Liu XN, Cui DN, Li YF, Liu YH, Liu G, Liu L. Multiple "omics" data-based biomarker screening for hepatocellular carcinoma diagnosis. World J Gastroenterol. 2019;25:4199–212.

    Article  CAS  Google Scholar 

  • Llabata P, Mitsuishi Y, Choi PS, Cai D, Francis JM, Torres-Diz M, Udeshi ND, Golomb L, Wu Z, Zhou J, Svinkina T, Aguilera-Jimenez E, Liu Y, Carr SA, Sanchez-Cespedes M, Meyerson M, Zhang X. Multi-omics analysis identifies MGA as a negative regulator of the MYC pathway in lung adenocarcinoma. Mol Cancer Res. 2020;18:574–84.

    Article  CAS  Google Scholar 

  • Lu Y, Li Q, Zheng K, Fu C, Jiang C, Zhou D, Xia C, Ma S. Development of a high efficient promoter finding method based on transient transfection. Gene X. 2019;2:100008.

    CAS  Google Scholar 

  • Luan M, Song F, Qu S, Meng X, Ji J, Duan Y, Sun C, Si H, Zhai H. Multi-omics integrative analysis and survival risk model construction of non-small cell lung cancer based on The Cancer Genome Atlas datasets. Oncol Lett. 2020;20:58.

    CAS  Google Scholar 

  • Lv J, Wang J, Shang X, Liu F, Guo S. Survival prediction in patients with colon adenocarcinoma via multi-omics data integration using a deep learning algorithm. Biosci Rep. 2020;40:BSR20201482.

    Article  CAS  Google Scholar 

  • Mantini G, Pham TV, Piersma SR, Jimenez CR. Computational analysis of Phosphoproteomics data in multi-omics cancer studies. Proteomics. 2021;21:e1900312.

    Article  Google Scholar 

  • Marengo A, Rosso C, Bugianesi E. Liver cancer: connections with obesity, fatty liver, and cirrhosis. Annu Rev Med. 2016;67:103–17.

    Article  CAS  Google Scholar 

  • Mármol I, Sánchez-De-Diego C, Pradilla Dieste A, Cerrada E, Rodriguez Yoldi MJ. Colorectal carcinoma: a general overview and future perspectives in colorectal cancer. Int J Mol Sci. 2017;18:197.

    Article  Google Scholar 

  • Matthiesen R, Jensen ON. Analysis of mass spectrometry data in proteomics. Methods Mol Biol. 2008;453:105–22.

    Article  CAS  Google Scholar 

  • Mcglynn KA, Tsao L, Hsing AW, Devesa SS, Fraumeni JF. International trends and patterns of primary liver cancer. Int J Cancer. 2001;94:290–6.

    Article  CAS  Google Scholar 

  • Mckillop IH, Schrum LW. Alcohol and liver cancer. Alcohol. 2005;35:195–203.

    Article  CAS  Google Scholar 

  • Meng C, Zeleznik OA, Thallinger GG, Kuster B, Gholami AM, Culhane AC. Dimension reduction techniques for the integrative analysis of multi-omics data. Brief Bioinform. 2016;17:628–41.

    Article  CAS  Google Scholar 

  • Miao R, Luo H, Zhou H, Li G, Bu D, Yang X, Zhao X, Zhang H, Liu S, Zhong Y, Zou Z, Zhao Y, Yu K, He L, Sang X, Zhong S, Huang J, Wu Y, Miksad RA, Robson SC, Jiang C, Zhao Y, Zhao H. Identification of prognostic biomarkers in hepatitis B virus-related hepatocellular carcinoma and stratification by integrative multi-omics analysis. J Hepatol. 2014;61:840–9.

    Article  CAS  Google Scholar 

  • Minna JD, Roth JA, Gazdar AF. Focus on lung cancer. Cancer Cell. 2002;1:49–52.

    Article  CAS  Google Scholar 

  • Nakano D, Kawaguchi T, Iwamoto H, Hayakawa M, Koga H, Torimura T. Effects of canagliflozin on growth and metabolic reprograming in hepatocellular carcinoma cells: multi-omics analysis of metabolomics and absolute quantification proteomics (iMPAQT). PLoS One. 2020;15:e0232283.

    Article  CAS  Google Scholar 

  • Netanely D, Stern N, Laufer I, Shamir R. PROMO: an interactive tool for analyzing clinically-labeled multi-omic cancer datasets. BMC Bioinformatics. 2019;20:732.

    Article  Google Scholar 

  • Nicora G, Vitali F, Dagliati A, Geifman N, Bellazzi R. Integrated multi-omics analyses in oncology: a review of machine learning methods and tools. Front Oncol. 2020;10:1030.

    Article  Google Scholar 

  • Nusinow DP, Szpyt J, Ghandi M, Rose CM, Mcdonald ER 3rd, Kalocsay M, Jane-Valbuena J, Gelfand E, Schweppe DK, Jedrychowski M, Golji J, Porter DA, Rejtar T, Wang YK, Kryukov GV, Stegmeier F, Erickson BK, Garraway LA, Sellers WR, Gygi SP. Quantitative proteomics of the cancer cell line Encyclopedia. Cell. 2020;180(387–402):e316.

    Google Scholar 

  • O'connell JB, Maggard MA, Livingston EH, Yo CK. Colorectal cancer in the young. Am J Surg. 2004;187:343–8.

    Article  Google Scholar 

  • Ouyang X, Fan Q, Ling G, Shi Y, Hu F. Identification of diagnostic biomarkers and subtypes of liver hepatocellular carcinoma by multi-omics data analysis. Genes (Basel). 2020;11:1051.

    Article  CAS  Google Scholar 

  • Park M, Kim D, Moon K, Park T. Integrative analysis of multi-omics data based on blockwise sparse principal components. Int J Mol Sci. 2020;21:8202.

    Article  CAS  Google Scholar 

  • Pastushenko I, Blanpain C. EMT transition states during tumor progression and metastasis. Trends Cell Biol. 2019;29:212–26.

    Article  CAS  Google Scholar 

  • Patz EF, Goodman PC, Bepler G. Current concepts—screening for lung cancer. N Engl J Med. 2000;343:1627–33.

    Article  Google Scholar 

  • Potter JD. Colorectal cancer: molecules and populations. J Natl Cancer Inst. 1999;91:916–32.

    Article  CAS  Google Scholar 

  • Preisser F, Cooperberg MR, Crook J, Feng F, Graefen M, Karakiewicz PI, Klotz L, Montironi R, Nguyen PL, D'amico AV. Intermediate-risk prostate cancer: stratification and management. Eur Urol Oncol. 2020;3:270–80.

    Article  Google Scholar 

  • Rhee EP. How omics data can be used in nephrology. Am J Kidney Dis. 2018;72:129–35.

    Article  CAS  Google Scholar 

  • Salgia R, Skarin AT. Molecular abnormalities in lung cancer. J Clin Oncol. 1998;16:1207–17.

    Article  CAS  Google Scholar 

  • Shen H, Yang J, Huang Q, Jiang MJ, Tan YN, Fu JF, Zhu LZ, Fang XF, Yuan Y. Different treatment strategies and molecular features between right-sided and left-sided colon cancers. World J Gastroenterol. 2015;21:6470–8.

    Article  CAS  Google Scholar 

  • Shen M, Xu M, Zhong F, Crist MC, Prior AB, Yang K, Allaire DM, Choueiry F, Zhu J, Shi H. A multi-omics study revealing the metabolic effects of Estrogen in liver cancer cells HepG2. Cell. 2021a;10:455.

    Article  CAS  Google Scholar 

  • Shen Y, Xiong W, Gu Q, Zhang Q, Yue J, Liu C, Wang D. Multi-omics integrative analysis uncovers molecular subtypes and mRNAs as therapeutic targets for liver cancer. Front Med (Lausanne). 2021b;8:654635.

    Article  Google Scholar 

  • Sia D, Villanueva A, Friedman SL, Llovet JM. Liver cancer cell of origin, molecular class, and effects on patient prognosis. Gastroenterology. 2017;152:745–61.

    Article  CAS  Google Scholar 

  • Siegel R, Desantis C, Jemal A. Colorectal cancer statistics, 2014. CA-a Cancer J Clin. 2014;64:104–17.

    Article  Google Scholar 

  • Song J, Yang J, Lin R, Cai X, Zheng L, Chen Y. Molecular heterogeneity of guanine nucleotide binding-protein gamma subunit 4 in left- and right-sided colon cancer. Oncol Lett. 2020;20:334.

    Article  Google Scholar 

  • Spiro SG, Silvestri GA. One hundred years of lung cancer. Am J Respir Crit Care Med. 2005;172:523–9.

    Article  Google Scholar 

  • Srivatanakul P, Sriplung H, Deerasamee S. Epidemiology of liver cancer: an overview. Asian Pac J Cancer Prev. 2004;5:118–25.

    Google Scholar 

  • Stintzing S. Management of colorectal cancer. F1000Prime Rep. 2014;6:108.

    Article  Google Scholar 

  • Subramanian I, Verma S, Kumar S, Jere A, Anamika K. Multi-omics data integration, interpretation, and its application. Bioinform Biol Insights. 2020;14:1–24.

    Article  Google Scholar 

  • Sun YV, Hu YJ. Integrative analysis of multi-omics data for discovery and functional studies of complex human diseases. Adv Genet. 2016;93:147–90.

    Article  CAS  Google Scholar 

  • Sung H, Ferlay J, Siegel RL, Laversanne M, and Bray, F.J.C.a.C.J.F.C.. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. 2021, 71.

    Google Scholar 

  • Tomczak K, Czerwinska P, Wiznerowicz M. The cancer genome atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn). 2015;19:A68-77.

    Google Scholar 

  • Tong D, Tian Y, Zhou T, Ye Q, Li J, Ding K, Li J. Improving prediction performance of colon cancer prognosis based on the integration of clinical and multi-omics data. BMC Med Inform Decis Mak. 2020;20:22.

    Article  Google Scholar 

  • Torre LA, Siegel RL, Jemal A. Lung cancer statistics. Adv Exp Med Biol. 2016a;893:1–19.

    Article  Google Scholar 

  • Torre LA, Siegel RL, Ward EM, Jemal A. Global cancer incidence and mortality rates and trends-an update. Cancer Epidemiol Biomark Prev. 2016b;25:16–27.

    Article  Google Scholar 

  • Valencia AM, Kadoch C. Chromatin regulatory mechanisms and therapeutic opportunities in cancer. Nat Cell Biol. 2019;21:152–61.

    Article  CAS  Google Scholar 

  • Van Meerbeeck JP, Fennell DA, De Ruysscher DKM. Small-cell lung cancer. Lancet. 2011;378:1741–55.

    Article  Google Scholar 

  • Vasaikar SV, Straub P, Wang J, Zhang B. LinkedOmics: analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res. 2018;46:D956–63.

    Article  CAS  Google Scholar 

  • Wang C, Yang F, Chen T, Dong Q, Zhao Z, Liu Y, Chen B, Liang H, Yang H, Gu Y. RHPCG: a database of the regulation of the hippo pathway in cancer genome. Database (Oxford). 2019;2019:baz135.

    Article  Google Scholar 

  • Wang Z, Jensen MA, Zenklusen JC. A practical guide to the cancer genome atlas (TCGA). Methods Mol Biol. 2016;1418:111–41.

    Article  Google Scholar 

  • Wang Z, Wei Y, Zhang R, Su L, Gogarten SM, Liu G, Brennan P, Field JK, Mckay JD, Lissowska J, Swiatkowska B, Janout V, Bolca C, Kontic M, Scelo G, Zaridze D, Laurie CC, Doheny KF, Pugh EK, Marosy BA, Hetrick KN, Xiao X, Pikielny C, Hung RJ, Amos CI, Lin X, Christiani DC. Multi-omics analysis reveals a HIF network and hub gene EPAS1 associated with lung adenocarcinoma. EBioMedicine. 2018;32:93–101.

    Article  Google Scholar 

  • Weinberg DS, Schoen RE. Screening for colorectal cancer. Ann Intern Med. 2014;160

    Google Scholar 

  • Weinberg RA. How cancer arises. Sci Am. 1996;275:62–70.

    Article  CAS  Google Scholar 

  • Wistuba I, Gazdar AF. Lung cancer preneoplasia. Annu Rev Pathol. 2006;1:331–48.

    Article  CAS  Google Scholar 

  • Woo HG, Choi JH, Yoon S, Jee BA, Cho EJ, Lee JH, Yu SJ, Yoon JH, Yi NJ, Lee KW, Suh KS, Kim YJ. Integrative analysis of genomic and epigenomic regulation of the transcriptome in liver cancer. Nat Commun. 2017;8:839.

    Article  Google Scholar 

  • Wu B, Wang Z, Lin N, Yan XB, Lv ZC, Ying ZM, Ye ZM. A panel of eight mRNA signatures improves prognosis prediction of osteosarcoma patients. Medicine. 2021a;100:e24118.

    Article  CAS  Google Scholar 

  • Wu L, Liu F, Cai H. IOAT: an interactive tool for statistical analysis of omics data and clinical data. BMC Bioinformatics. 2021b;22:326.

    Article  Google Scholar 

  • Wu Y, Yang Y, Gu H, Tao B, Zhang E, Wei J, Wang Z, Liu A, Sun R, Chen M, Fan Y, Mao R. Multi-omics analysis reveals the functional transcription and potential translation of enhancers. Int J Cancer. 2020;147:2210–24.

    Article  CAS  Google Scholar 

  • Xie B, Yuan Z, Yang Y, Sun Z, Zhou S, Fang X. MOBCdb: a comprehensive database integrating multi-omics data on breast cancer for precision medicine. Breast Cancer Res Treat. 2018;169:625–32.

    Article  CAS  Google Scholar 

  • Xie Q, Fan F, Wei W, Liu Y, Xu Z, Zhai L, Qi Y, Ye B, Zhang Y, Basu S, Zhao Z, Wu J, Xu P. Multi-omics analyses reveal metabolic alterations regulated by hepatitis B virus core protein in hepatocellular carcinoma cells. Sci Rep. 2017;7:41089.

    Article  CAS  Google Scholar 

  • Xie Y. Hepatitis B virus-associated hepatocellular carcinoma. Adv Exp Med Biol. 2017;1018:11–21.

    Article  CAS  Google Scholar 

  • Xu Q, Zhai JC, Huo CQ, Li Y, Dong XJ, Li DF, Huang RD, Shen C, Chang YJ, Zeng XL, Meng FL, Yang F, Zhang WL, Zhang SN, Zhou YM, Zhang Z. OncoPDSS: an evidence-based clinical decision support system for oncology pharmacotherapy at the individual level. BMC Cancer. 2020a;20:740.

    Article  Google Scholar 

  • Xu X, Gong C, Wang Y, Hu Y, Liu H, Fang Z. Multi-omics analysis to identify driving factors in colorectal cancer. Epigenomics. 2020b;12:1633–50.

    Article  CAS  Google Scholar 

  • Xu Y, She Y, Li Y, Li H, Jia Z, Jiang G, Liang L, Duan L. Multi-omics analysis at epigenomics and transcriptomics levels reveals prognostic subtypes of lung squamous cell carcinoma. Biomed Pharmacother. 2020c;125:109859.

    Article  CAS  Google Scholar 

  • Yamashita T, Wang XW. Cancer stem cells in the development of liver cancer. J Clin Investig. 2013;123:1911–8.

    Article  CAS  Google Scholar 

  • Yang H, Jin W, Liu H, Wang X, Wu J, Gan D, Cui C, Han Y, Han C, Wang Z. A novel prognostic model based on multi-omics features predicts the prognosis of colon cancer patients. Mol Genet Genomic Med. 2020a;8:e1255.

    Article  CAS  Google Scholar 

  • Yang Z, Xu J, Li L, Li R, Wang Y, Tian Y, Guo W, Wang Z, Tan F, Ying J, Jiao Y, Gao S, Wang J, Gao Y, He J. Integrated molecular characterization reveals potential therapeutic strategies for pulmonary sarcomatoid carcinoma. Nat Commun. 2020b;11:4878.

    Article  CAS  Google Scholar 

  • Yi H, Li G, Long Y, Liang W, Cui H, Zhang B, Tan Y, Li Y, Shen L, Deng D, Tang Y, Mao C, Tian S, Cai Y, Zhu Q, Hu Y, Chen W, Fang L. Integrative multi-omics analysis of a colon cancer cell line with heterogeneous Wnt activity revealed RUNX2 as an epigenetic regulator of EMT. Oncogene. 2020;39:5152–64.

    Article  CAS  Google Scholar 

  • Yi T, Zhang Y, Ng DM, Xi Y, Ye M, Cen L, Li J, Fan X, Li Y, Hu S, Rong H, Xie Y, Zhao G, Chen L, Chen C, Ni S, Mi J, Dai X, Liao Q. Regulatory network analysis of mutated genes based on multi-omics data reveals the exclusive features in tumor immune microenvironment between left-sided and right-sided colon cancer. Front Oncol. 2021;11:685515.

    Article  Google Scholar 

  • Yildiz G. Integrated multi-omics data analysis identifying novel drug sensitivity-associated molecular targets of hepatocellular carcinoma cells. Oncol Lett. 2018;16:113–22.

    Google Scholar 

  • Yin Z, Yan X, Wang Q, Deng Z, Tang K, Cao Z, Qiu T. Detecting prognosis risk biomarkers for colon cancer through multi-omics-based prognostic analysis and target regulation simulation Modeling. Front Genet. 2020;11:524.

    Article  CAS  Google Scholar 

  • Yoo BC, Kim KH, Woo SM, Myung JK. Clinical multi-omics strategies for the effective cancer management. J Proteome. 2018;188:97–106.

    Article  CAS  Google Scholar 

  • Yu C, Qi X, Lin Y, Li Y, Shen B. iODA: an integrated tool for analysis of cancer pathway consistency from heterogeneous multi-omics data. J Biomed Inform. 2020;112:103605.

    Article  Google Scholar 

  • Yuan Y, Bao J, Chen Z, Villanueva AD, Wen W, Wang F, Zhao D, Fu X, Cai Q, Long J, Shu XO, Zheng D, Moreno V, Zheng W, Lin W, Guo X. Multi-omics analysis to identify susceptibility genes for colorectal cancer. Hum Mol Genet. 2021;30:321–30.

    Article  CAS  Google Scholar 

  • Zeng D, Ye Z, Shen R, Yu G, Wu J, Xiong Y, Zhou R, Qiu W, Huang N, Sun L, Li X, Bin J, Liao Y, Shi M, Liao W. IOBR: multi-omics immuno-oncology biological research to decode tumor microenvironment and signatures. Front Immunol. 2021;12:687975.

    Article  CAS  Google Scholar 

  • Zhang H, Jin Z, Cheng L, Zhang B. Integrative analysis of methylation and gene expression in lung adenocarcinoma and squamous cell lung carcinoma. Front Bioeng Biotechnol. 2020a;8:3.

    Article  Google Scholar 

  • Zhang J, Bajari R, Andric D, Gerthoffert F, Lepsa A, Nahal-Bose H, Stein LD, Ferretti V. The international cancer genome consortium data portal. Nat Biotechnol. 2019;37:367–9.

    Article  CAS  Google Scholar 

  • Zhang Y, Yang M, Ng DM, Haleem M, Yi T, Hu S, Zhu H, Zhao G, Liao Q. Multi-omics data analyses construct TME and identify the immune-related prognosis signatures in human LUAD. Mol Ther Nucleic Acids. 2020b;21:860–73.

    Article  Google Scholar 

  • Zochbauer-Muller S, Minna JD. The biology of lung cancer including potential clinical applications. Chest Surg Clin N Am. 2000;10:691–708.

    CAS  Google Scholar 

  • Zou Y, Ruan S, Jin L, Chen Z, Han H, Zhang Y, Jian Z, Lin Y, Shi N, Jin H. CDK1, CCNB1, and CCNB2 are prognostic biomarkers and correlated with immune infiltration in hepatocellular carcinoma. Med Sci Monit. 2020;26:e925289.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank all the individuals who have helped us in this study. We acknowledge the valuable work of the many investigators whose published articles we were unable to cite owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Tang .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that they have no conflict of interest.

Fundings

This work was financially supported by the grants from the National Natural Science Foundation of China (31861143051, 31872425, 32002235, 31602008) and Senior Talent Foundation of Jiangsu University (19JDG039).

Additional information

Publisher's Disclaimer: The work described has not been published before; that it is not under consideration for publication anywhere else; that its publication has been approved by all co-authors, if any, as well as by the responsible authorities—tacitly or explicitly—at the institute where the work has been carried out. The publisher will not be held legally responsible should there be any claims for compensation.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, H., Gong, X., Tang, M. (2023). Multi-Omics Data Analysis for Cancer Research: Colorectal Cancer, Liver Cancer and Lung Cancer. In: Ning, K. (eds) Methodologies of Multi-Omics Data Integration and Data Mining. Translational Bioinformatics, vol 19. Springer, Singapore. https://doi.org/10.1007/978-981-19-8210-1_5

Download citation

Publish with us

Policies and ethics