Skip to main content

Advertisement

Log in

MOBCdb: a comprehensive database integrating multi-omics data on breast cancer for precision medicine

  • Brief Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Background

Breast cancer is one of the most frequently diagnosed cancers among women worldwide, characterized by diverse biological heterogeneity. It is well known that complex and combined gene regulation of multi-omics is involved in the occurrence and development of breast cancer.

Results

In this paper, we present the Multi-Omics Breast Cancer Database (MOBCdb), a simple and easily accessible repository that integrates genomic, transcriptomic, epigenomic, clinical, and drug response data of different subtypes of breast cancer. MOBCdb allows users to retrieve simple nucleotide variation (SNV), gene expression, microRNA expression, DNA methylation, and specific drug response data by various search fashions. The genome-wide browser /navigation facility in MOBCdb provides an interface for visualizing multi-omics data of multi-samples simultaneously. Furthermore, the survival module provides survival analysis for all or some of the samples by using data of three omics. The approved public drugs with genetic variations on breast cancer are also included in MOBCdb.

Conclusion

In summary, MOBCdb provides users a unique web interface to the integrated multi-omics data of different subtypes of breast cancer, which enables the users to identify potential novel biomarkers for precision medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Siegel RL, Miller KD, Jemal A (2017) Cancer Statistics, 2017. CA Cancer J Clin 67(1):7–30

    Article  PubMed  Google Scholar 

  2. Zagouri F et al (2014) Female breast cancer in Europe: statistics, diagnosis and treatment modalities. J Thorac Dis 6(6):589–590

    PubMed  PubMed Central  Google Scholar 

  3. Chen W et al (2016) Cancer statistics in China, 2015. CA Cancer J Clin 66(2):115–132

    Article  PubMed  Google Scholar 

  4. Sorlie T et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Ignatiadis M, Sotiriou C (2013) Luminal breast cancer: from biology to treatment. Nat Rev Clin Oncol 10(9):494–506

    Article  PubMed  CAS  Google Scholar 

  6. Arteaga CL et al (2011) Treatment of HER2-positive breast cancer: current status and future perspectives. Nat Rev Clin Oncol 9(1):16–32

    Article  PubMed  CAS  Google Scholar 

  7. Rakha EA, Reis-Filho JS, Ellis IO (2008) Basal-like breast cancer: a critical review. J Clin Oncol 26(15):2568–2581

    Article  PubMed  Google Scholar 

  8. Curtis C et al (2012) The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486(7403):346–352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Varn FS et al (2015) Integrative analysis of survival-associated gene sets in breast cancer. BMC Med Genom 8:11

    Article  CAS  Google Scholar 

  10. Gomez-Cabrero D et al (2014) Data integration in the era of omics: current and future challenges. BMC Syst Biol 8(Suppl 2):I1

    Article  PubMed  PubMed Central  Google Scholar 

  11. Liu Y et al (2013) Multilevel omic data integration in cancer cell lines: advanced annotation and emergent properties. BMC Syst Biol 7:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Li W et al (2012) Identifying multi-layer gene regulatory modules from multi-dimensional genomic data. Bioinformatics 28(19):2458–2466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Szabo C et al (2000) The breast cancer information core: database design, structure, and scope. Hum Mutat 16(2):123–131

    Article  PubMed  CAS  Google Scholar 

  14. Baasiri RA et al (1999) The breast cancer gene database: a collaborative information resource. Oncogene 18(56):7958–7965

    Article  PubMed  CAS  Google Scholar 

  15. Sims D et al (2010) ROCK: a breast cancer functional genomics resource. Breast Cancer Res Treat 124(2):567–572

    Article  PubMed  CAS  Google Scholar 

  16. Mosca E et al (2010) A multilevel data integration resource for breast cancer study. BMC Syst Biol 4:76

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Mohandass J et al (2010) BCDB - A database for breast cancer research and information. Bioinformation 5(1):1–3

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cerami E et al (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data (vol 2, pg 401, 2012). Cancer Discov 2(10):960–960

    Article  Google Scholar 

  19. Gao JJ et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cbioportal. Sci Signal 6(269):pl1–pl1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Whirl-Carrillo M et al (2012) Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther 92(4):414–417

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Skinner ME et al (2009) JBrowse: a next-generation genome browser. Genome Res 19(9):1630–1638

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38(16):e164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Griffiths-Jones S et al (2008) miRBase: tools for microRNA genomics. Nucl Acids Res 36(Database issue):D154–D158

    PubMed  CAS  Google Scholar 

  24. Xu J et al (2012) Genome-wide association study in Chinese men identifies two new prostate cancer risk loci at 9q31.2 and 19q13.4. Nat Genet 44(11):1231–1235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Lin KT et al (2014) Identification of latent biomarkers in hepatocellular carcinoma by ultra-deep whole-transcriptome sequencing. Oncogene 33(39):4786–4794

    Article  PubMed  CAS  Google Scholar 

  26. van Veldhoven K et al (2015) Epigenome-wide association study reveals decreased average methylation levels years before breast cancer diagnosis. Clin Epigenet 7:67

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the National Key R&D Program of China (2016YFC0901701 and 2016YFC0901704), the “863 Projects” of Ministry of Science and Technology of China (2015AA020101 & 2015AA020108), and Key Research Program of the Chinese Academy of Sciences (KJZD-EW-L14).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuigeng Zhou or Xiangdong Fang.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, B., Yuan, Z., Yang, Y. et al. MOBCdb: a comprehensive database integrating multi-omics data on breast cancer for precision medicine. Breast Cancer Res Treat 169, 625–632 (2018). https://doi.org/10.1007/s10549-018-4708-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-018-4708-z

Keywords

Navigation