Skip to main content

Recent Trends for Production of Biofuels Using Algal Biomass

  • Chapter
  • First Online:
Basic Research Advancement for Algal Biofuels Production

Abstract

Industrial revolution not only brings comforts to life but also leads to many problems. One of them is limited supply of energy resources; the other is global warming and environmental pollution by burning fossil fuels. These problems lead scientists towards the idea of biofuels. But the production of first and second generation biofuels has many challenges including food vs. fuel war. Recently the production of biofuels by algal biomass also called as third generation biofuels has gained attention. Algal biomass can not only be converted to all forms of energy resources like biodiesel and biogas, but also are ecofriendly as they recycle the CO2 in the environment and reduce the emission of greenhouse gases as in the case of fossil fuel. But there is need for modern methodology and instrumentation to obtain biofuels from algae. This chapter is about cultivation and harvesting of different algal strains, production of different types of fuels from algal biomass, genetic engineering of algal strains to obtain maximum lipid content, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya N, Nanda P, Panda S, Acharya S (2017) Analysis of properties and estimation of optimum blending ratio of blended mahua biodiesel. Eng Sci Technol Int J 20(2):511–517

    Google Scholar 

  • Adams JM, Gallagher JA, Donnison IS (2009) Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. J Appl Phycol 21(5):569–574

    Article  CAS  Google Scholar 

  • Adeniyi OM, Azimov U, Burluka A (2018) Algae biofuel: current status and future applications. Renew Sust Energ Rev 90:316–335

    Article  Google Scholar 

  • Alam F, Date A, Rasjidin R, Mobin S, Moria H, Baqui A (2012) Biofuel from algae-is it a viable alternative? Proc Engineer 49:221–227

    Article  CAS  Google Scholar 

  • Al-lwayzy S, Yusaf T (2013) Chlorella protothecoides microalgae as an alternative fuel for tractor diesel engines. Energies 6:766

    Article  CAS  Google Scholar 

  • Anto S, Mukherjee SS, Muthappa R, Mathimani T, Deviram G, Kumar SS, Pugazhendhi A (2020) Algae as green energy reserve: technological outlook on biofuel production. Chemosphere 242:125079

    Article  CAS  Google Scholar 

  • Atadashi IM, Aroua MK, Aziz AA (2010) High quality biodiesel and its diesel engine application: a review. Renew Sust Energ Rev 14(7):1999–2008

    Article  CAS  Google Scholar 

  • Barabás I, Todoruţ A, Băldean D (2010) Performance and emission characteristics of an CI engine fueled with diesel–biodiesel–bioethanol blends. Fuel 89:3827–3832

    Article  Google Scholar 

  • Bazarnova Y, Kuznetsova TA, Boysen HE (2018) Methods for concentrating the cell suspension of Chlorella microalgae for obtaining pigment complex. Int J Civil Engineer 9(10):340–350

    Google Scholar 

  • Bell J, Strang J (2020) Medication treatment of opioid use disorder. Biol Psychiatry 87(1):82–88

    Article  CAS  Google Scholar 

  • Benson D, Kerry K, Malin G (2014) Algal biofuels: impact significance and implications for EU multi-level governance. J Clean Prod 72:4–13

    Article  CAS  Google Scholar 

  • Bhale PV, Deshpande NV, Thombre SB (2009) Improving the low temperature properties of biodiesel fuel. Renew Energ 34:794–800

    Article  CAS  Google Scholar 

  • Bharathiraja B, Chakravarthy M, Kumar RR, Yogendran D, Yuvaraj D, Jayamuthunagai J, Palani S (2015) Aquatic biomass (algae) as a future feed stock for bio-refineries: a review on cultivation, processing and products. Renew Sust Energ Rev 47:634–653

    Article  CAS  Google Scholar 

  • Bird KT, Chynoweth DP, Jerger DE (1990) Effects of marine algal proximate composition on methane yields. J Appl Phycol 2:207–213

    Article  Google Scholar 

  • Borowitzka MA (1997) Microalgae for aquaculture: opportunities and constraints. J Appl Phycol 9:393–401

    Article  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14(2):557–577

    Article  CAS  Google Scholar 

  • Carlsson AS, Van Beilen JB, Moller R, Clayton D (2007) Micro and macro algae: utility for industrial applications. Bowles D (ed). Cpl Press, Newbury

    Google Scholar 

  • Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22(6):1490–1506

    Article  CAS  Google Scholar 

  • Chan CX, Ho CL, Phang SM (2006) Trends in seaweed research. Trends Plant Sci 11(4):165–166

    Article  CAS  Google Scholar 

  • Chandrasekhar K, Lee YJ, Lee DW (2015) Biohydrogen production: strategies to improve process efficiency through microbial routes. Int J Mol Sci 16(4):8266–8293

    Article  CAS  Google Scholar 

  • Chaudhary L, Pradhan P, Soni N (2014) Algae as a feedstock for bioethanol production: new entrance in biofuel. WORLD 6:1381–1389

    Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  CAS  Google Scholar 

  • Choi SP, Nguyen MT, Sim SJ (2010) Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresour Technol 101:5330–5336

    Article  CAS  Google Scholar 

  • Chowdhury H, Loganathan B, Mustary I, Alam F, Mobin SM (2019) Algae for biofuels: the third generation of feedstock. In: Second and third generation of feedstocks. Elsevier, pp 323–344

    Chapter  Google Scholar 

  • Chynoweth DP, Turick CE, Owens JM, Jerger DE, Peck MW (1993) Biochemical methane potential of biomass and waste feedstocks. Biomass Bioenergy 5:95–111

    Article  CAS  Google Scholar 

  • Dana GV, Kuiken T, Rejeski D, Snow AA (2012) Synthetic biology: four steps to avoid a synthetic-biology disaster. Nature 483:29

    Article  CAS  Google Scholar 

  • Dassey AJ, Hall SG, Theegala CS (2014) An analysis of energy consumption for algal biodiesel production: comparing the literature with current estimates. Algal Res 4:89–95

    Article  Google Scholar 

  • Davison J (2005) Risk mitigation of genetically modified bacteria and plants designed for bioremediation. J Ind Microbiol Biotech 32:639–650

    Article  CAS  Google Scholar 

  • Dębowski M, Zieliński M, Grala A, Dudek M (2013) Algae biomass as an alternative substrate in biogas production technologies. Renew Sust Energ Rev 27:596–604

    Article  Google Scholar 

  • Demirbas A (2009) Progress and recent trends in biodiesel fuels. Energy Convers Manag 50(1):14–34

    Article  CAS  Google Scholar 

  • Devi MP, Mohan SV (2012) CO2 supplementation to domestic wastewater enhances microalgae lipid accumulation under mixotrophic microenvironment: effect of sparging period and interval. Bioresour Technol 112:116–123

    Article  Google Scholar 

  • Dunn RO (2010) Other alternative diesel fuels from vegetable oils and animal fats. In: The biodiesel handbook, 2nd edn. AOCS Press, pp 405–437

    Chapter  Google Scholar 

  • Dunningham J, Atack T (2014). Seaweed farming in Scotland, SAMS. Annual Report

    Google Scholar 

  • Echim C, Maes J, Greyt WD (2012) Improvement of cold filter plugging point of biodiesel from alternative feedstocks. Fuel 93:642–648

    Article  CAS  Google Scholar 

  • Ehimen EA, Sun ZF, Carrington CG (2010) Variables affecting the in situ transesterification of microalgae lipids. Fuel 89(3):677–684

    Article  CAS  Google Scholar 

  • Ehimen EA, Holm-Nielsen JB, Poulsen M, Boelsmand JE (2013) Influence of different pre-treatment routes on the anaerobic digestion of a filamentous algae. Renew Energy 50:476–480

    Article  CAS  Google Scholar 

  • Eshaq FS, Ali MN, Mohd MK (2011) Production of bioethanol from next generation feed stock alga Spirogyra species. Int J Eng Sci Technol 3:1749–1755

    Google Scholar 

  • Farooq W, Moon M, Ryu B, Suh WI, Shrivastav A, Park MS, Mishra SK, Yang J-W (2015) Effect of harvesting methods on the reusability of water for cultivation of Chlorella vulgaris, its lipid productivity and biodiesel quality. Algal Res 8:1–7

    Article  Google Scholar 

  • Farrell AE, Gopal AR (2008) Bioenergy research needs for heat, electricity, and liquid fuels. MRS Bull 33(4):373–380

    Article  CAS  Google Scholar 

  • Flynn KJ, Greenwell HC, Lovitt RW, Shields RJ (2010) Selection for fitness at the individual or population levels: modelling effects of genetic modifications in microalgae on productivity and environmental safety. J Theor Biol 263:269–280

    Article  Google Scholar 

  • Ghorbani A, Rahimpour MR, Ghasemi Y, Raeissi S (2018) The biodiesel of microalgae as a solution for diesel demand in Iran. Energies 11(4):950

    Article  Google Scholar 

  • Griffiths MJ, Harrison ST (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21(5):493–507

    Article  CAS  Google Scholar 

  • Grima EM, Belarbi EH, Fernandez FGA, Medina AR, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515

    Article  Google Scholar 

  • Hagos FY, Ali OM, Mamat R, Abdullah AA (2017) Effect of emulsification and blending on the oxygenation and substitution of diesel fuel for compression ignition engine. Renew Sust Energ Rev 75:1281–1294

    Article  CAS  Google Scholar 

  • Haik Y, Selim MYE, Abdulrehman T (2011) Combustion of algae oil methyl ester in an indirect injection diesel engine. Energy 36:1827–1835

    Article  CAS  Google Scholar 

  • Hall CAS, Benemann JR (2011) Oil from algae? Bioscience 61:741–742

    Article  Google Scholar 

  • Hallenbeck PC, Grogger M, Mraz M, Veverka D (2016) Solar biofuels production with microalgae. Appl Energy 179:136–145

    Article  CAS  Google Scholar 

  • Harun R, Danquah MK (2011) Influence of acid pre-treatment on microalgal biomass for bioethanol production. Process Biochem 46:304–309

    Article  CAS  Google Scholar 

  • Harun R, Singh M, Forde Gareth M, Danquah Michael K (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sust Energ Rev 14:1037–1047

    Article  CAS  Google Scholar 

  • Hoseini SS, Najafi G, Ghobadian B, Mamat R, Sidik NAC, Azmi WH (2017) The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends. Renew Sust Energ Rev 73:307–331

    Article  CAS  Google Scholar 

  • Hossain AS, Salleh A, Boyce AN, Chowdhury P, Naqiuddin M (2008) Biodiesel fuel production from algae as renewable energy. Am J Biochem Biotechnol 4(3):250–254

    Article  CAS  Google Scholar 

  • Hossain FM, Rainey TJ, Ristovski Z, Brown RJ (2018) Performance and exhaust emissions of diesel engines using microalgae FAME and the prospects for microalgae HTL biocrude. Renew Sust Energ Rev 82:4269–4278

    Article  CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54(4):621–639

    Article  CAS  Google Scholar 

  • Jazzar S, Quesada-Medina J, Olivares-Carrillo P, Marzouki MN, Acién-Fernández FG, Fernández-Sevilla JM et al (2015) A whole biodiesel conversion process combining isolation, cultivation and in situ supercritical methanol transesterification of native microalgae. Bioresour Technol 190:281–288

    Article  CAS  Google Scholar 

  • John RP, Anisha GS, Nampoothiri KM, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102:186–193

    Article  CAS  Google Scholar 

  • Johnson MB, Wen Z (2009) Production of biodiesel fuel from the microalga Schizochytrium limacinum by direct transesterification of algal biomass. Energy Fuel 23(10):5179–5183

    Article  CAS  Google Scholar 

  • Kabakian E (2014) US Patent Application No 14/115,142

    Google Scholar 

  • Kandiyoti R, Herod A, Bartle KD, Morgan TJ (2016) Solid fuels and heavy hydrocarbon liquids: thermal characterization and analysis. Elsevier

    Google Scholar 

  • Kandiyoti R, Herod A, Bartle K, Morgan T (2017) Fossil fuels and renewables. In: Solid fuels and heavy hydrocarbon liquids, 2nd edn. Elsevier, pp 1–9

    Google Scholar 

  • Karemore A, Sen R (2016) Downstream processing of microalgal feedstock for lipid and carbohydrate in a biorefinery concept: a holistic approach for biofuel applications. RSC Adv 6(35):29486–29496

    Article  CAS  Google Scholar 

  • Karemore A, Nayak M, Sen R (2016) Recent inventions and trends in algal biofuels research. Recent Pat Biotechnol 10(1):30–42

    Article  CAS  Google Scholar 

  • Karthikeyan S, Prathima A (2016) Engine emission characteristics of algal biofuel with micro emulsion. Energ Sour A Recov Utilizat Environ Effect 38:3661–3667

    CAS  Google Scholar 

  • Khalife E, Tabatabaei M, Demirbas A, Aghbashlo M (2017) Impacts of additives on performance and emission characteristics of diesel engines during steady state operation. Prog Energ Combust Sci 59:32–78

    Article  Google Scholar 

  • Khambhaty Y, Mody K, Gandhi MR, Thampy S, Maiti P, Brahmbhatt H (2012) Kappaphycus alvarezii as a source of bioethanol. Bioresour Technol 103:180–185

    Article  CAS  Google Scholar 

  • Khan SA, Hussain MZ, Prasad S, Banerjee UC (2009) Prospects of biodiesel production from microalgae in India. Renew Sust Energ Rev 13(9):2361–2372

    Article  CAS  Google Scholar 

  • Kim GV, Choi WY, Kang DH, Lee SY, Lee HY (2014) Enhancement of biodiesel production from marine alga, Scenedesmus sp. through in situ transesterification process associated with acidic catalyst. Biomed Res Int 2014:391542

    Google Scholar 

  • Kose A, Oncel SS (2017) Algae as a promising resource for biofuel industry: facts and challenges. Int J Energy Res 41(7):924–951

    Article  Google Scholar 

  • Kraan S (2013) Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production. Mitig Adapt Strateg Glob Chang 18(1):27–46

    Article  Google Scholar 

  • Lardon L, Hélias A, Sialve B, Steyer JP, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43(17):6475–6481

    Google Scholar 

  • Lee YK (1997) Commercial production of microalgae in the Asia-Pacific rim. J Appl Phycol 9(5):403–411

    Article  Google Scholar 

  • Lee OK, Lee EY (2016) Sustainable production of bioethanol from renewable brown algae biomass. Biomass Bioenergy 92:70–75

    Article  CAS  Google Scholar 

  • Lei J, Shen L, Bi Y, Chen H (2012) A novel emulsifier for ethanol–diesel blends and its effect on performance and emissions of diesel engine. Fuel 93:305–311

    Article  CAS  Google Scholar 

  • Levine R, Oberlin A, Adriaens P (2009) A value chain and life cycle assessment approach to identify technological innovation opportunities in algae biodiesel. Nanotech 3:1–6

    CAS  Google Scholar 

  • Lüning K, Pang S (2003) Mass cultivation of seaweeds: current aspects and approaches. J Appl Phycol 15(2):115–119

    Article  Google Scholar 

  • Maceiras R, Rodrı M, Cancela A, Urréjola S, Sánchez A (2011) Macroalgae: raw material for biodiesel production. Appl Energy 88(10):3318–3323

    Article  CAS  Google Scholar 

  • Makarevičienė V, Lebedevas S, Rapalis P, Gumbyte M, Skorupskaite V, Žaglinskis J (2014) Performance and emission characteristics of diesel fuel containing microalgae oil methyl esters. Fuel 120:233–239

    Article  Google Scholar 

  • Marchin T, Erpicum M, Franck F (2015) Photosynthesis of Scenedesmus obliquus in outdoor open thin-layer cascade system in high and low CO2 in Belgium. J Biotechnol 215:2–12

    Article  Google Scholar 

  • Márquez-Reyes LA, del Pilar Sánchez-Saavedra M, Valdez-Vazquez I (2015) Improvement of hydrogen production by reduction of the photosynthetic oxygen in microalgae cultures of Chlamydomonas gloeopara and Scenedesmus obliquus. Int J Hydrog Energy 40(23):7291–7300

    Article  Google Scholar 

  • Martinez-Guerra E, Gude VG (2018) Energy analysis of extractive-transesterification of algal lipids for biocrude production. Biofuels 9:139–146

    Article  CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14(1):217–232

    Article  CAS  Google Scholar 

  • Mathiyazhagan M, Ganapathi A (2011) Factors affecting biodiesel production. Res Plant Biol 1(2):1–5

    Google Scholar 

  • McGraw L (2009) The ethics of adoption and development of algae-based biofuels. UNESCO, Co-chair of Working Group 9

    Google Scholar 

  • Medina AR, Grima EM, Giménez AG, González MI (1998) Downstream processing of algal polyunsaturated fatty acids. Biotechnol Adv 16(3):517–580

    Article  CAS  Google Scholar 

  • Melis A, Happe T (2001) Hydrogen production. Green algae as a source of energy. Plant Physiol 127(3):740–748

    Article  CAS  Google Scholar 

  • Menetrez MY (2012) An overview of algae biofuel production and potential environmental impact. Environ Sci Technol 46(13):7073–7085

    Article  CAS  Google Scholar 

  • Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97(6):841–846

    Article  CAS  Google Scholar 

  • Milledge JJ, Heaven S (2013) A review of the harvesting of micro-algae for biofuel production. Rev Environ Sci Biotechnol 12(2):165–178

    Article  Google Scholar 

  • Milledge JJ, Smith B, Dyer WP, Harvey P (2014) Macroalgae-derived biofuel: a review of methods of energy extraction from seaweed biomass. Energies:7

    Google Scholar 

  • Mofijur M, Rasul MG, Hyde J, Azad AK, Mamat R, Bhuiya MMK (2016) Role of biofuel and their binary (diesel–biodiesel) and ternary (ethanol–biodiesel–diesel) blends on internal combustion engines emission reduction. Renew Sust Energ Rev 53:265–278

    Article  CAS  Google Scholar 

  • Mondal M, Goswami S, Ghosh A, Oinam G, Tiwari ON, Das P et al (2017) Production of biodiesel from microalgae through biological carbon capture: a review. 3 Biotech 7(2):1–21

    Article  CAS  Google Scholar 

  • Mutanda T, Ramesh D, Karthikeyan S, Kumari S, Anandraj A, Bux F (2011) Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresour Technol 102(1):57–70

    Article  CAS  Google Scholar 

  • Muthukumar A, Elayaraja S, Ajithkumar TT, Kumaresan S, Balasubramanian T (2012) Biodiesel production from marine microalgae Chlorella marina and Nannochloropsis salina. J Petrol Technol Altern Fuels 3:58–62

    CAS  Google Scholar 

  • Nahak S, Nahak G, Pradhan I, Sahu RK (2013) Bioethanol from Marine algae a solution to global warming problem. J Appl Environ Biol Sci 1:74–80

    Google Scholar 

  • Nair JN, Deepthi J, kalyani KS. (2013) Study of biodiesel blends and emission characteristics of biodiesel. Int J Innov Res Sci Eng Technol 2:3710–3715

    Google Scholar 

  • Nautiyal P, Subramanian KA, Dastidar MG (2014) Kinetic and thermodynamic studies on biodiesel production from Spirulina platensis algae biomass using single stage extraction-transesterification process. Fuel 135:228–234

    Article  CAS  Google Scholar 

  • Neto AAD, Fernandes MR, Neto ELB, Dantas TNC, Moura MCPA (2013) Effect of biodiesel/diesel-based microemulsions on the exhaust emissions of a diesel engine. Braz J Petrol Gas 7

    Google Scholar 

  • Nichols EJ, Scott JR (2012) US Patent No 8, 281,515, US Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Noraini MY, Ong HC, Badrul MJ, Chong WT (2014) A review on potential enzymatic reaction for biofuel production from algae. Renew Sust Energ Rev 39:24–34

    Article  CAS  Google Scholar 

  • Notoya M (2010) Production of biofuel by macroalgae with preservation of marine resources and environment. In: Seaweeds and their role in globally changing environments. Springer, Dordrecht, pp 217–228

    Chapter  Google Scholar 

  • Oncel SS (2013) Microalgae for a macroenergy world. Renew Sust Energ Rev 26:241–264

    Article  Google Scholar 

  • Park JH, Yoon JJ, Park HD, Kim YJ, Lim DJ, Kim SH (2011) Feasibility of biohydrogen production from Gelidium amansii. Int J Hydrog Energy 36:13997–14003

    Article  CAS  Google Scholar 

  • Patel JS, Kumar N, Deep A, Sharma A, Gupta D (2014) Evaluation of emission characteristics of blend of algae oil methyl ester with diesel in a medium capacity diesel engine. SAE paper 2014-01-1378

    Google Scholar 

  • Perls D (2017) Controversy erupts over genetically engineered algae for biofuels. Biofuel International, Surrey. http://biofuels-news.com/display_news/12264/controversy_erupts_over_genetically_engineered_algae_for_biofuels. Accessed 10 May 2017

  • Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57:287–293

    Article  CAS  Google Scholar 

  • Quinn JC, Davis R (2015) The potentials and challenges of algae based biofuels: a review of the techno-economic, life cycle, and resource assessment modeling. Bioresour Technol 184:444–452

    Article  CAS  Google Scholar 

  • Rahman MM, Stevanovic S, Islam MA, Heimann K, Nabi MN, Thomas G et al (2015) Particle emissions from microalgae biodiesel combustion and their relative oxidative potential. Environ Sci: Proc Impact 17:1601–1610

    CAS  Google Scholar 

  • Rapier R (2010) Solazyme CEO clarifies costs, consumer energy report, 2010. http://www.consumerenergyreport.com/2010/10/09/solazyme-ceo-clarifies-costs/. Accessed 20 Dec 2011

  • Ribeiro LA, da Silva PP, Mata TM, Martins AA (2015) Prospects of using microalgae for biofuels production: results of a Delphi study. Renew Energy 75:799–804

    Article  Google Scholar 

  • Rimmer M, Lloyd M, Mokdsi G, Spielthenner D, Driver E (2015) Intellectual property and biofuels: the energy crisis, food security, and climate change. J World Intellect Proper 18(6):271–297

    Article  Google Scholar 

  • Rismani-Yazdi H, Haznedaroglu BZ, Bibby K, Peccia J (2011) Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: pathway description and gene discovery for production of next-generation biofuels. BMC Genomics 12:148

    Article  CAS  Google Scholar 

  • Rodolfi L, ChiniZittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112

    Article  CAS  Google Scholar 

  • Roy MM, Calder J, Wang W, Mangad A, Diniz FCM (2016) Emission analysis of a modern Tier 4 DI diesel engine fueled by biodiesel-diesel blends with a cold flow improver (Wintron Synergy) at multiple idling conditions. Appl Energ 179:45–54

    Article  CAS  Google Scholar 

  • Sadeghinezhad E, Kazi SN, Sadeghinejad F, Badarudin A, Mehrali M, Sadri R et al (2014) A comprehensive literature review of bio-fuel performance in internal combustion engine and relevant costs involvement. Renew Sustain Energy Rev 30:29–44

    Article  CAS  Google Scholar 

  • Saifullah AZA, Karim A, Ahmad-yazid A (2014) Microalgae: an alternative source of renewable energy. Am J Engineer Res (AJER) 3:330–338

    Google Scholar 

  • Salam KA, Velasquez-Orta SB, Harvey AP (2016) A sustainable integrated in situ transesterification of microalgae for biodiesel production and associated co-product-a review. Renew Sust Energ Rev 65:1179–1198

    Article  CAS  Google Scholar 

  • Scragg AH, Illman AM, Carden A, Shales SW (2002) Growth of microalgae with increased calorific values in a tubular bioreactor. Biomass Bioenergy 23(1):67–73

    Article  CAS  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998a) A look back at the US Department of Energy’s aquatic species program: biodiesel from algae. Nat Renewab Energ Lab 328:1–294

    Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998b) A look back at the U.S. Department of Energy’s aquatic species program: biodiesel from algae. National Renewable Energy Laboratory, Colorado

    Google Scholar 

  • Shi X, Jung KW, Kim DH, Ahn YT, Shin HS (2011) Direct fermentation of Laminaria japonica for biohydrogen production by anaerobic mixed cultures. Int J Hydrog Energy 36:5857–5864

    Article  CAS  Google Scholar 

  • Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27(4):409–416

    Article  CAS  Google Scholar 

  • Singh B, Bauddh K, Bux F (eds) (2015) Algae and environmental sustainability. Springer

    Google Scholar 

  • Snow AA, Smith VH (2012) Genetically engineered algae for biofuels: a key role for ecologists. Bioscience 62:765–768

    Article  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  Google Scholar 

  • Suganya T, Varman M, Masjuki HH, Renganathan S (2016) Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: a biorefinery approach. Renew Sust Energ Rev 55:909–941

    Article  CAS  Google Scholar 

  • Susilaningsih D, Djohan AC, Widyaningrum DN, Anam K (2009) Biodiesel from indigenous Indonesian marine microalgae Nannochloropsis sp. J Biotechnol Res Trop Reg 2:1–4

    Google Scholar 

  • Tabatabaei M, Tohidfar M, Jouzani GS, Safarnejad M, Pazouki M (2011) Biodiesel production from genetically engineered microalgae: future of bioenergy in Iran. Renew Sust Energ Rev 15:1918–1927

    Article  CAS  Google Scholar 

  • Terry KL, Raymond LP (1985) System design for the autotrophic production of microalgae. Enzym Microb Technol 7:474–487

    Article  Google Scholar 

  • Titlyanov EA, Titlyanova TV (2010) Seaweed cultivation: methods and problems. Russ J Mar Biol 36(4):227–242

    Article  Google Scholar 

  • Tredici MR (2010) Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels 1:143–162

    Article  CAS  Google Scholar 

  • Trivedi J, Aila M, Bangwal DP, Kaul S, Garg MO (2015) Algae based biorefinery—how to make sense? Renew Sust Energ Rev 47:295–307

    Article  CAS  Google Scholar 

  • Ullah K, Ahmad M, Sharma VK, Lu P, Harvey A, Zafar M, Sultana S (2015) Assessing the potential of algal biomass opportunities for bioenergy industry: a review. Fuel 143:414–423

    Article  CAS  Google Scholar 

  • Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2013) An overview of the composition and application of biomass ash. Part 1. Phase–mineral and chemical composition and classification. Fuel 105:40–76

    Article  CAS  Google Scholar 

  • Vogel CFA, Kado SY, Kobayashi R, Liu X, Wong P, Na K et al (2019) Inflammatory marker and aryl hydrocarbon receptor-dependent responses in human macrophages exposed to emissions from biodiesel fuels. Chemosphere 220:993–1002

    Article  CAS  Google Scholar 

  • Vologni V, Kakarla R, Angelidaki I, Min B (2013) Increased power generation from primary sludge by a submersible microbial fuel cell and optimum operational conditions. Bioprocess Biosyst Eng 36(5):635–642

    Article  CAS  Google Scholar 

  • Wang S, Jiang XM, Wang Q, Han XX, Ji HS (2013) Experiment and grey relational analysis of seaweed particle combustion in a fluidized bed. Energy Convers Manag 66:115–120

    Article  Google Scholar 

  • Wi SG, Kim HJ, Mahadevan SA, Yang DJ, Bae HJ (2009) The potential value of the seaweed Ceylon moss (Gelidium amansii) as an alternative bioenergy resource. Bioresour Technol 100(24):6658–6660

    Article  CAS  Google Scholar 

  • Xiong W, Li X, Xiang J, Wu Q (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biotechnol 78(1):29–36

    Article  CAS  Google Scholar 

  • Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126(4):499–507

    Article  CAS  Google Scholar 

  • Xu Y, Hellier P, Purton S, Baganz F, Ladommatos N (2016) Algal biomass and diesel emulsions: an alternative approach for utilizing the energy content of microalgal biomass in diesel engines. Appl Energ 172:80–95

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Irfan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akram, F. et al. (2023). Recent Trends for Production of Biofuels Using Algal Biomass. In: Srivastava, N., Mishra, P. (eds) Basic Research Advancement for Algal Biofuels Production. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-19-6810-5_2

Download citation

Publish with us

Policies and ethics