Skip to main content

Effect of Temperature (Cold and Hot) Stress on Medicinal Plants

  • Chapter
  • First Online:
Medicinal Plants

Abstract

Environmental factors such as light intensity, humidity, microbial attack, and temperature etc. are prominent in causing stress to medicinal plants which results in altered physiological processes. We know that medicinal properties in plants are attributed to the phytochemicals (secondary metabolites) present in them, which are governed by the various internal and external factors a plant is acted upon. One of the major factors that influence secondary metabolite production in plants is temperature under which a plant has to grow. Temperature extremes induce various physiological, morphological, and molecular changes in medicinal plants and these changes need to be addressed to find out approaches in order to empower medicinal plants’ growth and healthy survival. High temperature induces direct and indirect damage to plants via protein denaturation and inactivation of chloroplast enzymes respectively. Cold temperature stress induces reduction in water uptake by plants, thus leading to cellular dehydration. Thus, there is a need to develop suitable engineered medicinal species of plants by creating desired genetic modifications for optimum growth, survival, and productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad S, Abdin MZ, Fazli IS, Jamal A, Maaz M, Iqbal M (2004) Variability in xanthotoxin concentration in organs of Ammi majus and yield at various phenological stages. J Med Aromatic Plant Sci 26:8–11

    CAS  Google Scholar 

  • Ahmad S, Jamal A, Fazli IS, Alam T, Khan MA, Kamaluddin, Iqbal M, Abdin MZ (2007) Impact of sulphur and nitrogen application on seed xanthotoxin yield in Ammi majus L. Korean J Crop Sci 52:153–161

    Google Scholar 

  • Ajmal S, Iqbal M (1987a) Seasonal rhythm of structure and behaviour of vascular cambium in Ficus rumphii. Ann Bot 60:949–956

    Article  Google Scholar 

  • Ajmal S, Iqbal M (1987b) Annual rhythm of cambial activity in Streblus asper. IAWA Bulletin (ns) 8:275–283

    Article  Google Scholar 

  • Ajmal S, Iqbal M (1988) Seasonal variation of the sapwood structure in Ficus rumphii and Streblus asper. Flora 181:101–109

    Article  Google Scholar 

  • Alhaithloul HA, Soliman MH, Ameta KL, El-Esawi MA, Elkelish A (2020) Changes in ecophysiology, osmolytes, and secondary metabolites of the medicinal plants of Mentha piperita and Catharanthus roseus subjected to drought and heat stress. Biomol Ther 10(1):43. https://doi.org/10.3390/biom10010043

    Article  CAS  Google Scholar 

  • Ali ST, Mahmooduzzafar, Abdin MZ, Iqbal M (2008) Ontogenetic changes in foliar features and psoralen content of Psoralea corylifolia Linn. Exposed to SO2 stress. J Environ Biol 29:661–668

    CAS  Google Scholar 

  • Al-Jaouni S, Saleh AM, Wadaan MA, Hozzein WN, Selim S, Abd-Elgawad H (2018) Elevated CO2 induces a global metabolic change in basil (Ocimum basilicum L.) and peppermint (Mentha piperita L.) and improves their biological activity. J Plant Physiol 224:121–131

    Article  Google Scholar 

  • Aref IM, Khan PR, Khan S, El-Atta H, Ahmed IA, Iqbal M (2016) Modulation of antioxidant enzymes in Juniperus procera needles in relation to habitat environment and dieback incidence. Trees Struct Funct 30:1669–1681

    Article  Google Scholar 

  • Arshi A, Abdin MZ, Iqbal M (2006) Sennoside content and yield attributes of Cassia angustifolia Vahl. as affected by NaCl and CaCl2. Sci Hortic 111:84–90

    Article  CAS  Google Scholar 

  • Arulmozhi S, Matchado MS, Snijesh VP, Kumar A, Singh S (2019) An insight into anti-arthritic property of C25H34O7 for rheumatoid arthritis using molecular modelling and molecular dynamics approach. Inf Med Unlocked 16:100145

    Article  Google Scholar 

  • Ashraf MA, Iqbal M, Rasheed R, Hussain I, Riaz M, Arif MS (2018) Environmental stress and secondary metabolites in plants: an overview. In: Ahmad P, Ahangar MA, Singh VP, Tripathi DK, Alam P, Alyemeni MN (eds) Plant Metabolites and Regulation under Environmental Stress. Academic Press (an imprint of Elsevier), pp 153–167

    Google Scholar 

  • Banon S, Fernandez JA, Franco JA, Torrecillas A, Alarcón JJ, Sánchez-Blanco MJ (2004) Effects of water stress and night temperature preconditioning on water relations and morphological and anatomical changes of Lotus creticus plants. Sci Hortic 101(3):333–342

    Article  Google Scholar 

  • Barickman TC, Olorunwa OJ, Sehgal A, Walne CH, Reddy KR, Gao W (2021) Yield, physiological performance, and phytochemistry of Basil (Ocimum basilicum L.) under temperature stress and elevated CO2 concentrations. Plan Theory 10(6):1072

    CAS  Google Scholar 

  • Barua D, Downs CA, Heckathorn SA (2003) Variation in chloroplast small heat-shock protein function is a major determinant of variation in thermotolerance of photosynthetic electron transport among ecotypes of Chenopodium album. Funct Plant Biol 30:1071–1079

    Article  CAS  Google Scholar 

  • Bashir H, Qureshi MI, Ibrahim AM, Iqbal M (2015) Chloroplast and photosystems: impact of cadmium and iron deficiency. Photosynthetica 53(3):321–335

    Article  CAS  Google Scholar 

  • Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4. https://doi.org/10.3389/fpls.2013.00273

  • Borges CV, Minatel IO, Gomez-Gomez HA, Lima GPP (2017) Medicinal plants: influence of environmental factors on the content of secondary metabolites. In: Ghorbanpour M, Varma A (eds) Medicinal plants and environmental challenges. Springer International, Cham, pp 259–277

    Chapter  Google Scholar 

  • Chaitanya K, Sundar D, Masilamani S, Ramchandra- Reddy A (2002) Variation in heat stress-induced antioxidant enzyme activities among three mulberry cultivars. Plant Growth Regul 36:175–180

    Article  CAS  Google Scholar 

  • Courtois D, Guren J (1980) Temperature response of Catharanthus roseus cells cultivated in liquid medium. Plant Sci Lett 17:473–482

    Article  CAS  Google Scholar 

  • Dane F, Hunter AG, Chambliss OL (1991) Fruit-set, pollen fertility, and combining ability of selected tomato genotypes under high-temperature field conditions. J Am Soc Hortic 116:906–910

    Article  Google Scholar 

  • Deepti BAJ, Bhalla P, Bachheti RK, Husen H (2022a) Growth and development of medicinal plants, and production of secondary metabolites under ozone pollution. In: Husen A (ed) Environmental pollution and medicinal plants. CRC Press, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487–2742, pp 25–45. https://doi.org/10.1201/9781003178866-2

    Chapter  Google Scholar 

  • Deepti BAJ, Chauhan K, Bachheti RK, Husen H (2022b) Impact of UV radiation on the growth and pharmaceutical properties of medicinal plants. In: Husen A (ed) Environmental pollution and medicinal plants. CRC Press, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487–2742, pp 47–64. https://doi.org/10.1201/9781003178866-3

    Chapter  Google Scholar 

  • Devi EL, Kumar S, Singh TB, Sharma SK, Beemrote A, Devi CP, Chongtham SK, Singh CH, Yumlembam RA, Haribhushan A, Prakash N (2017) Adaptation strategies and defense mechanisms of plants during environmental stress. In: Ghorbanpour M, Varma A (eds) Medicinal plants and environmental challenges. Springer International, Cham, pp 359–413

    Chapter  Google Scholar 

  • Diwan H, Khan I, Ahmad A, Iqbal M (2010) Induction of phytochelatins and antioxidant defence system in Brassica juncea and Vigna radiata in response to chromium treatments. Plant Growth Regul 61:97–107

    Article  CAS  Google Scholar 

  • Ebrahim MK, Zingsheim O, El-Shourbagy MN, Moore PH, Komor E (1998) Growth and sugar storage in sugarcane grown at temperature below and above optimum. J Plant Physiol 153:593–602

    Article  CAS  Google Scholar 

  • Fahn A, Werker E (1990) Seasonal cambial activity. In: Iqbal M (ed) The Vascular Cambium. Research Studies Press, Ltd Somerset, Taunton, UK, pp 139–158

    Google Scholar 

  • Gautam VK, Datta M, Baldi A (2019) Effect of geographical and seasonal variations on phenolic contents and antioxidant activity of aerial parts of Urtica diocia L. Curr Traditional Med 5(2):159–167

    Article  CAS  Google Scholar 

  • Ghouse AKM, Iqbal M (1982) A comparative study of sapwood structure in Acacia nilotica and Prosopis spicigera with respect to seasonal variation. J Tree Sci 1:50–56

    Google Scholar 

  • Hasanuzzaman M, Hossain MA, da Silva JAT, Fujita M (2012) Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Venkateswarlu B, Shankar AK, Shankar C, Maheswari M (eds) Crop stress and its management: perspectives and strategies. Springer, Dordrecht, pp 261–315

    Chapter  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14(5):9643–9684

    Article  Google Scholar 

  • Husen A (2021a) Harsh environment and plant resilience (molecular and functional aspects). Springer Nature, Cham, Switzerland. https://doi.org/10.1007/978-3-030-65912-7

    Book  Google Scholar 

  • Husen A (2021b) Plant performance under environmental stress (hormones, biostimulants and sustainable plant growth management). Springer Nature, Cham, Switzerland. https://doi.org/10.1007/978-3-030-78521-5

    Book  Google Scholar 

  • Husen A (2021c) Traditional herbal therapy for the human immune system. CRC Press, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487–2742. https://doi.org/10.1201/9781003137955

    Book  Google Scholar 

  • Husen A (2022a) Herbs, shrubs and trees of potential medicinal benefits. CRC Press, Boca Raton, FL, USA. https://doi.org/10.1201/9781003205067

    Book  Google Scholar 

  • Husen A (2022b) Environmental pollution and medicinal plants. CRC Press, Boca Raton, FL, USA. https://doi.org/10.1201/9781003178866

    Book  Google Scholar 

  • Iqbal M (1994) Structural and operational specializations of the vascular cambium of seed plants. In: Iqbal M (ed) Growth patterns in vascular plants. Dioscorides Press, Portland, USA, pp 211–271

    Google Scholar 

  • Iqbal M (1995) Structure and behaviour of vascular cambium and the mechanism and control of cambial growth. In: Iqbal M (ed) The cambial derivatives. Gebrüder Borntraeger, Stuttgart, Germany, pp 1–67

    Google Scholar 

  • Iqbal M, Ahmad A, Ansari MKA, Qureshi MI, Aref MI, Khan PR, Hegazy SS, El-Atta H, Husen A, Hakeem KR (2015) Improving the phytoextraction capacity of plants to scavenge metal(loid)-contaminated sites. Environ Rev 23(1):44–65

    Article  CAS  Google Scholar 

  • Iqbal M, Bano R, Wali B (2005) Plant growth responses to air pollution. In: Chaturvedi SN, Singh KP (eds) Plant biodiversity, microbial interaction and environmental biology. Avishkar Publishers, Jaipur, India, pp 166–188

    Google Scholar 

  • Iqbal M, Beigh SY, Nawchoo IA (2004) Variability in morphology and active constituents of Podophyllum hexandrum: a Himalayan herb known for its anti-cancer activity. J Trop Med Plants 5:33–36

    Google Scholar 

  • Iqbal M, Ghouse AKM (1980) Acacia nilotica (L) Willd.—an ideal tree form of arid zone. Ann Arid Zone 19(4):481–483

    Google Scholar 

  • Iqbal M, Ghouse AKM (1982) Environmental influence on growth activities of Prosopis spicigera. In: Khosla PK (ed) Improvement of forest biomass. Indian Society of Tree Scientists, Solan, India, pp 387–393

    Google Scholar 

  • Iqbal M, Ghouse AKM (1985) Impact of climatic variation on the structure and activity of vascular cambium in Prosopis spicigera. Flora 177(3–4):147–156

    Article  Google Scholar 

  • Iqbal M, Ghouse AKM (1987) Anatomy of the vascular cambium of Acacia nilotica (L.) Del. var, telia Troup (Mimosaceae) in relation to age and season. Bot J Linn Soc 94:385–397

    Article  Google Scholar 

  • Iqbal M, Mahmooduzzafar, Abdin MZ (2000) Studies on anatomical, physiological and biochemical response of trees to coal-smoke pollution around a thermal power plant. Research Project 14/62/89-MAB/Re, Ministry of Environment & Forests (Govt. of India), pp. 335

    Google Scholar 

  • Isah T (2019) Stress and defense responses in plant secondary metabolites production. Biol Res 52:39. https://doi.org/10.1186/s40659-019-0246-3

    Article  CAS  Google Scholar 

  • Ismail AM, Hall AE (1999) Reproductive-stage heat tolerance, leaf membrane thermostability and plant morphology in cowpea. Crop Sci 39:1762–1768

    Article  Google Scholar 

  • Jain M, Prasad PVV, Boote KJ, Hartwell AL, Chourey PS (2007) Effects of season-long high temperature growth conditions on sugar-to-starch metabolism in developing microspores of grain sorghum (Sorghum bicolor L. Moench). Planta 227:67–79

    Article  CAS  Google Scholar 

  • Jemaa E, Saida A, Sadok B (2010) Impact of heat stress on germination and growth in higher plants: physiological, biochemical and molecular repercussions and mechanisms of defense. J Biol Sci 10(6):565–572

    Article  Google Scholar 

  • Jochum GM, Mudge KW, Thomas RB (2007) Elevated temperatures increase leaf senescence and root secondary metabolite concentrations in the understory herb Panax quinquefolius (Araliaceae). Am J Bot 94:819–826

    Article  CAS  Google Scholar 

  • Kumar S, Kaur R, Kaur N, Bhandhari K, Kaushal N, Gupta K, Bains TS, Nayyar H (2011) Heat-stress induced inhibition in growth and chlorosis in mung bean (Phaseolus aureus Roxb.) is partly mitigated by ascorbic acid application and is related to reduction in oxidative stress. Acta Physiol Plant 33:2091–2101

    Article  CAS  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses. Water, radiation, salt, and other stresses, vol II. Academic, pp 347–470

    Google Scholar 

  • Li Q, Lei S, Du K, Li L, Pang X, Wang Z, Wei M, Fu S, Hu L, Xu L (2016) RNAseq based transcriptomic analysis uncovers a-linolenic acid and jasmonic acid biosynthesis pathways respond to cold acclimation in Camellia japonica. Sci Rep 6:36463

    Article  CAS  Google Scholar 

  • Li Y, Kong D, Fu Y, Sussman MR, Wu H (2020) The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol Biochem 148:80–89

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants, and stress tolerance. Trends Plant Sci 7(9):405–410

    Article  CAS  Google Scholar 

  • Nadeau P, Delaney S, Chouinard L (1987) Effects of cold hardening on the regulation of polyamine levels in wheat (Triticum aestivum L.) and Alfalfa (Medicago sativa L.). Plant Physiol 84(1):73–77

    Article  CAS  Google Scholar 

  • Naghiloo A, Movafeghi A, Delazar H, Nazemiyeh S, Asnaashari S, Dadpour MR (2012) Ontogenetic variation of total phenolics and antioxidant activity in roots: leaves and flowers of Astragalus compactus Lam. (Fabaceae). Bioimpacts 2(2):105–109

    CAS  Google Scholar 

  • Ncube B, Finnie JF, Van Staden J (2012) Quality from the field: the impact of environmental factors as quality determinants in medicinal plants. S Afr J Bot 82:11–20

    Article  Google Scholar 

  • Nievola CC, Carvalho CP, Carvalho V, Rodrigues E (2017) Rapid responses of plants to temperature changes. Temp Austin 4(4):371–405

    Google Scholar 

  • Noor JJ, Vinayan MT, Umar S, Devi P, Iqbal M, Seetharam K, Zaidi PH (2019) Morpho-physiological traits associated with heat stress tolerance in tropical maize (Zea mays L.) at the reproductive stage. Aust J Crop Sci 13(4):536–545

    Article  Google Scholar 

  • Pagare S, Bhatia M, Tripathi N, Pagare S, Bansal YK (2015) Secondary metabolites of plants and their role: overview. Curr Trends Biotechnol 9(3):93–304

    Google Scholar 

  • Pandey S, Carrer M, Castagneri D, Petit G (2018) Xylem anatomical responses to climate variability in Himalayan birch trees at one of the world’s highest forest limits. Perspect Plant Ecol Evol 33:34–41

    Article  Google Scholar 

  • Pant P, Pandey S, Dall Acqua S (2021) The influence of environmental conditions on secondary metabolites in medicinal plants: a literature review. Chem Biodivers 18(11):e2100345

    Article  CAS  Google Scholar 

  • Parveen B, Parveen A, Parveen R, Ahmad S, Ahmad M, Iqbal M (2020) Challenges and opportunities for traditional herbal medicine today, with special reference to its status in India. Ann Phytomedicine 9(2):97–112

    Google Scholar 

  • Paupière M, Heusden A, Bovy A (2014) The metabolic basis of pollen thermo-tolerance: perspectives for breeding. Meta 4:889–920

    Google Scholar 

  • Rahman S, Husen A (2022) Impact of sulphur dioxide deposition on medicinal plants’ growth and production of active constituents. In: Husen A (ed) Environmental pollution and medicinal plants. CRC Press, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487–2742, pp 65–93. https://doi.org/10.1201/9781003178866-4

    Chapter  Google Scholar 

  • Rao KS, Rajput KS (1999) Seasonal behaviour of vascular cambium in teak (Tectona grandis) growing in moist deciduous and dry deciduous forests. IAWA J 20(1):85–93

    Article  Google Scholar 

  • Rivero RM, Ruiz JM, García PC, López-Lefebre LR, Sánchez E, Romero L (2001) Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci 160(2):315–321

    Article  CAS  Google Scholar 

  • Sato S, Kamiyama M, Iwata T, Makita N, Furukawa H, Ikeda H (2006) Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development. Ann Bot 97:731–738

    Article  CAS  Google Scholar 

  • Scharf KD, Berberich T, Ebersberger I, Nover L (2012) The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochim Biophys Acta 1819(2):104–119

    Article  CAS  Google Scholar 

  • Shibata M, Amano M, Kawata J, Uda M (1988) Breeding process and characteristics of ‘summer queen’, a spray-type chrysanthemum cultivar for summer production. Bulletin of the National Research Institute of Vegetable, Ornamental Plants and Tea Series A 2:245–255

    Google Scholar 

  • Singh N, Ali G, Soh WY, Iqbal M (2000) Growth responses and hyoscyamine content of Datura innoxia under the influence of coal-smoke pollution. J Plant Biol 43:69–75

    Article  CAS  Google Scholar 

  • Snijesh VP, Singh S (2014) Molecular modeling and network-based approach in explaining the medicinal properties of Nyctanthes arbortristis, Lippia nodiflora for rheumatoid arthritis. J Bioinf Intell Control 3(1):31–38

    Article  Google Scholar 

  • Ul-Haq S, Khan A, Ali M, Khattak AM, Gai WX, Zhang HX, Wei AM, Gong ZH (2019) Heat shock proteins: dynamic biomolecules to counter plant biotic and abiotic stresses. Int J Mol Sci 20(21):5321

    Article  CAS  Google Scholar 

  • Verma N, Sao P, Srivastava A, Singh S (2021) Physiological and molecular responses to drought, submergence and excessive watering in plants. In: Husen A (ed) Harsh environment and plant resilience. Springer, Cham, pp 305–321

    Chapter  Google Scholar 

  • Verma N, Shukla S (2015) Impact of various factors responsible for fluctuation in plant secondary metabolites. J Appl Res Med Aromat Plants 2(4):105–113

    Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61(3):199–223

    Article  Google Scholar 

  • Warland JS, McDonald MR, McKeown AM (2006) Annual yields of five crops in the family Brassicaceae in southern Ontario in relation to weather and climate. Can J Plant Sci 86:1209–1215

    Article  Google Scholar 

  • Yadav SK (2010) Cold stress tolerance mechanisms in plants. A review. Agron Sustain Dev 30(3):515–527

    Article  CAS  Google Scholar 

  • Yin L, Zhao C, Huang Y, Yang RY, Zeng QP (2008) Abiotic stress-induced expression of artemisinin biosynthesis genes in Artemisia annua L. Chin J Appl Environ Biol 14(1):1–5

    CAS  Google Scholar 

  • Zhang JH, Huang WD, Liu YP, Pan QH (2005) Effects of temperature acclimation pretreatment on the ultrastructure of mesophyll cells in young grape plants (Vitis vinifera L.) under cross-temperature stresses. J Integr Plant Biol 47:959–970

    Article  Google Scholar 

  • Zhang Y, Luo Y, Hou YX, Jiang H, Chen Q, Tang HR (2008) Chilling acclimation induced changes in the distribution of H2O2 and antioxidant system of strawberry leaves. Agric J 3:286–291

    Google Scholar 

  • Ziogas V, Tanou G, Filippou P, Diamantidis G, Vasilakakis M, Fotopoulos V, Molassiotis A (2013) Nitrosative responses in citrus plants exposed to six abiotic stress conditions. Plant Physiol Biochem 68:118–126

    Article  CAS  Google Scholar 

  • Zobayed SM, Afreen F, Kozai T (2005) Temperature stress can alter the photosynthetic efficiency and secondary metabolite concentrations in St. John's wort. Plant Physiol Biochem 43(10–11):977–984

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Encouragement received from IMS Engineering College, Ghaziabad (UP), and Sankalchand Patel University, Visnagar, Gujarat, during preparation of this review, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srivastava, K., Singh, S., Singh, A., Jain, T., Datta, R., Kohli, A. (2023). Effect of Temperature (Cold and Hot) Stress on Medicinal Plants. In: Husen, A., Iqbal, M. (eds) Medicinal Plants. Springer, Singapore. https://doi.org/10.1007/978-981-19-5611-9_5

Download citation

Publish with us

Policies and ethics