Skip to main content

Physiological and Molecular Responses to Drought, Submergence and Excessive Watering in Plants

  • Chapter
  • First Online:
Harsh Environment and Plant Resilience

Abstract

The effects of water stress on plant growth and productivity can be adverse. Physiologically and biochemically, plants have adapted themselves to various water stresses. The reactions of the plant to the water pressures depend on the magnitude of the stress. The leaves, stomatal changes, root length, epicuticular wax layer and phytochemical changes can be seen as the most noticeable symptoms in plants. Different metabolic processes are involved in the creation of different molecular networks, such as stress response to plants by various means, various signal transduction processes. These kinds of networks help us to understand how important stress tolerance is for crops. Various important regulatory elements are available such as transcription factors (TFs), ion transport molecules and abscisic acid (ABA) signals which activate the control of water stresses, regulate the stomach response, allow plants to adaptĀ and survive. In this chapter, we address major physiological and molecular responses to major water stress, drought, submergence and excessive watering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdeshahian M, Nabipour M, Meskarbashee M (2010) Chlorophyll fluorescence as criterion for the diagnosis salt stress in wheat (Triticum aestivum) plants. Int J Chem Biol Eng 4:184ā€“186

    Google ScholarĀ 

  • Anjum F, Yaseen M, Rasul E, Wahid A, Anjum S (2003) Water stress in barley (Hordeum vulgare L.) II effect on chemical composition and chlorophyll contents. Pak J Agric Sci 40:45ā€“49

    Google ScholarĀ 

  • Anjum SA, Xie XY, Wang LC, Saleem MF, Man C, Lei W (2011) Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res 6(9):2026ā€“2032

    Google ScholarĀ 

  • Anjos e Silva SD dos, Sereno MJC de M, Lemons e Silva CF, Oliveira AC de, Barbosa Neto JF (2005) Genetic parameters and QTL for tolerance to flooded soils in maize. Crop Breed Appl Biotechnol 5:287ā€“293

    Google ScholarĀ 

  • Araus JL, Slafer GA, Reynolds MP, Royo C (2002) Plant breeding and drought in C3 cereals: what should we breed for? Ann Bot 89(7):925ā€“940

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Ashraf M (2012) Waterlogging stress in plants: a review. Afr J Agric Res 7(13):1976ā€“1981

    Google ScholarĀ 

  • Ashraf M, Arfan M (2005) Gas exchange characteristics and water relations in two cultivars of Hibiscus esculentus under waterlogging. Biol Plant 49(3):459ā€“462

    ArticleĀ  Google ScholarĀ 

  • Ashraf MY, Azmi AR, Khan AH, Ala SA (1994) Effect of water stress on total phenols, peroxidase activity and chlorophyll content in wheat (Triticum aestivum L). Acta Physiol Plantarum 16(3):185ā€“191

    Google ScholarĀ 

  • Ashraf MA, Ahmad MSA, Ashraf M, Al-Qurainy F, Ashraf MY (2011) Alleviation of waterlogging stress in upland cotton (Gossypium hirsutum L.) by exogenous application of potassium in soil and as a foliar spray. Crop Pasture Sci 62(1):25ā€“38

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Barrett-Lennard E, Van Ratingen P, Mathie M (1999) The developing pattern of damage in wheat (Triticum aestivum L) due to the combined stresses of salinity and hypoxia: experiments under controlled conditions suggest a methodology for plant selection. Aust J Agric Res 50(2):129

    ArticleĀ  Google ScholarĀ 

  • Barta C, Dunkle AM, Wachter RM, Salvucci ME (2010) Structural changes associated with the acute thermal instability of rubisco activase. Arch Biochem Biophys 499(1ā€“2):17ā€“25

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Bauder J (2001) Irrigating with limited water supplies. Montana State Univ Comm Ser Montana Hall Bozeman MT 59717

    Google ScholarĀ 

  • Bhatt RM, Rao NS (2005) Influence of pod load on response of okra to water stress. Indian J Plant Physiol 10(1):54

    Google ScholarĀ 

  • Bilal M, Iqbal I, Rana RM, Rehman SU, Haidery QA, Ahmad F, Umar HMI (2015) A comprehensive review of effects of water stress and tolerance in wheat (Triticuma estivum L). Trop Plant Res 2(3):271ā€“275

    Google ScholarĀ 

  • Bota J, Medrano H, Flexas J (2004) Is photosynthesis limited by decreased rubisco activity and RuBP content under progressive water stress? New Phytol 162(3):671ā€“681

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Bradford KJ (1983) Effects of soil flooding on leaf gas exchange of tomato plants. Plant Physiol 73(2):475ā€“479

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Bray EA (2001) Plant response to water-deficit stress. e LS,Ā American Cancer Society

    Google ScholarĀ 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Biochemistry and molecular biology of plants. Gruissem W, Jones R (eds) American Society of Plant Physiologists, Rockville, 1158ā€“1249

    Google ScholarĀ 

  • Chang W, Huang L, Shen M, Webster C, Burlingame A, Roberts J (2000) Patterns of protein synthesis and tolerance of anoxia in root tips of maize seedlings acclimated to a low-oxygen environment, and identification of proteins by mass spectrometry. Plant Physiol 122(2):295ā€“318

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Choudhary AK, Sultana R, Pratap A, Nadarajan N, Jha UC (2011) Breeding for abiotic stresses in pigeon pea. J Food Legumes 24(3):165ā€“174

    Google ScholarĀ 

  • Conaty WC, Tan DKY, Constable GA, Sutton BG, Field DJ, Mamum EA (2008) Genetic variation for waterlogging tolerance in cotton. J Cotton Sci 12:53ā€“61

    Google ScholarĀ 

  • Cornic G (2000) Drought stress inhibits photosynthesis by decreasing stomatal apertureā€“not by affecting ATP synthesis. Trends Plant Sci 5:187ā€“188

    Google ScholarĀ 

  • Cornic G, Massacci A (1996) Leaf photosynthesis under drought stress. In: Photosynthesis and the environment. Springer, Dordrecht, pp 347ā€“366

    Google ScholarĀ 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11(1):1ā€“14

    ArticleĀ  Google ScholarĀ 

  • DeEll JR, Van Kooten O, Prange RK, Murr DP (1999) Applications of chlorophyll fluorescence techniques in postharvest. Physiol Hort Rev 23:69ā€“107

    CASĀ  Google ScholarĀ 

  • Dinesh A, Muralidhara B, Gangurde S (2016) Molecular response of plants to drought, cold and heat stress-a review. In: Annual research & review in biology, pp 10:1ā€“8

    Google ScholarĀ 

  • Ding N, Musgrave ME (1995) Relationship between mineral coating on roots and yield performance of wheat under waterlogging stress. J Exp Bot 46(8):939ā€“945

    ArticleĀ  Google ScholarĀ 

  • Dodd IC, Ryan AC (2016) Whole-plant physiological responses to water-deficit stress. eLS:1ā€“9

    Google ScholarĀ 

  • Ehdaie B (1995) Variation in water-use efficiency and its components in wheat: II. Pot and field experiments. Crop Sci 35(6):1617ā€“1626

    ArticleĀ  Google ScholarĀ 

  • Else MA, Coupland D, Dutton L, Jackson MB (2001) Decreased root hydraulic conductivity reduces leaf water potential, initiates stomatal closure and slows leaf expansion in flooded plants of castor oil (Ricinus communis) despite diminished delivery of ABA from the roots to shoots in xylem sap. Physiol Plant 111(1):46ā€“54

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Evans D (2004) Aerenchyma formation. New Phytol 161(1):35ā€“49

    ArticleĀ  Google ScholarĀ 

  • FAO (2002) Agriculture: http://www.fao.org/waicent/FAOINFO/AGRICULT/ag1/ag11/gaez//nav.html

  • Farooq M, Wahid A, Kobayashi N, Fujita DBSMA, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. In: Sustainable agriculture,Ā Springer Verlag/EDP Sciences/INRA 29(1):185ā€“212

    Google ScholarĀ 

  • Finkelstein R, Gampala S, Rock C (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14(suppl 1):S15ā€“S45

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Folzer H, Dat J, Capelli N, Rieffel D, Badot PM (2006) Response to flooding of sessile oak: an integrative study. Tree Physiol 26:759ā€“766

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ford CW, Wilson JR (1981) Changes in levels of solutes during osmotic adjustment to water stress in leaves of four tropical pasture species. Funct Plant Biol 8(1):77ā€“91

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Fujita Y, Fujita M, Shinozak K, Yamaguchi-Shinozaki K (2011) ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res 124(4):509ā€“525

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Fujita Y, Yoshida T, Yamaguchi-Shinozaki K (2013) Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiol Plant 147(1):15ā€“27

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Fukao T, Barrera-Figueroa BE, Juntawong P, PeƱa-Castro JM (2019) Submergence and waterlogging stress in plants: a review highlighting research opportunities and understudied aspects. Front Plant Sci 10:340

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Gambrell R, Patrick W (1978) Chemical and microbiological properties of anaerobic soils and sediments. In: Hook DD, Crawford RMM (eds) Plant life in anaerobic environments. Ann Arbor Science Publishers, Ann Arbor, pp 375ā€“423

    Google ScholarĀ 

  • Gardner WK, Flood RG (1993) Less waterlogging damage with long season wheats. Cereal Res Commun 21:337ā€“343

    Google ScholarĀ 

  • Gibberd MR, Cocks PS (1997) Effect of waterlogging and soil pH on the micro-distribution of naturalised annual legumes. Aust J Agric Res 48(2):223ā€“230

    ArticleĀ  Google ScholarĀ 

  • Gibberd MR, Gray JD, Cocks PS, Colmer TD (2001) Waterlogging tolerance among a diverse range of Trifolium accessions is related to root porosity, lateral root formation and ā€˜aerotropic rootingā€™. Ann Bot 88(4):579ā€“589

    ArticleĀ  Google ScholarĀ 

  • Gupta K, Stoimenova M, Kaiser W (2005) In higher plants, only root mitochondria, but not leaf mitochondria reduce nitrite to NO, in vitro and in situ. J Exp Bot 56(420):2601ā€“2609

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hall AJ, Vilella F, Trapani N, Chimenti C (1982) The effects of water stress and genotype on the dynamics of pollen-shedding and silking in maize. Field Crop Res 5:349ā€“363

    ArticleĀ  Google ScholarĀ 

  • Hasanuzzaman M, Nahar K, Alam M, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14(5):9643ā€“9684

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Hsiao TC, Acevedo E, Fereres E, Henderson DW (1976) Water stress, growth and osmotic adjustment. Philos Trans R Soc London B Biol Sci 273(927):479ā€“500

    ArticleĀ  Google ScholarĀ 

  • Hussain M, Malik MA, Farooq M, Ashraf MY, Cheema MA (2008) Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower. J Agron Crop Sci 194(3):193ā€“199

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Jackson MB (1990) Hormones and developmental change in plants subjected to submergence or soil waterlogging. Aquat Bot 38(1):49ā€“72

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Jackson MB (2004) The impact of flooding stress on plants and crops

    Google ScholarĀ 

  • Jackson MB, Colmer TD (2005) Response and adaptation by plants to flooding stress. Ann Bot 96(4):501ā€“505

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Jackson MB, Kowalewska AK (1983) Positive and negative messages from roots induce foliar desiccation and stomatal closure in flooded pea plants. J Exp Bot 34(5):493ā€“506

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Jimenez A, Hernandez JA, del RĆ­o LA, Sevilla F (1997) Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114(1):275ā€“284

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Jones MM, Osmond CB, Turner NC (1980) Accumulation of solutes in leaves of sorghum and sunflower in response to water deficits. Funct Plant Biol 7(2):193ā€“205

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17(3):287ā€“291

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kaya C, Higgs D, Saltali K, Gezerel O (2002) Response of strawberry grown at high salinity and alkalinity to supplementary potassium. J Plant Nutr 25(7):1415ā€“1427

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Kilic H, Yağbasanlar T (2010) The effect of drought stress on grain yield, yield components and some quality traits of durum wheat (Triticum turgidum ssp. durum) cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 38(1):164ā€“170

    Google ScholarĀ 

  • Kim J, Mizoi J, Yoshida T, Fujita Y, Nakajima J, Ohori T et al (2011) An ABRE promoter sequence is involved in osmotic stress-responsive expression of the DREB2A gene, which encodes a transcription factor regulating drought-inducible genes in Arabidopsis. Plant Cell Physiol 52(12):2136ā€“2146

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kozlowski TT (1984) Plant responses to flooding of soil. Bioscience 34(3):162ā€“167

    ArticleĀ  Google ScholarĀ 

  • Kramer PJ, Boyer JS (1995) Water relations of plants and soils. Academic Press,Ā New York. 495:69ā€“95

    Google ScholarĀ 

  • Lee S, Kang J, Park H, Kim M, Bae M, Choi H, Kim S (2010) DREB2C interacts with ABF2, a bZIP protein regulating abscisic acid-responsive gene expression, and its overexpression affects abscisic acid sensitivity. Plant Physiol 153(2):716ā€“727

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Lemsons e Silva CF, de Mattos LAT, de Oliveria AC, de Carvalho FIF, de Freitas FA, Anjos e Silva SD (2003) Flooding tolerance in oats. Crop Breed Appl Biotechnol 5:29ā€“42

    Google ScholarĀ 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10(8):1391ā€“1406

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333(6042):616ā€“620

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Malik AI, Colmer TD, Lambers H, Schortemeyer M (2001) Changes in physiological and morphological traits of roots and shoots of wheat in response to different depths of waterlogging. Funct Plant Biol 28(11):1121ā€“1131

    ArticleĀ  Google ScholarĀ 

  • Manivannan P, Jaleel CA, Kishorekumar A, Sankar B, Somasundaram R, Sridharan R, Panneerselvam R (2007) Changes in antioxidant metabolism of (Vigna unguiculata L) Walp. by propiconazole under water deficit stress. Colloids Surf B Biointerfaces 57(1):69ā€“74

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • McFarlane NM, Ciavarella TA, Smith KF (2003) The effects of waterlogging on growth, photosynthesis and biomass allocation in perennial ryegrass (Lolium perenne L.) genotypes with contrasting root development. J Agric Sci 141(2):241ā€“248

    ArticleĀ  Google ScholarĀ 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149(1):88ā€“95

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (2014) The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front Plant Sci 5:170

    Google ScholarĀ 

  • Nam NH, Subbarao GV, Chauhan YS, Johansen C (1998) Importance of canopy attributes in determining dry matter accumulation of pigeonpea under contrasting moisture regimes. Crop Sci 38(4):955ā€“961

    ArticleĀ  Google ScholarĀ 

  • Narusaka Y, Nakashima K, Shinwari Z, Sakuma Y, Furihata T, Abe H et al (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J 34(2):137ā€“148

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Nonami H (1998) Plant water relations and control of cell elongation at low water potentials. J Plant Res 111(3):373ā€“382

    ArticleĀ  Google ScholarĀ 

  • Noorka IR, Tabasum S (2015) Dose-response behaviour of water scarcity towards genetical and morphological traits in spring wheat (Tricticum aestivum L.). Pak J Bot 47(4):1225ā€“1230

    Google ScholarĀ 

  • Osakabe Y, Osakabe K, Shinozaki K, Tran LSP (2014) Response of plants to water stress. Front Plant Sci 5:86

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Pang J, Zhou M, Mendham N, Shabala S (2004) Growth and physiological responses of six barley genotypes to waterlogging and subsequent recovery. Aust J Agric Res 55(8):895ā€“906

    ArticleĀ  Google ScholarĀ 

  • Parent C, Berger A, Folzer H, Dat J, CrevĆØcoeur M, Badot PM, Capelli N (2008) A novel nonsymbiotic hemoglobin from oak: cellular and tissue specificity of gene expression. New Phytol 177(1):142ā€“154

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Pociecha E, Kościelniak J, Filek W (2008) Effects of root flooding and stage of development on the growth and photosynthesis of field bean (Vicia faba L. minor). Acta Physiol Plant 30(4):529

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Pradhan C, Mohanty M (2013) Submergence stress: responses and adaptations in crop plants. In: Molecular stress physiology of plants. Springer, pp 331ā€“357

    Google ScholarĀ 

  • Ritchie SW, Nguyen HT, Holaday AS (1990) Leaf water content and gas-exchange parameters of two wheat genotypes differing in drought resistance. Crop Sci 30(1):105ā€“111

    ArticleĀ  Google ScholarĀ 

  • Rucker KS, Kvien CK, Holbrook CC, Hook JE (1995) Identification of peanut genotypes with improved drought avoidance traits. Peanut Sci 22(1):14ā€“18

    ArticleĀ  Google ScholarĀ 

  • Sachs MM, Freeling M, Okimoto R (1980) The anaerobic proteins of maize. Cell 20(3):761ā€“767

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Saeidi M, Ardalani S, Jalali-Honarmand S, Ghobadi ME, Abdoli M (2015) Evaluation of drought stress at vegetative growth stage on the grain yield formation and some physiological traits as well as fluorescence parameters of different bread wheat cultivars. Acta Biologica Szegediensis 59(1):35ā€“44

    Google ScholarĀ 

  • Sairam RK, Shukla DS, Saxena DC (1997) Stress induced injury and antioxidant enzymes in relation to drought tolerance in wheat genotypes. Biol Plant 40(3):357ā€“364

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Saleem A, Ashraf M, Akram NA (2011) Salt (NaCl)-induced modulation in some key physio-biochemical attributes in okra (Abelmoschus esculentus L.). J Agron Crop Sci 197(3):202ā€“213

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Schoper JB, Lambert RJ, Vasilas BL (1986) Maize pollen viability and ear receptivity under water and high temperature stress 1. Crop Sci 26(5):1029ā€“1033

    ArticleĀ  Google ScholarĀ 

  • Scott P (2000) Resurrection plants and the secrets of eternal leaf. Ann Bot 85(2):159ā€“166

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Setter TL, Waters I (2003) Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats. Plant Soil 253(1):1ā€“34

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Setter TL, Burgess P, Waters I, Kuo J (1999) Genetic diversity of barley and wheat for waterlogging tolerance in Western Australia. In Proceedings of the 9th Australian Barley Technical Symposium

    Google ScholarĀ 

  • Sharp RE, Davies WJ (1979) Solute regulation and growth by roots and shoots of water-stressed maize plants. Planta 147(1):43ā€“49

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Simane B, Struik PC, Nachit MM, Peacock JM (1993) Ontogenetic analysis of yield components and yield stability of durum wheat in water-limited environments. Euphytica 71(3):211ā€“219

    ArticleĀ  Google ScholarĀ 

  • Smethurst CF, Garnett T, Shabala S (2005) Nutritional and chlorophyll fluorescence responses of lucerne (Medicago sativa) to waterlogging and subsequent recovery. Plant Soil 270(1):31ā€“45

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Sourour A, Afef O, Mounir R, Mongi BY (2017) A review: morphological, physiological, biochemical and molecular plant responses to water deficit stress. Int J Eng Sci 6:1ā€“4

    ArticleĀ  Google ScholarĀ 

  • Tardieu F, Parent B, Simonneau T (2010) Control of leaf growth by abscisic acid: hydraulic or non-hydraulic processes? Plant Cell Environ 33(4):636ā€“647

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Titarenko T (2000) Test parameters of revealing the degree of fruit plants tolerance to the root hypoxia caused by flooding of soil. Plant Physiol Biochem 38:115

    Google ScholarĀ 

  • Trought MCT, Drew MC (1980) The development of waterlogging damage in wheat seedlings (Triticum aestivum L). Plant Soil 54(1):77ā€“94

    ArticleĀ  CASĀ  Google ScholarĀ 

  • United Nations Population Division (2002) World Population Prospects: The 2002 Revision: Highlights UN

    Google ScholarĀ 

  • VanToai TT, Beuerlein AF, Schmitthenner SK, St. Martin SK (1994) Genetic variability for flooding tolerance in soybeans. Crop Sci 34(4):112ā€“1115

    ArticleĀ  Google ScholarĀ 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218(1):1ā€“14

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Yadav RS, Hash CT, Bidinger FR, Devos KM, Howarth CJ (2004) Genomic regions associated with grain yield and aspects of post-flowering drought tolerance in pearl millet across stress environments and tester background. Euphytica 136(3):265ā€“277

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57(1):781ā€“803

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Yamamoto F, Sakata T, Terazawa K (1995) Physiological, morphological and anatomical responses of Fraxinus mandshurica seedlings to flooding. Tree Physiol 15(11):713ā€“719

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Yeboah MA, Xuehao C, Feng CR, Alfandi M, Liang G, Gu M (2008) Mapping quantitative trait loci for waterlogging tolerance in cucumber using SRAP and ISSR markers. Biotechnology 7(2):157ā€“167

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Yinghua YI, Dayong FAN, Zongqiang XIE, Fangqing C (2006) Effects of waterlogging on the gas exchange, chlorophyll fluorescence and water potential of Quercus variabilis and Pterocarya stenoptera. Acta Phytoecological Sinica 30(6):960ā€“968

    Google ScholarĀ 

  • Yokota A, Kawasaki S, Iwano M, Nakamura C, Miyake C, Akashi K (2002) Citrulline and DRIP-1 protein (ArgE homologue) in drought tolerance of wild watermelon. Ann Bot 89(7):825ā€“832

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Yordanova RY, Popova LP (2001) Photosynthetic response of barley plants to soil flooding. Photosynthetica 39(4):515ā€“520

    ArticleĀ  Google ScholarĀ 

  • Zhang J, Davies WJ (1987) ABA in roots and leaves of flooded pea plants. J Exp Bot 38(4):649ā€“659

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zlatev Z, Lidon FC (2012) An overview on drought induced changes in plant growth, water relations and photosynthesis. Emir J Food Agric 24:57ā€“72

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachidanand Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, N., Sao, P., Srivastava, A., Singh, S. (2021). Physiological and Molecular Responses to Drought, Submergence and Excessive Watering in Plants. In: Husen, A. (eds) Harsh Environment and Plant Resilience. Springer, Cham. https://doi.org/10.1007/978-3-030-65912-7_12

Download citation

Publish with us

Policies and ethics