Skip to main content

Bacterial Cellulose for Drug Delivery: Current Status and Opportunities

  • Chapter
  • First Online:
New Horizons in Metallurgy, Materials and Manufacturing

Abstract

Bacterial cellulose is a pure highly crystalline nanofibrous form of cellulose that is produced as a three-dimensional porous network. Owing to these attributes along with biocompatibility, it is a material of great interest for application in health care such as drug delivery, tissue scaffolds, and wound management. Also, bacterial cellulose offers tunability during synthesis unlike cellulose extracted from other more common sources such as plants and trees. In this chapter, current literature on the utilization of bacterial cellulose for drug delivery has been reviewed. The possibilities and existing work on tuning the bacterial cellulose properties such as porosity, pore size distribution, fiber diameters have also been discussed. There is very limited work at the interface of modulation of bacterial cellulose and drug delivery, and thus, a future scope of work has been discussed to enhance the utility of bacterial cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Thomas, P. Visakh, A.P. Mathew, Advances in natural polymers. Adv. Struct. Mat. 255–312 (2013)

    Google Scholar 

  2. D. Lavanya, P. Kulkarni, M. Dixit, P.K. Raavi, L.N.V. Krishna, Sources of cellulose and their applications—A review. Int. J. Drug Formula. Res. 2, 19–38 (2011)

    Google Scholar 

  3. M. Iguchi, S. Yamanaka, A. Budhiono, Bacterial cellulose—a masterpiece of nature’s arts. J. Mater. Sci. 35, 261–270 (2000)

    Article  CAS  Google Scholar 

  4. R. Jonas, L.F. Farah, Production and application of microbial cellulose. Polym. Degrad. Stab. 59, 101–106 (1998)

    Article  CAS  Google Scholar 

  5. S.-P. Lin, I.L. Calvar, J.M. Catchmark, J.-R. Liu, A. Demirci, K.-C. Cheng, Biosynthesis, production and applications of bacterial cellulose. Cellulose 20, 2191–2219 (2013)

    Article  CAS  Google Scholar 

  6. H. Ullah, H.A. Santos, T. Khan, Applications of bacterial cellulose in food, cosmetics and drug delivery. Cellulose 23, 2291–2314 (2016)

    Article  CAS  Google Scholar 

  7. Z. Shi, Y. Zhang, G.O. Phillips, G. Yang, Utilization of bacterial cellulose in food. Food Hydrocolloids 35, 539–545 (2014)

    Article  CAS  Google Scholar 

  8. I. Almeida, T. Pereira, N. Silva, F. Gomes, A. Silvestre, C. Freire et al., Bacterial cellulose membranes as drug delivery systems: an in vivo skin compatibility study. Eur. J. Pharm. Biopharm. 86, 332–336 (2014)

    Article  CAS  Google Scholar 

  9. Lina F, Guang Y, Jin Z, Yue Z. Bacterial cellulose for skin repair materials: INTECH Open Access Publisher; 2011.

    Google Scholar 

  10. S. Bielecki, H. Kalinowska, A. Krystynowicz, K. Kubiak, M. Kołodziejczyk, M. de Groeve. Wound dressings and cosmetic materials from bacterial nanocellulose, in Bacterial NanoCellulose: A Sophisticated Multifunctional Material (CRC Press, 2012), pp. 157–174

    Google Scholar 

  11. B. Gupta, R. Agarwal, M. Alam, Textile-based smart wound dressings (2010)

    Google Scholar 

  12. J.A. Marins, B.G. Soares, K. Dahmouche, S.J. Ribeiro, H. Barud, D. Bonemer, Structure and properties of conducting bacterial cellulose-polyaniline nanocomposites. Cellulose 18, 1285–1294 (2011)

    Article  CAS  Google Scholar 

  13. J. Rajwade, K. Paknikar, J. Kumbhar, Applications of bacterial cellulose and its composites in biomedicine. Appl. Microbiol. Biotechnol. 99, 2491–2511 (2015)

    Article  CAS  Google Scholar 

  14. M.L. Cacicedo, M.C. Castro, I. Servetas, L. Bosnea, K. Boura, P. Tsafrakidou et al., Progress in bacterial cellulose matrices for biotechnological applications. Biores. Technol. 213, 172–180 (2016)

    Article  CAS  Google Scholar 

  15. G.F. Picheth, C.L. Pirich, M.R. Sierakowski, M.A. Woehl, C.N. Sakakibara, C.F. de Souza et al., Bacterial cellulose in biomedical applications: A review. Int. J. Biol. Macromol. 104, 97–106 (2017)

    Article  CAS  Google Scholar 

  16. R.-D. Pavaloiu, A. Stoica, M. Stroescu, T. Dobre, Controlled release of amoxicillin from bacterial cellulose membranes. Open Chem. 12, 962–967 (2014)

    Article  CAS  Google Scholar 

  17. W. Shao, H. Liu, S. Wang, J. Wu, M. Huang, H. Min et al., Controlled release and antibacterial activity of tetracycline hydrochloride-loaded bacterial cellulose composite membranes. Carbohyd. Polym. 145, 114–120 (2016)

    Article  CAS  Google Scholar 

  18. M.H. Perez, C. Zinutti, A. Lamprecht, N. Ubrich, A. Astier, M. Hoffman et al., The preparation and evaluation of poly (ϵ-caprolactone) microparticles containing both a lipophilic and a hydrophilic drug. J. Control. Release 65, 429–438 (2000)

    Article  Google Scholar 

  19. J.K. Patra, G. Das, L.F. Fraceto, E.V.R. Campos, R.-T. del Pilar, L.S. Acosta-Torres et al., Nano based drug delivery systems: recent developments and future prospects. 16, 1–33 (2018)

    Google Scholar 

  20. C. Pathak, F.U. Vaidya, S.M.J. Pandey, Mechanism for development of nanobased drug delivery system, 35–67 (2019)

    Google Scholar 

  21. O.M. Koo, I. Rubinstein, H.J.N.N. Onyuksel, Biology, medicine. Role of nanotechnology in targeted drug delivery and imaging: a concise review 1, 193–212 (2005)

    CAS  Google Scholar 

  22. O.C. Farokhzad, R.J.A. Langer, Impact of nanotechnology on drug delivery. 3, 16–20 (2009)

    Google Scholar 

  23. M. Kumar Teli, S. Mutalik, G.J.C. Rajanikant, Nanotechnology and nanomedicine: going small means aiming big. 16, 1882–1892 (2010)

    Google Scholar 

  24. S. Adepu, S.J.M. Ramakrishna, Controlled Drug Delivery Systems: Current Status and Future Directions. 26, 5905 (2021)

    CAS  Google Scholar 

  25. S. Adepu, H. Luo, S.J.I. Ramakrishna, Heparin-Tagged PLA-PEG Copolymer-Encapsulated Biochanin A-Loaded (Mg/Al) LDH Nanoparticles Recommended for Non-Thrombogenic and Anti-Proliferative Stent Coating 22, 5433 (2021)

    Google Scholar 

  26. S. Adepu, P. Kalyani, M.J.T. Khandelwal, Bacterial Cellulose-Based Drug Delivery System for Dual Mode Drug Release. 6, 265–271 (2021)

    Google Scholar 

  27. A.P.J. Nikalje, Nanotechnology and its applications in medicine 5, 81–89 (2015)

    Google Scholar 

  28. A.N. Zelikin, C. Ehrhardt, A.M.J. Healy, Materials and methods for delivery of biological drugs. 8, 997–1007 (2016)

    Google Scholar 

  29. S. Adepu, M.J.C.P. Khandelwal, Ex-situ modification of bacterial cellulose for immediate and sustained drug release with insights into release mechanism. 249, 116816 (2020)

    CAS  Google Scholar 

  30. A.M. Villalba-Rodriguez, K. Dhama, H.J.I. Iqbal, Biomaterials-based hydrogels and their drug delivery potentialities 13, 864–873 (2017)

    Google Scholar 

  31. S. Adepu, M.J.M. Khandelwal, Bacterial cellulose with microencapsulated antifungal essential oils: A novel double barrier release system. 9, 100585 (2020)

    CAS  Google Scholar 

  32. M. Khandelwal, A.H. Windle, N.J.J. Hessler, In situ tunability of bacteria produced cellulose by additives in the culture media. 51, 4839–4844 (2016)

    Google Scholar 

  33. U. Römling, M.Y.J.T. Galperin, Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. 23, 545–557 (2015)

    Google Scholar 

  34. S. Adepu, M.J.J. Khandelwal, Broad-spectrum antimicrobial activity of bacterial cellulose silver nanocomposites with sustained release. 53, 1596–1609 (2018)

    Google Scholar 

  35. S. Adepu, M. Khandelwal, Ex-situ modification of bacterial cellulose for immediate and sustained drug release with insights into release mechanism. Carbohyd. Polym. 249, 116816 (2020)

    Article  CAS  Google Scholar 

  36. S. Adepu, M.J.P. Khandelwal, Drug release behaviour and mechanism from unmodified and in situ modified bacterial cellulose, 1–11 (2021)

    Google Scholar 

  37. K. Ramana, A. Tomar, L. Singh, Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter xylinum. World J. Microbiol. Biotechnol. 16, 245–248 (2000)

    Article  CAS  Google Scholar 

  38. M. Phisalaphong, N. Chiaoprakobkij, M. Gama, P. Gatenholm, D. Klemm, Applications and products—Nata de Coco. Bacterial nanocellulose: a sophisticated multifunctional material, 143–156 (2012)

    Google Scholar 

  39. M. Schramm, S. Hestrin, Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. Microbiology 11, 123–129 (1954)

    CAS  Google Scholar 

  40. R.E. Cannon, S.M. Anderson, Biogenesis of bacterial cellulose. Crit. Rev. Microbiol. 17, 435–447 (1991)

    Article  CAS  Google Scholar 

  41. M. Benziman, C.H. Haigler, R.M. Brown, A.R. White, K.M. Cooper, Cellulose biogenesis: polymerization and crystallization are coupled processes in Acetobacter xylinum. Proc. Natl. Acad. Sci. 77, 6678–6682 (1980)

    Article  CAS  Google Scholar 

  42. M. Khandelwal, A.H. Windle, N. Hessler, In situ tunability of bacteria produced cellulose by additives in the culture media. J. Mater. Sci. 51, 4839–4844 (2016)

    Article  CAS  Google Scholar 

  43. M. Khandelwal, A.H. Windle, Self-assembly of bacterial and tunicate cellulose nanowhiskers. Polymer 54, 5199–5206 (2013)

    Article  CAS  Google Scholar 

  44. A. Santmartí, K.-Y. Lee, Crystallinity and thermal stability of nanocellulose. Nanocellulose and Sustainability: Production, properties, applications, and case studies, 67–86 (2018)

    Google Scholar 

  45. M. Martínez-Sanz, A. Lopez-Rubio, J.M. Lagaron, Optimization of the nanofabrication by acid hydrolysis of bacterial cellulose nanowhiskers. Carbohyd. Polym. 85, 228–236 (2011)

    Article  Google Scholar 

  46. M. Khandelwal, A. Windle, Origin of chiral interactions in cellulose supra-molecular microfibrils. Carbohyd. Polym. 106, 128–131 (2014)

    Article  CAS  Google Scholar 

  47. A.M. Sokolnicki, R.J. Fisher, T.P. Harrah, D.L. Kaplan, Permeability of bacterial cellulose membranes. J. Membr. Sci. 272, 15–27 (2006)

    Article  CAS  Google Scholar 

  48. J. Li, Y. Wan, L. Li, H. Liang, J. Wang, Preparation and characterization of 2, 3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds. Mater. Sci. Eng., C 29, 1635–1642 (2009)

    Article  CAS  Google Scholar 

  49. Y. Hu, J.M. Catchmark, In vitro biodegradability and mechanical properties of bioabsorbable bacterial cellulose incorporating cellulases. Acta Biom. 7, 2835–2845 (2011)

    Article  CAS  Google Scholar 

  50. S. Adepu, M. Khandelwal, Broad-spectrum antimicrobial activity of bacterial cellulose silver nanocomposites with sustained release. J. Mater. Sci. 53, 1596–1609 (2018)

    Article  CAS  Google Scholar 

  51. E. Trovatti, C.S. Freire, P.C. Pinto, I.F. Almeida, P. Costa, A.J. Silvestre et al., Bacterial cellulose membranes applied in topical and transdermal delivery of lidocaine hydrochloride and ibuprofen: in vitro diffusion studies. Int. J. Pharm. 435, 83–87 (2012)

    Article  CAS  Google Scholar 

  52. M.L. Cacicedo, I.E. León, J.S. Gonzalez, L.M. Porto, V.A. Alvarez, G.R. Castro, Modified bacterial cellulose scaffolds for localized doxorubicin release in human colorectal HT-29 cells. Colloids Surf., B 140, 421–429 (2016)

    Article  CAS  Google Scholar 

  53. C. Subtaweesin, W. Woraharn, S. Taokaew, N. Chiaoprakobkij, A. Sereemaspun, M. Phisalaphong, Characteristics of curcumin-loaded bacterial cellulose films and anticancer properties against malignant melanoma skin cancer cells. Appl. Sci. 8, 1188 (2018)

    Article  Google Scholar 

  54. F.M. de Lima, A.B. Meneguin, A. Tercjak, J. Gutierrez, B.S.F. Cury, A.M. dos Santos et al., Effect of in situ modification of bacterial cellulose with carboxymethylcellulose on its nano/microstructure and methotrexate release properties. Carbohyd. Polym. 179, 126–134 (2018)

    Article  Google Scholar 

  55. N.H. Silva, A.F. Rodrigues, I.F. Almeida, P.C. Costa, C. Rosado, C.P. Neto et al., Bacterial cellulose membranes as transdermal delivery systems for diclofenac: in vitro dissolution and permeation studies. Carbohyd. Polym. 106, 264–269 (2014)

    Article  CAS  Google Scholar 

  56. M.C.I. Mohd Amin, N. Ahmad, M. Pandey, X.C. Jue, Stimuli-responsive bacterial cellulose-g-poly (acrylic acid-co-acrylamide) hydrogels for oral controlled release drug delivery. Drug Dev. Ind. Pharm. 40, 1340–1349 (2014)

    Article  CAS  Google Scholar 

  57. N. Ahmad, M.C.I.M. Amin, S.M. Mahali, I. Ismail, V.T.G. Chuang, Biocompatible and mucoadhesive bacterial cellulose-g-poly (acrylic acid) hydrogels for oral protein delivery. Mol. Pharm. 11, 4130–4142 (2014)

    Article  CAS  Google Scholar 

  58. R.-D. Pavaloiu, A. Stoica-Guzun, M. Stroescu, S.I. Jinga, T. Dobre, Composite films of poly (vinyl alcohol)–chitosan–bacterial cellulose for drug controlled release. Int. J. Biol. Macromol. 68, 117–124 (2014)

    Article  CAS  Google Scholar 

  59. W.-C. Lin, C.-C. Lien, H.-J. Yeh, C.-M. Yu, S.H. Hsu, Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydrate Poly. 94, 603–611 (2013)

    Google Scholar 

  60. X. Shi, Y. Zheng, G. Wang, Q. Lin, J. Fan, pH-and electro-response characteristics of bacterial cellulose nanofiber/sodium alginate hybrid hydrogels for dual controlled drug delivery. RSC Adv. 4, 47056–47065 (2014)

    Article  CAS  Google Scholar 

  61. Y.-H. Tsai, Y.-N. Yang, Y.-C. Ho, M.-L. Tsai, F.-L. Mi, Drug release and antioxidant/antibacterial activities of silymarin-zein nanoparticle/bacterial cellulose nanofiber composite films. Carbohyd. Polym. 180, 286–296 (2018)

    Article  CAS  Google Scholar 

  62. W. Treesuppharat, P. Rojanapanthu, C. Siangsanoh, H. Manuspiya, S. Ummartyotin, Synthesis and characterization of bacterial cellulose and gelatin-based hydrogel composites for drug-delivery systems. Biotechnology reports 15, 84–91 (2017)

    Article  CAS  Google Scholar 

  63. M.L. Cacicedo, G.A. Islan, M.F. Drachemberg, V.A. Alvarez, L.C. Bartel, A.D. Bolzán et al., Hybrid bacterial cellulose–pectin films for delivery of bioactive molecules. New J. Chem. 42, 7457–7467 (2018)

    Article  CAS  Google Scholar 

  64. S. Moritz, C. Wiegand, F. Wesarg, N. Hessler, F.A. Müller, D. Kralisch et al., Active wound dressings based on bacterial nanocellulose as drug delivery system for octenidine. Int. J. Pharm. 471, 45–55 (2014)

    Article  CAS  Google Scholar 

  65. M. Ramos, A. Beltrán, M. Peltzer, A.J. Valente, G.M. del Carmen, Release and antioxidant activity of carvacrol and thymol from polypropylene active packaging films. LWT-Food Science and Technology 58, 470–477 (2014)

    Article  CAS  Google Scholar 

  66. Y. Numata, L. Mazzarino, R. Borsali, A slow-release system of bacterial cellulose gel and nanoparticles for hydrophobic active ingredients. Int. J. Pharm. 486, 217–225 (2015)

    Article  CAS  Google Scholar 

  67. S. Li, A. Jasim, W. Zhao, L. Fu, M.W. Ullah, Z. Shi et al., Fabrication of pH-electroactive bacterial cellulose/polyaniline hydrogel for the development of a controlled drug release system. ES Materials & Manufacturing 1, 41–49 (2018)

    Google Scholar 

  68. N. Heßler, D. Klemm, Alteration of bacterial nanocellulose structure by in situ modification using polyethylene glycol and carbohydrate additives. Cellulose 16, 899–910 (2009)

    Article  Google Scholar 

  69. T.R. Stumpf, X. Yang, J. Zhang, X. Cao, In situ and ex situ modifications of bacterial cellulose for applications in tissue engineering. Mater. Sci. Eng., C 82, 372–383 (2018)

    Article  CAS  Google Scholar 

  70. K.I. Uhlin, R.H. Atalla, N.S. Thompson, Influence of hemicelluloses on the aggregation patterns of bacterial cellulose. Cellulose 2, 129–144 (1995)

    Article  CAS  Google Scholar 

  71. K.-C. Cheng, J.M. Catchmark, A. Demirci, Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material property. Cellulose 16, 1033–1045 (2009)

    Article  CAS  Google Scholar 

  72. C. Tokoh, K.J. Takabe, M. Fujita, Cellulose synthesized by Acetobacter xylinum in the presence of plant cell wall polysaccharides. Cellulose 9, 65–74 (2002)

    Article  CAS  Google Scholar 

  73. D. Klemm, D. Schumann, F. Kramer, N. Heßler, M. Hornung, H.-P. Schmauder et al., Nanocelluloses as innovative polymers in research and application (Springer, Polysaccharides Ii, 2006), pp.49–96

    Google Scholar 

  74. M. Seifert, S. Hesse, V. Kabrelian, D. Klemm, Controlling the water content of never dried and reswollen bacterial cellulose by the addition of water-soluble polymers to the culture medium. J. Polym. Sci., Part A: Polym. Chem. 42, 463–470 (2004)

    Article  CAS  Google Scholar 

  75. E.E. Brown, M.P.G. Laborie, Bioengineering bacterial cellulose/poly (ethylene oxide) nanocomposites. Biomacromolecules 8, 3074–3081 (2007)

    Google Scholar 

  76. A.R. Figueiredo, A.J. Silvestre, C.P. Neto, C.S. Freire, In situ synthesis of bacterial cellulose/polycaprolactone blends for hot pressing nanocomposite films production. Carbohyd. Polym. 132, 400–408 (2015)

    Article  CAS  Google Scholar 

  77. D.R. Ruka, G.P. Simon, K.M. Dean, In situ modifications to bacterial cellulose with the water insoluble polymer poly-3-hydroxybutyrate. Carbohyd. Polym. 92, 1717–1723 (2013)

    Article  CAS  Google Scholar 

  78. C. Zhijiang, H. Chengwei, Y. Guang, Poly (3-hydroxubutyrate-co-4-hydroxubutyrate)/bacterial cellulose composite porous scaffold: Preparation, characterization and biocompatibility evaluation. Carbohyd. Polym. 87, 1073–1080 (2012)

    Article  Google Scholar 

  79. K.H. Hong, J.L. Park, I.H. Sul, J.H. Youk, T.J. Kang, Preparation of antimicrobial poly (vinyl alcohol) nanofibers containing silver nanoparticles. J. Polym. Sci., Part B: Polym. Phys. 44, 2468–2474 (2006)

    Article  CAS  Google Scholar 

  80. S. Gea, E. Bilotti, C. Reynolds, N. Soykeabkeaw, T. Peijs, Bacterial cellulose–poly (vinyl alcohol) nanocomposites prepared by an in-situ process. Mater. Lett. 64, 901–904 (2010)

    Article  CAS  Google Scholar 

  81. A. Kai, T. Kobayashi, Influence of poly (vinyl alcohol) on the structure of bacterial cellulose spherulite. Polym. J. 24, 131 (1992)

    Article  CAS  Google Scholar 

  82. H.-C. Huang, L.-C. Chen, S.-B. Lin, C.-P. Hsu, H.-H. Chen, In situ modification of bacterial cellulose network structure by adding interfering substances during fermentation. Biores. Technol. 101, 6084–6091 (2010)

    Article  CAS  Google Scholar 

  83. H.-C. Huang, L.-C. Chen, S.-B. Lin, H.-H. Chen, Nano-biomaterials application: In situ modification of bacterial cellulose structure by adding HPMC during fermentation. Carbohyd. Polym. 83, 979–987 (2011)

    Article  CAS  Google Scholar 

  84. J. Yang, X. Lv, S. Chen, Z. Li, C. Feng, H. Wang et al., In situ fabrication of a microporous bacterial cellulose/potato starch composite scaffold with enhanced cell compatibility. Cellulose 21, 1823–1835 (2014)

    Article  CAS  Google Scholar 

  85. C.J. Grande, F.G. Torres, C.M. Gomez, O.P. Troncoso, J. Canet-Ferrer, J. Martínez-Pastor, Development of self-assembled bacterial cellulose–starch nanocomposites. Mater. Sci. Eng., C 29, 1098–1104 (2009)

    Article  CAS  Google Scholar 

  86. F.M. de Lima, A.B. Meneguin, A. Tercjak, J. Gutierrez, B.S.F. Cury, A.M. Dos Santos et al., Effect of in situ modification of bacterial cellulose with carboxymethylcellulose on its nano/microstructure and methotrexate release properties 179, 126–134 (2018)

    Google Scholar 

  87. L. Ji, F. Zhang, L. Zhu, J.J.I. Jiang, An in-situ fabrication of bamboo bacterial cellulose/sodium alginate nanocomposite hydrogels as carrier materials for controlled protein drug delivery. 170, 459–468 (2021)

    Google Scholar 

  88. H.S. Barud, S.J.L. Ribeiro, C. Carone, R. Ligabue, S. Einloft, P. Queiroz et al., Optically transparent membrane based on bacterial cellulose/polycaprolactone. Polímeros 23, 135–142 (2013)

    Article  CAS  Google Scholar 

  89. L. Ji, F. Zhang, L. Zhu, J. Jiang, An in-situ fabrication of bamboo bacterial cellulose/sodium alginate nanocomposite hydrogels as carrier materials for controlled protein drug delivery. Int. J. Biol. Macromol. 170, 459–468 (2020)

    Article  Google Scholar 

  90. B.V. Mohite, S.V. Patil, A novel biomaterial: bacterial cellulose and its new era applications. Biotechnol. Appl. Biochem. 61, 101–110 (2014)

    Article  CAS  Google Scholar 

  91. Y. Pötzinger, D. Kralisch, D. Fischer, Bacterial nanocellulose: the future of controlled drug delivery? Ther. Deliv. 8, 753–761 (2017)

    Article  Google Scholar 

  92. C.J. Zhang, L. Wang, J.C. Zhao, P. Zhu, Effect of drying methods on structure and mechanical properties of bacterial cellulose films (Trans Tech Publ, Advanced Materials Research, 2011), pp.2667–2670

    Google Scholar 

  93. B. Wei, G. Yang, F. Hong, Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohyd. Polym. 84, 533–538 (2011)

    Article  CAS  Google Scholar 

  94. S.C. Fernandes, L. Oliveira, C.S. Freire, A.J. Silvestre, C.P. Neto, A. Gandini et al., Novel transparent nanocomposite films based on chitosan and bacterial cellulose. Green Chem. 11, 2023–2029 (2009)

    Article  CAS  Google Scholar 

  95. M.P. Illa, C.S. Sharma, M. Khandelwal, Tuning the physiochemical properties of bacterial cellulose: effect of drying conditions. J. Mat. Sci., 1–12 (2019)

    Google Scholar 

  96. F. Liebner, E. Haimer, M. Wendland, M.A. Neouze, K. Schlufter, P. Miethe et al., Aerogels from unaltered bacterial cellulose: application of scCO2 drying for the preparation of shaped, ultra-lightweight cellulosic aerogels. Macromol. Biosci. 10, 349–352 (2010)

    Article  CAS  Google Scholar 

  97. M. Ul-Islam, T. Khan, J.K. Park, Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohyd. Polym. 88, 596–603 (2012)

    Article  CAS  Google Scholar 

  98. M.V. Zimmermann, C. Borsoi, A. Lavoratti, M. Zanini, A.J. Zattera, R.M. Santana, Drying techniques applied to cellulose nanofibers. J. Reinf. Plast. Compos. 35, 628–643 (2016)

    Article  Google Scholar 

  99. A. Müller, M. Zink, N. Hessler, F. Wesarg, F.A. Müller, D. Kralisch et al., Bacterial nanocellulose with a shape-memory effect as potential drug delivery system. RSC Adv. 4, 57173–57184 (2014)

    Article  Google Scholar 

  100. A. Müller, Z. Ni, N. Hessler, F. Wesarg, F.A. Müller, D. Kralisch et al., The biopolymer bacterial nanocellulose as drug delivery system: investigation of drug loading and release using the model protein albumin. J. Pharm. Sci. 102, 579–592 (2013)

    Article  Google Scholar 

  101. W. Hu, S. Liu, S. Chen, H. Wang, Preparation and properties of photochromic bacterial cellulose nanofibrous membranes. Cellulose 18, 655–661 (2011)

    Article  CAS  Google Scholar 

  102. Y. Nishi, M. Uryu, S. Yamanaka, K. Watanabe, N. Kitamura, M. Iguchi et al., The structure and mechanical properties of sheets prepared from bacterial cellulose. J. Mater. Sci. 25, 2997–3001 (1990)

    Article  CAS  Google Scholar 

  103. H.A. Khalil, Y. Davoudpour, M.N. Islam, A. Mustapha, K. Sudesh, R. Dungani et al., Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohyd. Polym. 99, 649–665 (2014)

    Article  Google Scholar 

  104. X. Yin, C. Yu, X. Zhang, J. Yang, Q. Lin, J. Wang et al., Comparison of succinylation methods for bacterial cellulose and adsorption capacities of bacterial cellulose derivatives for Cu2+ ion. Polym. Bull. 67, 401–412 (2011)

    Article  CAS  Google Scholar 

  105. G. Zu, J. Shen, L. Zou, F. Wang, X. Wang, Y. Zhang et al., Nanocellulose-derived highly porous carbon aerogels for supercapacitors. Carbon 99, 203–211 (2016)

    Article  CAS  Google Scholar 

  106. M.P. Illa, M. Khandelwal, C.S. Sharma, Bacterial cellulose-derived carbon nanofibers as anode for lithium-ion batteries. Emergent Materials 1, 105–120 (2018)

    Article  CAS  Google Scholar 

  107. S. Adepu, P. Kalyani, M. Khandelwal, Bacterial cellulose-based drug delivery system for dual mode drug release. Trans. Indian National Academy of Eng., 1–7

    Google Scholar 

  108. M. Badshah, H. Ullah, F. He, F. Wahid, U. Farooq, M. Andersson et al., Development and Evaluation of Drug Loaded Regenerated Bacterial Cellulose-Based Matrices as a Potential Dosage Form. Frontiers Bioeng. Biotech. 8, 1389 (2020)

    Article  Google Scholar 

  109. A.B. Meneguin, B.H. da Silva, R.M. Sábio, P.Z. de Sousa, K.F. Manieri, L.A.P. de Freitas et al., Spray-dried bacterial cellulose nanofibers: A new generation of pharmaceutical excipient intended for intestinal drug delivery. Carbohyd. Polym. 249, 116838 (2020)

    Article  CAS  Google Scholar 

  110. S. Adepu, M. Khandelwal, Bacterial cellulose with microencapsulated antifungal essential oils: a novel double barrier release system. Materialia 9, 100585 (2020)

    Article  CAS  Google Scholar 

  111. B.S. Inoue, S. Streit, A.L. dos Santos Schneider, M.M. Meier, Bioactive bacterial cellulose membrane with prolonged release of chlorhexidine for dental medical application. Int. J. Biol. Macromol. 148, 1098–1108 (2020)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mudrika Khandelwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adepu, S., Bodrothu, S., Khandelwal, M. (2023). Bacterial Cellulose for Drug Delivery: Current Status and Opportunities. In: Shrivastava, A., Arora, A., Srivastava, C., Dhawan, N., Shekhar Singh, S. (eds) New Horizons in Metallurgy, Materials and Manufacturing. Indian Institute of Metals Series. Springer, Singapore. https://doi.org/10.1007/978-981-19-5570-9_9

Download citation

Publish with us

Policies and ethics