Skip to main content

Accumulation of Engineered Nanomaterials in Soil, Water, and Air

  • Chapter
  • First Online:
Agricultural and Environmental Nanotechnology

Part of the book series: Interdisciplinary Biotechnological Advances ((IBA))

  • 606 Accesses

Abstract

Engineered nanomaterials (ENMs) are released from range of consumer products into environment during their production, use or end-of-life. ENMs from direct discharges, waste water effluents, solid wastes, or accidental spillages can be transported to soil/water by wind or rainwater runoff. Hence, soil/water becomes an important environmental sink for ENM’s disposal. ENMs have potential impact on agriculture. ENM’s accumulation in land could lead to soil contamination. The ENMs originate from metal–organic frameworks, nanostructured thin films, nanoclay composites, graphene-based nanomaterials, semiconductor materials, metal oxides, carbonaceous nanomaterials, nanopolymers, and quantum dots. Transport and retention of ENMs in soil, water, or air are greatly influenced by environmental conditions (pH, temperature, porosity, composition, organic and inorganic colloids, ionic strength, multiple dynamic interactions, and texture), ENM’s properties (particle size, surface coating, surface area, morphology, zeta potential, colloidal stability, and types of ENM), and existence of co-contaminants. The ENMs aggregate with other materials in environment transforms to secondary products. Exposure to metal-based ENMs to plants at low concentrations (<100 mg/kg) resulted in beneficial effects, such as disease suppression capabilities and biofortification, whereas exposure of ENMs at high concentrations (>500 mg/kg) pose destructive effects. The comprehensive literature survey results indicate the existence of significant knowledge gaps associated with discharged ENM’s fate, behavior, transport, and transformation in the environment. This chapter provides in-depth discussion on present phase of knowledge on accumulation, fate, and effects of ENMs in soil, water, and air. The acknowledgment about dormant desirability and critical effects of ENMs is essential to gain advancements in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adisa IO, Rawat S, Pullagurala VLR et al (2020) Nutritional status of tomato (Solanum lycopersicum) fruit grown in Fusarium-infested soil: impact of cerium oxide nanoparticles. J Agric Food Chem 68:1986–1997

    Article  CAS  Google Scholar 

  • Ajayan PM, Zhou OZ (2001) Applications of carbon nanotubes. Carbon Nanotubes 80:391–425

    Article  CAS  Google Scholar 

  • Al-Jamal KT, Nerl H, Muller KH et al (2011) Cellular uptake mechanisms of functionalised multi-walled carbon nanotubes by 3D electron tomography imaging. Nanoscale 3:2627–2635

    Article  CAS  Google Scholar 

  • Andersson POLC, Ekstrand-Hammarstrom B, Akfur C (2011) Polymorph and size-dependent uptake and toxicity of TiO2 nanoparticles in living lung epithelial cells. Small 7:514–523

    Article  CAS  Google Scholar 

  • Antonelli A, Serafini S, Menotta M et al (2010) Improved cellular uptake of functionalized single-walled carbon nanotubes. Nanotechnology 21:425101

    Article  CAS  Google Scholar 

  • Apodaca SA, Tan W, Dominguez OE et al (2017) Physiological and biochemical effects of nanoparticulate copper, bulk copper, copper chloride, and kinetin in kidney bean (Phaseolus vulgaris) plants. Sci Total Environ 599-600:2085–2094

    Article  CAS  Google Scholar 

  • Applerot G, Lipovsky A, Dror R et al (2009) Enhanced antimicrobials activity of nanocrystalline ZnO due to increased ROS mediated cell injury. Adv Funct Mater 19:842–852

    Article  CAS  Google Scholar 

  • Arora K (2018) Advances in nano based biosensors for food and agriculture. In: Gothandam K, Ranjan S, Dasgupta N, Ramalingam C, Lichtfouse E (eds) Nanotechnology, food security and water treatment, Environmental chemistry for a sustainable world. Springer, Cham, pp 1–52

    Google Scholar 

  • Asahi R, Taga Y, Mannstadt W et al (2000) Electronic and optical properties of anatase TiO2. Phys Rev B 61:7459

    Article  CAS  Google Scholar 

  • Aschberger K, Micheletti C, Sokull-Kluettgen B et al (2011) Analysis of currently available data for characterising the risk of engineered nanomaterials to the environment and human health-lessons learned from four case studies. Environ Int 37:1143–1156

    Article  CAS  Google Scholar 

  • Attia TMS, Elsheery NI (2020) Nanomaterials: scope, applications, and challenges in agriculture, and soil reclamation. In: Hayat S, Pichtel J, Faizan M, Fariduddin Q (eds) Nanotechnology for plant growth and development, Sustainable agriculture reviews, vol 41. Springer, Cham

    Google Scholar 

  • Auffan M, Rose J, Wiesner MR et al (2009) Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environ Pollut 157(4):1127–1133

    Article  CAS  Google Scholar 

  • Balasurya S, Syed A, Thomas AM et al (2020) Preparation of Ag-cellulose nanocomposite for the selective detection and quantification of mercury at nanomolar level and the evaluation of its photocatalytic performance. Int J Biol Macromol 164:911–919

    Article  CAS  Google Scholar 

  • Bandyopadhyay S, Plascencia-Villa G, Mukherjee A (2015) Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizo biummeliloti in soil. Sci Total Environ 515–516:60–69

    Article  Google Scholar 

  • Baranowska-Wojcik E, Szwajgier D, Oleszczuk P et al (2020) Effects of titanium dioxide nanoparticles exposure on human health—a review. Biol Trace Elem Res 193:118–129

    Article  CAS  Google Scholar 

  • Barmo C, Ciacci C, Canonico B et al (2013) In vivo effects of n-TiO2 on digestive gland and immune function of the marine bivalve Mytilus galloprovincialis. Aquat Toxicol 132–133:9–18

    Article  Google Scholar 

  • Baughman RH, Zakhidov AA, De Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297:787–792

    Article  CAS  Google Scholar 

  • Behra R, Sigg L, Clift MJ et al (2013) Bioavailability of silver nanoparticles and ions: from a chemical and biochemical perspective. J R Soc Interface 10(87):20130396

    Article  Google Scholar 

  • Benoit R, Wilkinson KJ, Sauvé S (2013) Partitioning of silver and chemical speciation of free Ag in soils amended with nanoparticles. Chem Cent J 7:75

    Article  Google Scholar 

  • Beyene HD, Werkneh AA, Bezabh HK et al (2017) Synthesis paradigm and applications of silver nanoparticles (Ag NPs), a review. SMT Trends 13:18–23

    CAS  Google Scholar 

  • Boxall A, Chaudhry Q, Sinclair C et al (2007) Current and future predicted environmental exposure to engineered nanoparticles. Central Science Laboratory, York

    Google Scholar 

  • Brabec CJ, Padinger F, Sariciftci NS et al (1999) Photovoltaic properties of conjugated polymer/methanofullerene composites embedded in a polystyrene matrix. J Appl Phys 85:6866–6872

    Article  CAS  Google Scholar 

  • Britto RS, Flores JA et al (2015) Interaction of carbon nanomaterial fullerene (C60) and microcystin-LR in gills of fish Cyprinus carpio (Teleostei:cyprinidae) under the incidence of ultraviolet radiation. Water Air Soil Pollut 226:2215

    Article  Google Scholar 

  • Broglie JJ, Alston B, Yang C et al (2015) Antiviral activity of gold/copper sulfide core/shell nanoparticles against human norovirus virus-like particles. PLoS One 10(10):0141050

    Article  Google Scholar 

  • Buffet PE, Pan JF, Poirier L et al (2013) Biochemical and behavioural responses of the endobenthic bivalve Scrobicularia plana to silver nanoparticles in seawater and microalgal food. Ecotoxicol Environ Saf 89:117–1240

    Article  CAS  Google Scholar 

  • Calabrese EJ, Blain RB (2009) Hormesis and plant biology. Environ Pollut 167:42–48

    Article  Google Scholar 

  • Canesi L, Ciacci C, Fabbri R et al (2012) Bivalve molluscs as a unique target group for nanoparticle toxicity. Mar Environ Res 76:16–21

    Article  CAS  Google Scholar 

  • Canesi L, Frenzilli G, Balbi T et al (2014) Interactive effects of n-TiO2 and 2,3,7,8-TCDD on the marine bivalve Mytilus galloprovincialis. Aquat Toxicol 153:53–60

    Article  CAS  Google Scholar 

  • Canivet L, Dubot P, Garçon G et al (2015) Effects of engineered iron nanoparticles on the bryophyte, Physcomitrella patens (Hedw.) Bruch & Schimp, after foliar exposure. Ecotoxicol Environ Saf 113:499–505

    Article  CAS  Google Scholar 

  • Castillo-Michel HA, Larue C, Pradas del Real AE et al (2017) Practical review on the use of synchrotron based micro- and nano-X-ray fluorescence mapping and X-ray absorption spectroscopy to investigate the interactions between plants and engineered nanomaterials. Plant Physiol Biochem 110:13–32

    Article  CAS  Google Scholar 

  • Chalew TEA, Galloway JF, Graczyk TK (2012) Pilot study on effects of nanoparticle exposure on Crassostrea virginica hemocyte phagocytosis. Mar Pollut Bull 64:2251–2253

    Article  Google Scholar 

  • Chen H (2018) Metal based nanoparticles in agricultural system: behavior, transport, and interaction with plants. Chem Spec Bioavailab 30:123–134

    Article  CAS  Google Scholar 

  • Chen SJ, Lia LH (2003) Preparation and characterization of nanocrystalline Zn oxide by a novel solvothermal oxidation route. J Cryst Growth 252:184–189

    Article  CAS  Google Scholar 

  • Chen H, Zhou K, Zhao G (2018) Gold nanoparticles: from synthesis, properties to their potential application as colorimetric sensors in food safety screening. Trends Food Sci Technol 78:83–94

    Article  CAS  Google Scholar 

  • Coro J, Suarez M, Silva LS et al (2016) Fullerene applications in fuel cells: a review. Int J Hydrogen Energy 41:17944–17959

    Article  CAS  Google Scholar 

  • Cota-Ruiz K, Delgado-Rios M, Martínez-Martínez A et al (2018) Current findings on terrestrial plants—engineered nanomaterial interactions: are plants capable of phytoremediating nanomaterials from soil? Curr Opin Environ Sci Health 6:9–15

    Article  Google Scholar 

  • D’Agata A, Fasulo S, Dallas LJ et al (2014) Enhanced toxicity of “bulk” titanium dioxide compared to “fresh” and “aged” nano-TiO2 in marine mussels (Mytilus galloprovincialis). Nanotoxicology 8:549–558

    Article  Google Scholar 

  • Da Costa MVJ, Sharma PK (2016) Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica 54:110–119

    Article  Google Scholar 

  • Da Silva LC, Oliva MA, Azevedo AA et al (2006) Responses of resting plant species to pollution from an iron pelletization factory. Water Air Soil Pollut 175:241–256

    Article  Google Scholar 

  • Dai L, Syberg K, Banta GT et al (2013) Effects, uptake, and depuration kinetics of silver oxide and copper oxide nanoparticles in a marine deposit feeder, Macomabalthica. ACS Sustain Chem Eng 1(7):760–767

    Article  CAS  Google Scholar 

  • Dalai S, Pakrashi S, Chandrasekaran N, Mukherjee A (2013) Acute toxicity of TiO2 nanoparticles to Ceriodaphnia dubia under visible light and dark conditions in a freshwater system. PLoS One 8:1–11

    Article  Google Scholar 

  • De Volder MFL, Tawfick SH, Baughman RH et al (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539

    Article  Google Scholar 

  • Devin S, Buffet PE, Chatel A et al (2017) The integrated biomarker response: a suitable tool to evaluate toxicity of metal-based nanoparticles. Nanotoxicology 11:1–6

    Article  CAS  Google Scholar 

  • Dimkpa CO, McLean JE, Latta DE et al (2012) CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14:1–15

    Article  Google Scholar 

  • Doolette CL, McLaughlin MJ, Kirby JK et al (2015) Bioavailability of silver and silver sulfide nanoparticles to lettuce (Lactuca sativa): effect of agricultural amendments on plant uptake. J Hazard Mater 300:788–795

    Article  CAS  Google Scholar 

  • Doyle JJ, Ward E, Mason R (2015) An examination of the ingestion, bioaccumulation, and depuration of titanium dioxide nanoparticles by the blue mussel (Mytilus edulis) and the eastern oyster (Crassostrea virginica). Mar Environ Res 110:45–52

    Article  CAS  Google Scholar 

  • Dunford R, Salinaro A, Cai LZ et al (1997) Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients. FEBS Lett 418:87–100

    Article  CAS  Google Scholar 

  • Dzwilewski A, Wagberg T, Edman L (2009) Photo-induced and resist-free imprint patterning of fullerene materials for use in functional electronics. J Am Chem Soc 131:4006–4011

    Article  CAS  Google Scholar 

  • Emamifar A, Mohammadizadeh M (2015) Preparation and application of LDPE/ZnO nanocomposites for extending shelf life of fresh strawberries. Food Technol Biotechnol 53:488

    Article  CAS  Google Scholar 

  • Espín-Pérez A, Krauskopf J, de Kok TM, Kleinjans JC (2014) “OMICS-based” biomarkers for environmental health studies. Curr Environ Health Rep 1:353–362

    Article  Google Scholar 

  • Fedorenko AG, Minkina TM, Chernikova NP et al (2020) The toxic effect of CuO of different dispersion degrees on the structure and ultrastructure of spring barley cells (Hordeum sativum distichum). Environ Geochem Health 43:1673–1687

    Article  Google Scholar 

  • Feng X, Yan Y, Wan B et al (2016) Enhanced dissolution and transformation of ZnO nanoparticles: the role of inositol hexakisphosphate. Environ Sci Technol 50:5651–5660

    Article  CAS  Google Scholar 

  • Frank SN, Bard AJ (1977) Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder. J Am Chem Soc 99:303–304

    Article  CAS  Google Scholar 

  • Fraser TWK, Reinardy HC, Shaw BJ et al (2011) Dietary toxicity of single-walled carbon nanotubes and fullerenes (C60) in rainbow trout (Oncorhynchus mykiss). Nanotoxicology 5:98–108

    Article  CAS  Google Scholar 

  • Freixa A, Acuna V, Sanchis J et al (2018) Ecotoxicological effects of carbon based nanomaterials in aquatic organisms. Sci Total Environ 619–620:328–337

    Article  Google Scholar 

  • Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  • Garcia-Negrete CA, Blasco J, Volland M et al (2013) Behavior of Au-citrate nanoparticles in seawater and accumulation in bivalves at environmentally relevant concentrations. Environ Pollut 174:134–141

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Rico CM, White JC (2014) Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments. Environ Sci Technol 48:2526–2540

    Article  CAS  Google Scholar 

  • Garner KL, Suh S, Keller AA (2017) Assessing the risk of engineered nanomaterials in the environment: development and application of the nanoFate model. Environ Sci Technol 51:5541–5551

    Article  CAS  Google Scholar 

  • Gavalas VG, Chaniotakis NA (2000) [60] Fullerene-mediated amperometric biosensors. Anal Chim Acta 409:131–135

    Article  CAS  Google Scholar 

  • Giraldo J, Wu H, Newkirk GM et al (2019) Nanobiotechnology approaches for engineering smart plant sensors. Nat Nanotechnol 14:541–553

    Article  CAS  Google Scholar 

  • Gladkova MM, Terekhova VA (2013) Engineered nanomaterials in soil: sources of entry and migration pathways. Moscow Univ Soil Sci Bull 68:129–134

    Article  Google Scholar 

  • Gomes T, Araujo O, Pereira R et al (2013) Genotoxicity of copper oxide and silver nanoparticles in the mussel Mytilus galloprovincialis. Mar Environ Res 84:51–59

    Article  CAS  Google Scholar 

  • Gonzalez L, Lison D, Kirsch-Volders M (2008) Genotoxicity of engineered nanomaterials: a critical review. Nanotoxicology 2:252–273

    Article  Google Scholar 

  • Goodman CM, McCusker CD, Yilmaz T et al (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15(4):897–900

    Article  CAS  Google Scholar 

  • Gottschalk F, Sun T, Nowack B (2013) Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environ Pollut 181:287–300

    Article  CAS  Google Scholar 

  • Gottschalk F, Lassen C, Kjoelholt J et al (2015) Modeling flows and concentrations of nine engineered nanomaterials in the Danish environment. Int J Environ Res Public Health 12:5581–5602

    Article  CAS  Google Scholar 

  • Gupta R, Xie H (2018) Nanoparticles in daily life: applications, toxicity and regulations. J Environ Pathol Toxicol Oncol 37:209–230

    Article  Google Scholar 

  • Halliwell B, Gutteridge JMC (1985) The importance of free radicals and catalytic metal ions in human diseases. Mol Aspects Med 8:89–193

    Article  CAS  Google Scholar 

  • Hernandez-Viezcas JA, Castillo-Michel H, Andrews JC et al (2013) In situ synchrotron X-ray fluorescence mapping and speciation of CeO2 and ZnO nanoparticles in soil cultivated soybean (Glycine max). ACS Nano 7:1415–1423

    Article  CAS  Google Scholar 

  • Heymann D, Jenneskens LW, Jehlicka J et al (2003) Terrestrial and extraterrestrial fullerenes. Fullerenes Nanotubes Carbon Nanostruct 11:333–370

    Article  CAS  Google Scholar 

  • Hidaka H, Horikoshi S, Serpone N (1997) In vitro photochemical damage to DNA, RNA and their bases by an inorganic sunscreen agent on exposure to UVA and UVB radiation. J Photochem Photobiol A Chem 111:205–210

    Article  CAS  Google Scholar 

  • Hoffmann MR, Martin ST, Choi W et al (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95(1):69–96

    Article  CAS  Google Scholar 

  • Hong J, Rico CM, Zhao L (2015) Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Environ Sci Process Impacts 17:177–185

    Article  CAS  Google Scholar 

  • Hu Y, Tsai HL, Huangk CL (2003) Effect of brookite phase on the anatase–rutile transition in titania nanoparticles. J Eur Ceram Soc 23:691–696

    Article  CAS  Google Scholar 

  • Huang Y, Zhao L, Keller AA (2017) Interactions, transformations, and bioavailability of nano-copper exposed to root exudates. Environ Sci Technol 51:9774–9783

    Article  CAS  Google Scholar 

  • IPCC (2007) The scientific basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Rep. of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jacobs JJ, Skipor AK, Black J et al (1991) Release and excretion of metal in patients who have a total hip-replacement component made of titanium base alloy. J Bone Joint Surg Am 73:1475–1486

    Article  CAS  Google Scholar 

  • Janani B, Syed A, Thomas AM et al (2020) Enhanced SPR signals based on methylenediphosphonic acid functionalized Ag NPs for the detection of Hg (II) in the presence of an antioxidant glutathione. J Mol Liq 311:113281

    Article  CAS  Google Scholar 

  • Jones DL, Darrah PR (1994) Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant and Soil 166:247–257

    Article  CAS  Google Scholar 

  • Judy JD, Unrine JM, Rao W et al (2012) Bioavailability of gold nanomaterials to plants: importance of particle size and surface coating. Environ Sci Technol 46:8467–8474

    Article  CAS  Google Scholar 

  • Kaegi R, Ulrich A, Sinnet B et al (2008) Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ Pollut 156:233–239

    Article  CAS  Google Scholar 

  • Kah M (2015) Nanopesticides and nanofertilizers: emerging contaminants or opportunities for risk mitigation? Front Chem 3:64

    Article  Google Scholar 

  • Kahru A, Dubourguier HC (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269(2–3):105–119

    Article  CAS  Google Scholar 

  • Kaida T, Kobayashi K, Adachi M et al (2004) Optical characteristics of titanium oxide interference film and the film laminated with oxides and their applications for cosmetics. J Cosmet Sci 55:219–220

    Google Scholar 

  • Kamat J, Devasagayam TPA, Priyadarsini KI et al (2000) Reactive oxygen species mediated membrane damage induced by fullerene derivatives and its possible biological implications. Toxicology 155:55–61

    Article  CAS  Google Scholar 

  • Katsumiti A, Arostegui I, Oron M et al (2016) Cytotoxicity of Au, ZnO and SiO2 NPs using in vitro assays with mussel hemocytes and gill cells: relevance of size, shape and additives. Nanotoxicology 10:185–193

    CAS  Google Scholar 

  • Keller AA, Vosti W, Wang H et al (2014) Release of engineered nanomaterials from personal care products throughout their life cycle. J Nanopart Res 16:2489

    Article  Google Scholar 

  • Keller AA, Adeleye AS, Conway JR et al (2017) Comparative environmental fate and toxicity of copper nanomaterials. Nano Impact 7:28–40

    Google Scholar 

  • Khan S, Rehman S, Zeb KA (2010) Soil and vegetables enrichment with heavy metals from geological sources in Gilgit, northern Pakistan. Ecotoxicol Environ Saf 73:1820–1827

    Article  CAS  Google Scholar 

  • Kim S, Sin H, Lee S, Lee I (2013) Influence of metal oxide particles on soil enzyme activity and bioaccumulation of two plants. J Microbiol Biotechnol 23:1279–1286

    Article  CAS  Google Scholar 

  • Kokilavani S, Syed A, Raju LL et al (2020) Highly selective and sensitive tool for the detection of Hg (II) using 3-(Trimethoxysilyl) propyl methacrylate functionalized Ag-Ce nanocomposite from real water sample. Spectrochim Acta A 242:118738

    Article  CAS  Google Scholar 

  • Konaka R, Kasahara E, Dunlap WC (2001) Ultraviolet irradiation of titanium dioxide in aqueous dispersion generates singlet oxygen. Redox Rep 6:319–325

    Article  CAS  Google Scholar 

  • Kone BC, Kaleta M, Gullans SR (1988) Silver ion (Ag+) induced increases in cell membrane K+ and Na+ permeability in the renal proximal tubule: reversal by thiol reagents. J Membr Biol 102:11–19

    Article  CAS  Google Scholar 

  • Korani M, Ghazizadeh E, Korani S et al (2015) Effects of silver nanoparticles on human health. Eur J Nanomed 7(1):51–62

    Article  CAS  Google Scholar 

  • Kumar V, Arora K (2020) Trends in nano-inspired biosensors for plants. Mater Sci Energ Technol 3:255–273

    CAS  Google Scholar 

  • Kwak SY, Wong MH, Lew T et al (2017) Nanosensor technology applied to living plant systems. Annu Rev Anal Chem 10:113–140

    Article  Google Scholar 

  • Lacerda L, Pastorin G, Gathercole D et al (2007) Intracellular trafficking of carbon nanotubes by confocal laser scanning microscopy. Adv Mater 19:1480–1484

    Article  CAS  Google Scholar 

  • Larue C, Khodja H, Herlin-Boime N et al (2011) Investigation of titanium dioxide nanoparticles toxicity and uptake by plants. J Phys Conf Ser 304(1):012057. https://doi.org/10.1088/1742-6596/304/1/012057

    Article  CAS  Google Scholar 

  • Larue C, Laurette J, Herlin-Boime N et al (2012) Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Sci Total Environ 431:197–208

    Article  CAS  Google Scholar 

  • Le Van N, Rui Y, Cao W et al (2016) Toxicity and bio-effects of CuO nanoparticles on transgenic Ipt-cotton. J Plant Interact 11:108–116

    Article  CAS  Google Scholar 

  • Lead JR, Batley GE, Alvarez PJJ et al (2018) Nanomaterials in the environment: behavior, fate, bioavailability, and effects-An updated review. Environ Toxicol Chem 37:2029–2063

    Article  CAS  Google Scholar 

  • Li AK, Wu WT (2003) Synthesis of monodispersed ZnO nanoparticles and their luminescent properties. Key Eng Mater 247:405–410

    Article  CAS  Google Scholar 

  • Li K, Zhao XK, Hammer B (2013) Nanoparticles inhibit DNA replication by binding to DNA: modeling and experimental validation. ACS Nano 7:9664–9674

    Article  CAS  Google Scholar 

  • Li C, Zhang Y, Wang M et al (2014) In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window. Biomaterials 35(1):393–400

    Article  CAS  Google Scholar 

  • Lin HM, Tzeng SJ, Hsiau PJ et al (1998) Electrode effects on gas sensing properties of nanocrystalline Zn oxide. Nanostruct Mater 10:465–477

    Article  CAS  Google Scholar 

  • Lv J, Zhang S, Luo L et al (2015) Accumulation, speciation and uptake pathway of ZnO nanoparticles in maize. Environ Sci Nano 2:68–77

    Article  CAS  Google Scholar 

  • Majumdar S, Almeida IC, Arigi EA et al (2015) Environmental effects of nanoceria on seed production of common bean (Phaseolus vulgaris): a proteomic analysis. Environ Sci Technol 49:13283–13293

    Article  CAS  Google Scholar 

  • Manzo S, Miglietta ML, Rametta G et al (2013) Embryotoxicity and spermiotoxicity of nanosized ZnO for Mediterranean sea urchin Paracentrotus lividus. J Hazard Mater 254–255:1–9

    Article  Google Scholar 

  • Maurer-Johnes MA, Gunsolus IL, Murphy CJ et al (2013) Toxicity of engineered nanoparticles in the environment. Anal Chem 85:30306–33049

    Google Scholar 

  • McCarthy MP, Carroll DL, Ringwood AH (2013) Tissue specific responses of oysters, rassostrea virginica, to silver nanoparticles. Aquat Toxicol 138–139:123–128

    Article  Google Scholar 

  • McEnaney B (1999) Structure and bonding in carbon materials. Pergamon, New York, pp 1–33

    Google Scholar 

  • Miller MA, Bankier C, Al-Shaeri MAM et al (2015) Neutral red cytotoxicity assays for assessing in vivo carbon nanotube ecotoxicity in mussels-comparing microscope and microplate methods. Mar Pollut Bull 101:903–907

    Article  CAS  Google Scholar 

  • Minetto D, VolpiGhirardini A, Libralato G (2016) Saltwater ecotoxicology of Ag, Au, CuO, TiO2, ZnO and C60 engineered nanoparticles: an overview. Environ Int 92–93:189–201

    Article  Google Scholar 

  • Mohamed HRH, Hussien NA (2016) Genotoxicity studies of titanium dioxide nanoparticles (TiO2 NPs) in the brain of mice. Scientifica 2016:6710840

    Article  Google Scholar 

  • Molleman B, Hiemstra T (2015) Surface structure of silver nanoparticles as a model for understanding the oxidative dissolution of silver ions. Langmuir 31(49):13361–13372

    Article  CAS  Google Scholar 

  • Montes MO, Hanna SK, Lenihan HS et al (2012) Uptake, accumulation, and biotransformation of metal oxide nanoparticles by a marine suspension-feeder. J Hazard Mater 225–226:139–145

    Article  Google Scholar 

  • Moore MN, Readman JAJ, Readman JW et al (2009) Lysosomal cytotoxicity of carbon nanoparticles in cells of the molluscan immune system: an in vitro study. Nanotoxicology 3:40–45

    Article  CAS  Google Scholar 

  • Morales MI, Rico CM, Hernandez-Viezcas JA et al (2013) Toxicity assessment of cerium oxide nanoparticles in cilantro (Coriandrum sativum L.) plants grown in organic soil. J Agric Food Chem 61:6224–6230

    Article  CAS  Google Scholar 

  • Mouchet F, Landois P, Sarremejean E et al (2008) Characterisation and in vivo ecotoxicity evaluation of double-wall carbon nanotubes in larvae of the amphibian Xenopus laevis. Aquat Toxicol 87:127–137

    Article  CAS  Google Scholar 

  • Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–4453

    Article  CAS  Google Scholar 

  • Mwangi JN, Wang N, Ingersoll CG et al (2012) Toxicity of carbon nanotubes to freshwater aquatic invertebrates. Environ Toxicol Chem 31:1823–1830

    Article  CAS  Google Scholar 

  • Nair PMG, Chung IM (2015) Study on the correlation between copper oxide nanoparticles induced growth suppression and enhanced lignification in Indian mustard (Brassica juncea L.). Ecotoxicol Environ Saf 113:302–313

    Article  CAS  Google Scholar 

  • Nel A, Xia T, Madler L et al (2006) Toxic potential of materials at the nano level. Science 311:622–627

    Article  CAS  Google Scholar 

  • Neves V, Heister E, Costa S et al (2010) Uptake and release of double-walled carbon nanotubes by mammalian cells. Adv Funct Mater 20:3272–3279

    Article  CAS  Google Scholar 

  • Noked M, Soffer A, Aurbach D (2011) The electrochemistry of activated carbonaceous materials: past, present and future. J Solid State Electrochem 15:1563–1578

    Article  CAS  Google Scholar 

  • Nolan NT, Seery MK, Pillai SC (2009) Spectroscopic Investigation of the anatase-to-rutile transformation of sol−gel-synthesized TiO2 photocatalysts. J Phys Chem C 113:16151–16157

    Article  CAS  Google Scholar 

  • Oberdorster E, Zhu S, Blickley TM et al (2006) Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (C60) on aquatic organisms. Carbon 44:1112

    Article  Google Scholar 

  • OECD (2010) List of manufactured nanomaterials and list of endpoints for phase one of the sponsorship programme for the testing of manufactured nanomaterials: revision, Series on the safety of manufactured nanomaterials, vol 27

    Google Scholar 

  • Parisi C, Vigani M, Rodríguez-Cerezo E (2015) Agricultural nanotechnologies: what are the current possibilities? Nano Today 10:124–127

    Article  CAS  Google Scholar 

  • Patel PR, Shaikh SS, Sayyed RZ (2018) Modified chrome azurol S method for detection and estimation of siderophores having affinity for metal ions other than iron. Environ Sustain 1:81–87

    Article  Google Scholar 

  • Peng C, Duan D, Xu C et al (2015) Translocation and biotransformation of CuO nanoparticles in rice (Oryza sativa L.) plants. Environ Pollut 197:99–107

    Article  CAS  Google Scholar 

  • Peng C, Xu C, Liu Q et al (2017) Fate and transformation of CuO nanoparticles in the soil-rice system during the life cycle of rice plants. Environ Sci Technol 51:4907–4917

    Article  CAS  Google Scholar 

  • Petersen EJ, Henry TB (2012) Methodological considerations for testing the ecotoxicity of carbon nanotubes and fullerenes. Environ Toxicol Chem 31:60–72

    Article  CAS  Google Scholar 

  • Pickering KD, Wiesner MR (2005) Fullerol-sensitized production of reactive oxygen species in aqueous solution. Environ Sci Technol 39:1359–1365

    Article  CAS  Google Scholar 

  • Placer ZA, Cushman LL, Johnson BC et al (1966) Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal Biochem 16:359–364

    Article  CAS  Google Scholar 

  • Rai PK, Kumar V, Lee SS et al (2018) Nanoparticle-plant interaction: implications in energy, environment, and agriculture. Environ Int 119:1–19

    Article  CAS  Google Scholar 

  • Rajput V, Minkina T, Sushkova S et al (2018a) Effect of nanoparticles on crops and soil microbial communities. J Soil Sediment 18:2179–2187

    Article  CAS  Google Scholar 

  • Rajput V, Minkina T, Suskova S et al (2018b) Effects of copper nanoparticles (CuO NPs) on crop plants: a mini review. Bionanoscience 8:36–42

    Article  Google Scholar 

  • Rajput VD, Minkina TM, Behal A et al (2018c) Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: a review. Environ Nanotechnol Monit Manag 9:76–84

    Google Scholar 

  • Raliya R, Nair R, Chavalmane S et al (2015) Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 7:1584–1594

    Article  CAS  Google Scholar 

  • Rao S, Shekhawat GS (2016) Phytotoxicity and oxidative stress perspective of two selected nanoparticles in Brassica juncea. 3 Biotech 6(2):244

    Article  Google Scholar 

  • Reijnders L (2008) Hazard reduction for the application to titania nanoparticles in environmental technology. J Hazard Mater 152:440–445

    Article  CAS  Google Scholar 

  • Rico CM, Majumdar S, Duarte-Gardea M et al (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498

    Article  CAS  Google Scholar 

  • Ringwood AH, Levi Polyachenko N, Carroll DL (2009) Fullerene exposures with oysters: embryonic, adult, and cellular responses. Environ Sci Technol 43:7136–7141

    Article  CAS  Google Scholar 

  • Robichaud CO, Uyar AE, Darby MR et al (2009) Estimates of upper bounds and trends in Nano-TiO2 production as a basis for exposure assessment. Environ Sci Technol 43:4227–4233

    Article  CAS  Google Scholar 

  • Rocha TL, Gomes T, Sousa VS, Mestre NC, Bebianno MJ (2015) Ecotoxicological impact of engineered nanomaterials in bivalve molluscs: an overview. Mar Environ Res 111:74–88

    Article  CAS  Google Scholar 

  • Roco MC (2003) Nanotechnology: convergence with modern biology and medicine. Curr Opin Biotechnol 14:337–346

    Article  CAS  Google Scholar 

  • de la Rosa G, García-Castañeda C, Vázquez-Núñez E et al (2017) Physiological and biochemical response of plants to engineered NMs: implications on future design. Plant Physiol Biochem 110:226–235

    Article  Google Scholar 

  • Ruotolo R, Maestri E, Pagano L et al (2018) Plant response to metal-containing engineered nanomaterials: an omics-based perspective. Environ Sci Technol 52:2451–2467

    Article  CAS  Google Scholar 

  • Saber AT, Jensen KA, Jacobsen NR et al (2012) Inflammatory and genotoxic effects of nanoparticles designed for inclusion in paints and lacquers. Nanotoxicology 6:453–471

    Article  CAS  Google Scholar 

  • Salehi H, Chehregani A, Lucini L et al (2018) Morphological, proteomic and metabolomic insight into the effect of cerium dioxide nanoparticles to Phaseolus vulgaris L. under soil or foliar application. Sci Total Environ 616:1540–1551

    Article  Google Scholar 

  • Sanchis J, Berrojalbiz N, Caballero G et al (2012) Occurrence of aerosol-bound fullerenes in the Mediterranean sea atmosphere. Environ Sci Technol 46:1335–1343

    Article  CAS  Google Scholar 

  • Sanchis J, Llorca M, Olmos M et al (2018) Metabolic responses of Mytilus galloprovincialis to fullerenes in mesocosm exposure experiments. Environ Sci Technol 52(3):1002–1013

    Article  CAS  Google Scholar 

  • Selck H, Handy RD, Fernandes TF et al (2016) Nanomaterials in the aquatic environment: a European Union-United States perspective on the status of ecotoxicity testing, research priorities, and challenges ahead. Environ Toxicol Chem 35(5):1055–1067

    Article  CAS  Google Scholar 

  • Servin AD, Castillo-Michel H, Hernandez-Viezcas JA et al (2012) Synchrotron micro-XRF and micro-XANES confirmation of the uptake and translocation of TiO2 nanoparticles in cucumber (Cucumis sativus) plants. Environ Sci Technol 46:7637–7643

    Article  CAS  Google Scholar 

  • Servin AD, Morales MI, Castillo-Michel H et al (2013) Synchrotron verification of TiO2 accumulation in cucumberfruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environ Sci Technol 47:11592–11598

    Article  CAS  Google Scholar 

  • Servin AD, Pagano L, Castillo-Michel H et al (2017) Weathering in soil increases nanoparticle CuO bioaccumulation within a terrestrial food chain. Nanotoxicology 11:98–111

    Article  CAS  Google Scholar 

  • Shah FR, Ahmad N, Masood KR et al (2010) Response of Eucalyptus camaldulensis Dehnh at early growth stage to irrigation with the Hudiara drain effluent. Int J Phytoremediation 12:343–357

    Article  CAS  Google Scholar 

  • Shaw BJ, Handy RD (2011) Physiological effects of nanoparticles on fish: a comparison of nanometals versus metal ions. Environ Int 37:1083–1097

    Article  CAS  Google Scholar 

  • Shende S, Rathod D, Gade A et al (2017) Biogenic copper nanoparticles promo growth of pigeon pea (Cajanus cajan L.). IET Nanobiotechnol 11:773–781

    Article  Google Scholar 

  • Shi Kam NW, Jessop TC, Wender PA et al (2004) Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J Am Chem Soc 126:6850–6851

    Article  Google Scholar 

  • Shin SH, Ye MK, Kim HS et al (2007) The effects of nano-silver on the proliferation and cytokine expression by peripheral blood mononuclear cells. Int Immunopharmacol 7:1813–1818

    Article  CAS  Google Scholar 

  • Shinde S, Paralikar P, Ingle AP et al (2020) Promotion of seed germination and seedling growth of Zea mays by magnesium hydroxide nanoparticles synthesized by the filtrate from Aspergillus niger. Arab J Chem 13:3172–3182

    Article  CAS  Google Scholar 

  • Smith C, Shaw B, Handy R (2007) Toxicity of single walled carbon nanotubes on rainbow trout, (Oncorhynchus mykiss): Respiratory toxicity, organ pathologies, and other physiological effects. Aquat Toxicol 82:94–109

    Article  CAS  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182

    Article  CAS  Google Scholar 

  • Sureda A, Capo X, Busquets-Cortes C et al (2018) Acute exposure to sunscreen containing titanium induces an adaptive response and oxidative stress in Mytilus galloprovincialis. Ecotoxicol Environ Saf 149:58–63

    Article  CAS  Google Scholar 

  • Tedesco S, Doyle H, Blasco J et al (2010) Oxidative stress and toxicity of gold nanoparticles in Mytilus edulis. Aquat Toxicol 100:178–186

    Article  CAS  Google Scholar 

  • Tedja R, Lim M, Amal R et al (2012) Effects of serum adsorption on cellular uptake profile and consequent impact of titanium dioxide nanoparticles on human lung cell lines. ACS Nano 6:4083–4093

    Article  CAS  Google Scholar 

  • Thomas SP, Al-Mutairi EM, De SK (2013) Impact of nanomaterials on health and environment. Arab J Sci Eng 38:457–477

    Article  Google Scholar 

  • Thuesombat P, Hannongbua S, Akasit S et al (2014) Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicol Environ Saf 104:302–309

    Article  CAS  Google Scholar 

  • Tran QH, Le AT (2013) Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci Nanosci Nanotechnol 4(3):033001

    Article  CAS  Google Scholar 

  • Trevisan R, Delapedra G, Mello DF et al (2014) Gills are an initial target of zinc oxide nanoparticles in oysters Crassostrea gigas, leading to mitochondrial disruption and oxidative stress. Aquat Toxicol 153:27–38

    Article  CAS  Google Scholar 

  • Trouiller B, Reliene R, Westbrook A (2009) Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res 69:8784–8789

    Article  CAS  Google Scholar 

  • Usenko CY, Harper SL, Tanguay RL (2008) Fullerene C60 exposure elicits an oxidative stress response in embryonic zebra fish. Toxicol Appl Pharmacol 229:44–55

    Article  CAS  Google Scholar 

  • Wan R, Mo Y, Feng L et al (2012) DNA damage caused by metal nanoparticles: involvement of oxidative stress and activation of ATM. Chem Res Toxicol 25:1402–1411

    Article  CAS  Google Scholar 

  • Wang J, Zhou G, Chen C et al (2007) Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett 168:176–185

    Article  CAS  Google Scholar 

  • Wang Y, Hu M, Li Q (2014) Immune toxicity of TiO2 under hypoxia in the green-lipped mussel Perna viridis based on flow cytometric analysis of hemocyte parameters. Sci Total Environ 470–471:791–799

    Article  Google Scholar 

  • Ward JE, Kach DJ (2009) Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves. Mar Environ Res 68(3):137–142

    Article  CAS  Google Scholar 

  • Wigginton NS, Haus KL, Hochella MF (2007) Aquatic environmental nanoparticles. J Environ Monit 9:1306–1316

    Article  CAS  Google Scholar 

  • Wild E, Jones KC (2009) Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants. Environ Sci Technol 43:5290–5294

    Article  CAS  Google Scholar 

  • Wisitsoraat A, Tuantranont A, Comini E et al (2009) Characterization of n-type and p-type semiconductor gas sensors based on NiOx doped TiO2 thin films. Thin Solid Films 517:2775–2780

    Article  CAS  Google Scholar 

  • Xiong T, Dumat C, Dappe V et al (2017) Copper oxide nanoparticle foliar uptake, phytotoxicity, and consequences for sustainable urban agriculture. Environ Sci Technol 51:5242–5251

    Article  CAS  Google Scholar 

  • Xue C, Wu J, Lan F, Liu W (2010) Nano titanium dioxide induces the generation of ROS and potential damage in HaCaT cells under UVA irradiation. J Nanosci Nanotechnol 10:8500–8507

    Article  CAS  Google Scholar 

  • Yeh YC, Creran B, Rotello VM (2012) Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale 4(6):1871–1880

    Article  CAS  Google Scholar 

  • Zahra Z, Waseem N, Zahra R et al (2017) Growth and metabolic responses of rice (Oryza sativa L.) cultivated in phosphorus-deficient soil amended with TiO2 nanoparticles. J Agric Food Chem 65:5598–5606

    Article  CAS  Google Scholar 

  • Zhang W (2003) Nanoscale iron particle for environmental remediation: an overview. J Nanopart Res 5:323–332

    Article  CAS  Google Scholar 

  • Zhang W, Xiao B, Fang T (2018) Chemical transformation of silver nanoparticles in aquatic environments: mechanism, morphology and toxicity. Chemosphere 191:324–334

    Article  CAS  Google Scholar 

  • Zhao L, Peralta-Videa JR, Ren M et al (2012a) Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: electron microprobe and confocal microscopy studies. Chem Eng J 184:1–8

    Article  CAS  Google Scholar 

  • Zhao L, Peralta-Videa JR, Varela-Ramirez A et al (2012b) Effect of surface coating and organic matter on the uptake of CeO2 NPs by corn plants grown in soil: insight into the uptake mechanism. J Hazard Mater 225–226:131–138

    Article  Google Scholar 

  • Zhou J, Ralston J, Sedev R et al (2009) Functionalized gold nanoparticles: synthesis, structure and colloid stability. J Colloid Interface Sci 331(2):251–262

    Article  CAS  Google Scholar 

  • Zhu ZJ, Wang H, Yan B et al (2012) Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species. Environ Sci Technol 46:12391–12398

    Article  CAS  Google Scholar 

  • Zuykov M, Pelletier E, Belzile C et al (2011) Alteration of shell nacre micromorphology in blue mussel Mytilus edulis after exposure to free-ionic silver and silver nanoparticles. Chemosphere 84:701–706

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sudheer Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kokilavani, S., Janani, B., Balasurya, S., Khan, S.S. (2023). Accumulation of Engineered Nanomaterials in Soil, Water, and Air. In: Fernandez-Luqueno, F., Patra, J.K. (eds) Agricultural and Environmental Nanotechnology. Interdisciplinary Biotechnological Advances. Springer, Singapore. https://doi.org/10.1007/978-981-19-5454-2_21

Download citation

Publish with us

Policies and ethics