Skip to main content
Log in

Silver ion (Ag+)-Induced increases in cell membrane K+ and Na+ permeability in the renal proximal tubule: Reversal by thiol reagents

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The initial mechanisms of injury to the proximal tubule following exposure to nephrotoxic heavy metals are not well established. We studied the immediate effects of silver (Ag+) on K+ transport and respiration with extracellular K+ and O2 electrodes in suspensions of renal cortical tubules. Addition of silver nitrate (AgNO3) to tubules suspended in bicarbonate Ringer's solution caused a rapid, dose-dependent net K+ efflux (K m =10−4 m,V max=379 nmol K+/min/mg protein) which was not inhibited by furosemide, barium chloride, quinine, tetraethylammonium, or tolbutamide. An increase in the ouabain-sensitive oxygen consumption rate (QO2) (13.9±1.1 to 25.7±4.4 nmol O2/min/mg,P<0.001), was observed 19 sec after the K+ efflux induced by AgNO3 (10−4 m), suggesting a delayed increase in Na+ entry into the cell. Ouabain-insensitive QO2, nystatin-stimulated QO2, and CCCP-uncoupled QO2 were not significantly affected, indicating preserved function of the Na+, K+-ATPase and mitochondria. External addition of the thiol reagents dithiothreitol (1mm) and reduced glutathione (1mm) prevented and/or immediately reversed the effects on K+ transport and QO2. We conclude that Ag+ causes early changes in the permeability of the cell membrane to K+ and then to Na+ at concentrations that do not limit Na+, K+-ATPase activity or mitochondrial function. These alterations are likely the result of a reversible interaction of Ag+ with sulfhydryl groups of cell membrane proteins and may represent initial cytotoxic effects common to other sulfhydryl-reactive heavy metals on the proximal tubule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balaban, R.S., Soltoff, S.P., Storey, J.M. Mandel, L.J. 1980. Improved renal cortical tubule suspension: Spectrophotometric study of O2 delivery.Am. J. Physiol. 238:F50-F59

    Google Scholar 

  • Benos, D.J., Mandel, L.J., Simon, S.A. 1980. Effects of chemical group specific reagents on sodium entry and the amiloride binding site in frog skin: Evidence for separate sites.J. Membrane Biol. 56:149–158

    Google Scholar 

  • Cass, A., Dalmark, M. 1973. Equilibrium dialysis of ions in nystatin-treated red cells.Nature New Biol. 244:47–49

    Google Scholar 

  • Clarkson, T.W., Toole, S.R. 1964. Measurement of short-circuit current and ion transport across the ileum.Am. J. Physiol. 206:658–668

    Google Scholar 

  • Cleland, W.W. 1964. Dithiothreitol, a new protective reagent for SH groups.Biochemistry 3:480–482

    Google Scholar 

  • CRC Handbook of Chemistry and Physics. 1970. R.C. Weast, editor, p. B-232. The Chemical Rubber, Co., Cleveland, Ohio

    Google Scholar 

  • Curran, P.F. 1972. Effect of silver ion on permeability properties of frog skin.Biochim. Biophys. Acta 288:90–97

    Google Scholar 

  • Gerencer, G.A., Corvette, K.M., Loo, S.Y., Hong, S.K. 1977. Effect of silver chloride on the short-circuit current across the isolated toad skin.Life Sci. 20:1883–1890

    Google Scholar 

  • Gerencer, G.A., Loo, S.L., Cornette, K.M. 1983. Effect of silver on sodium transport across toad skin.Comp. Biochem. Physiol. 75C:337–341

    Google Scholar 

  • Gillis, K., Gee, W., Falke, L., Misler, S. 1987. Opposite actions of two structurally similar sulfonamides on an ATP sensitive K+ channel in adult pancreatic B-cells and RINm5F insulinoma cells.Biophys. J. 51:53a

    Google Scholar 

  • Gogelein, H., Greger, R. 1984. Single channel recordings from basolateral and apical membranes of renal proximal tubules.Pfluegers Arch. 401:424–426

    Google Scholar 

  • Gould, G.W., Colyer, J., East, J.M., Lee, A.G. 1987. Silver ions trigger Ca2+ release by interaction with the (Ca2+−Mg2+)-ATPase in reconstituted systems.J. Biol. Chem. 262:7676–7679

    Google Scholar 

  • Gritzka, T.L., Trump, B.F. 1968. Renal tubular lesions caused by mercuric chloride.Am. J. Pathol. 102:271–281

    Google Scholar 

  • Gurd, F.R.N., Wilcox, P.E. 1956. Complex formation between metallic cations and proteins, peptides and amino acids.Adv. Protein Chem. 11:311–427

    Google Scholar 

  • Harris, S.I., Balaban, R.S., Barrett, L., Mandel, L.J. 1981. Mitochondrial respiratory capacity and Na+- and K+-dependent adenosine triphosphatase-mediated ion transport in the intact renal cell.J. Biol. Chem. 256:10319–10328

    Google Scholar 

  • Harris, S.I., Patton, L. Barrett, L., Mandel, L.J. 1982. (Na+,K+)-ATPase kinetics within the intact renal cell.J. Biol. Chem. 257:6996–7002

    Google Scholar 

  • Humes, H.D., Weinberg, J.M. 1986. Toxic nephropathies.In: The Kidney. B.M. Brenner and F.C. Rector, Jr., editors. Vol. II pp 1491–1532. W.B. Saunders, Philadelphia, Pa.

    Google Scholar 

  • Hunter, M., Lopes, A., Boulpaep, E., Giebisch, G. 1986. Regulation of single K+-channels from apical membrane of rabbit cortical collecting tubule.Am.J. Physiol 251:F725-F733

    Google Scholar 

  • Kawahara, K., Hunter, M., Giebisch, G. 1987. Potassium channels inNecturus proximal tubule.Am. J. Physiol. 253:F488-F494

    Google Scholar 

  • Klyce, S.D., Marshall, W.S. 1982. Effects of Ag+ on ion transport by the corneal epithelium of the rabbit.J. Membrane Biol. 66:133–144

    Google Scholar 

  • Knauf, P.A., Rothstein, A. 1971. Chemical modification of membranes. I. Effects of sulfhydryl and amino reactive reagents on anion and cation permeability of the human red blood cell.J. Gen. Physiol. 58:190–210

    Google Scholar 

  • LaTorraca, F. 1962. Anatomo-histo-pathological and histochemical findings in acute experimental poisoning by silver salts.Folio Med. (Napoli) 45:1065–1067

    Google Scholar 

  • Lauf, P.K., Theg, B.E. 1980. A chloride-dependent K+ flux induced by N-ethylmaleimide in genetically low K+ sheep and goat erythrocytes.Biochem. Biophys. Res. Commun. 92:1422–1428

    Google Scholar 

  • Li, J.H., Sousa, R.C. de 1977. Effects of Ag+ on frog skin: Interactions with oxytocin, amiloride and ouabain.Experientia 33:433–436

    Google Scholar 

  • Lowry, O.H., Rosebrough, N.J. Farr, A.L., Randall, R.L. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265–275

    Google Scholar 

  • Lucke, B. 1946. Lower nephron nephrosis, the renal lesions of crush syndrome of burns, transfusions and other conditions affecting the lower segment of the nephrons.Mil. Surg. 99:371–396

    Google Scholar 

  • Misler, S. 1987. Tolbutamide inhibits an ATP sensitive K+ channel in cardiac myocytes.Biophys. J. 51:53a

    Google Scholar 

  • Nechay, B.R., Saunders, J.P. 1984. Inhibition of adenosine triphosphatase in vitro by silver nitrate and silver sulfadiazine.J. Environ. Pathol. Toxicol. Oncol. 5:119–126

    Google Scholar 

  • O'Grady, S.M., Palfrey, H.C., Field, M. 1987. Characteristics and functions of Na−K−Cl cotransport in epithelial tissue.Am. J. Physiol. 253:C177-C192

    Google Scholar 

  • Passow, H., Rothstein, A., Clarkson, T.W. 1961. The general pharmacology of the heavy metals.Pharmacol. Rev. 13:185–224

    Google Scholar 

  • Rangachari, P.K., Matthews, J. 1985. Effect of Ag+ on isolated bullfrog gastric mucosa.Am. J. Physiol. 248:G443-G449

    Google Scholar 

  • Rosenman, K.D., Moss, A., Kon, S. 1979. Argyria: Clinical implications of exposure to silver nitrate and silver oxide.J. Occup. Med. 21:430–435

    Google Scholar 

  • Rosenman, K.D., Seixas, N., Jacobs, I. 1987. Potential nephrotoxic effects of exposure to silver.Br. J. Ind. Med. 44:267–272

    Google Scholar 

  • Soltoff, S.P., Mandel, L.J. 1986. Potassium transport in the rabbit renal proximal tubule: Effects of barium, ouabain, valinomycin, and other ionophores.J. Membrane Biol. 94:153–161

    Google Scholar 

  • Spooner, P.M., Edelman, I.S. 1976. Stimulation of Na+ transport across the toad urinary bladder byp-choromercuribenzene sulfonate.Biochem. Biophys. Acta 455:272–276

    Google Scholar 

  • Tempel, B.L., Papazian, D.M., Schwartz, T.L., Jan, Y.N., Yan, L.Y. 1987. Sequence of a probable potassium channel component encoded atShaker locus ofDrosophila.Science 237:770–775

    Google Scholar 

  • Walser, M. 1970. Calcium transport in toad bladder: Permeability to calcium ions.Am. J. Physiol. 218:582–589

    Google Scholar 

  • Weinberg, J.M., Harding, P.G., Humes, H.D. 1982. Mitochondrial bioenergetics during the initiation of mercuric chloride-induced renal injury.J. Biol. Chem. 257:60–67

    Google Scholar 

  • Weinberg, J.M., Harding, P.G., Humes, H.D. 1983. Alterations in renal cortex cation homeostasis during mercuric chloride and gentamicin nephrotoxicity.Exp. Mol. Pathol. 39:43–60

    Google Scholar 

  • Wiater, L.A., Dunham, P.B. 1983. Passive transport of K+ and Na+ in human red blood cells: Sulfhydryl binding agents and furosemide.Am. J. Physiol. 245:C348-C356

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kone, B.C., Kaleta, M. & Gullans, S.R. Silver ion (Ag+)-Induced increases in cell membrane K+ and Na+ permeability in the renal proximal tubule: Reversal by thiol reagents. J. Membrain Biol. 102, 11–19 (1988). https://doi.org/10.1007/BF01875349

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01875349

Key Words

Navigation