Skip to main content

Nanobioremediation: Innovative Technologies for Sustainable Remediation of Environmental Contaminants

  • Chapter
  • First Online:
Agricultural and Environmental Nanotechnology

Abstract

The current age, representing the highly industrialized, urbanized, and mechanized societies, has pushed the Earth’s environment to its limits of sustenance. These technological advancements are held responsible for global warming and climate change, the effects of which can be seen in the rising frequency of catastrophic floods, droughts, cyclonic storms as well as melting glaciers, and rising sea levels. There have also been significant concerns about the ecological imbalances caused by such events, where environmental pollution and degradation are at the center stage. This has led to innovations in anthropogenic activities and technologies for environmental restoration/clean-up, which include physical, chemical, and biological approaches. Among the existing technologies, bioremediation holds promise for the future as it has been proven to be ecologically friendly, sustainable, and entails low-cost technologies. Bioremediation alone, however, has limitations in the context of the variety of environmental contaminants it can address and also the levels to which it can effectively remediate. The solution to this problem has arrived in the form of nanobioremediation, whereby nanotechnologies and nanomaterials have been integrated with bioremediation approaches to achieve enhanced remediation efficacies and solutions for removal/sequestration of a wide variety of environmental contaminants through a sustainable, eco-friendly, and economically viable approach. Here, efforts are made to discuss the integration of biomolecules, microbes, and enzymatic processes with nanotechnology to address the present challenges in environmental remediation and restoration. This chapter explores the techniques associated with nanobioremediation by means of biologically fabricated nanoparticles, microorganism-assisted nanoparticles, and enzyme-based nanomaterials in recent times. It shall also provide an insight into the future perspective and challenges relating to the application of these technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Gawad SA, Baraka AM, El-Shafei EM, Mahmoud AS (2016) Effects of nano zero valent iron and entrapped nano zero valent iron in alginate polymer on poly aromatic hydrocarbons removal. J Environ Biotechnol Res 5:18–28

    Google Scholar 

  • Abdel-Shafy HI, Mansour MS (2018) Solid waste issue: sources, composition, disposal, recycling, and valorization. Egypt J Pet 27(4):1275–1290

    Article  Google Scholar 

  • Ali N, Al-Awadhi H, Dashti N, Khanafer M, El-Nemr I, Sorkhoh N, Radwan SS (2015) Bioremediation of atmospheric hydrocarbons via bacteria naturally associated with leaves of higher plants. Int J Phytoremediation 17(12):1160–1170

    Article  CAS  Google Scholar 

  • Ali M, Husain Q, Sultana S, Ahmad M (2018) Immobilization of peroxidase on polypyrrole-cellulose-graphene oxide nanocomposite via non-covalent interactions for the degradation of reactive blue 4 dye. Chemosphere 202:198–207

    Article  CAS  Google Scholar 

  • Ali I, Peng C, Naz I, Amjed MA (2019) Water purification using magnetic nanomaterials: an overview. In: Abd-Elsalam K, Mohamed M, Prasad R (eds) Magnetic nanostructures: environmental and agricultural applications, Nanotechnology in the life sciences. Springer, Cham, pp 161–179. https://doi.org/10.1007/978-3-030-16439-3_9

    Chapter  Google Scholar 

  • Alver E, Metin AÜ (2017) Chitosan based metal-chelated copolymer nanoparticles: laccase immobilization and phenol degradation studies. Int Biodeter Biodegr 125:235–242

    Article  CAS  Google Scholar 

  • Anjum M, Miandad R, Waqas M, Gehany F, Barakat MA (2019) Remediation of wastewater using various nano-materials. Arab J Chem 12(8):4897–4919

    Article  CAS  Google Scholar 

  • Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques—classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol 32(11):1–18

    Article  CAS  Google Scholar 

  • Baruah A, Chaudhary V, Malik R, Tomer VK (2019) Nanotechnology based solutions for wastewater treatment. Nanotechnol Water Wastewater Treat 2019:337–368

    Article  Google Scholar 

  • Baruah J, Chaliha C, Kalita E, Nath BK, Field RA, Deb P (2020) Modelling and optimization of factors influencing adsorptive performance of agrowaste-derived nanocellulose iron oxide nanobiocomposites during remediation of Arsenic contaminated groundwater. Int J Biol Macromol 164:53–65

    Article  CAS  Google Scholar 

  • Baruah J, Chaliha C, Nath BK, Kalita E (2021) Enhancing arsenic sequestration on ameliorated waste molasses nanoadsorbents using response surface methodology and machine-learning frameworks. Environ Sci Pollut Res 28(9):11369–11383

    Article  CAS  Google Scholar 

  • Basak G, Hazra C, Sen R (2020) Biofunctionalized nanomaterials for in situ clean-up of hydrocarbon contamination: a quantum jump in global bioremediation research. J Environ Manage 256:109913

    Article  CAS  Google Scholar 

  • Bedi A, Singh BR, Deshmukh SK, Adholeya A, Barrow CJ (2018) An Aspergillus aculateus strain was capable of producing agriculturally useful nanoparticles via bioremediation of iron ore tailings. J Environ Manage 215:100–107

    Article  CAS  Google Scholar 

  • Bezbaruah AN, Krajangpan S, Chisholm BJ, Khan E, Bermudez JJ (2009) Entrapment of iron nanoparticles in calcium alginate beads for groundwater remediation applications. J Hazard Mater 166:1339–1343

    Article  CAS  Google Scholar 

  • Bharagava RN, Saxena G, Mulla SI (2020) Introduction to industrial wastes containing organic and inorganic pollutants and bioremediation approaches for environmental management. In: Bioremediation of industrial waste for environmental safety. Springer, Singapore, pp 1–18

    Chapter  Google Scholar 

  • Bilal M, Asgher M, Iqbal M, Hu H, Zhang X (2016) Chitosan beads immobilized manganese peroxidase catalytic potential for detoxification and decolorization of textile effluent. Int J Biol Macromol 89:181–189

    Article  CAS  Google Scholar 

  • Bolisetty S, Mezzenga R (2016) Amyloid–carbon hybrid membranes for universal water purification. Nat Nanotechnol 11(4):365–371

    Article  CAS  Google Scholar 

  • Broderick JB (1999) Catechol dioxygenases. Essays Biochem 34:11–11

    Google Scholar 

  • Brusseau ML, Artiola JF (2019) Chemical contaminants. In: Environmental and pollution science. Academic Press, pp 175–190

    Chapter  Google Scholar 

  • Castillo MA, Trujillo IS, Alonso EV, de Torres AG, Pavón JC (2013) Bioavailability of heavy metals in water and sediments from a typical Mediterranean Bay (Málaga Bay, region of Andalucía, southern Spain). Mar Pollut Bull 76(1–2):427–434

    Article  Google Scholar 

  • Cecchin I, Reddy KR, Thomé A, Tessaro EF, Schnaid F (2017) Nanobioremediation: integration of nanoparticles and bioremediation for sustainable remediation of chlorinated organic contaminants in soils. Int Biodeter Biodegr 119:419–428

    Article  CAS  Google Scholar 

  • Chen G, Guan S, Zeng G, Li X, Chen A, Shang C, Zhou Y, Li H, He J (2013) Cadmium removal and 2, 4-dichlorophenol degradation by immobilized Phanerochaete chrysosporium loaded with nitrogen-doped TiO2 nanoparticles. Appl Microbiol Biotechnol 97(7):3149–3157

    Article  CAS  Google Scholar 

  • Cheng S, Li N, Jiang L, Li Y, Xu B, Zhou W (2019) Biodegradation of metal complex Naphthol Green B and formation of iron–sulfur nanoparticles by marine bacterium Pseudoalteromonas sp CF10-13. Bioresour Technol 273:49–55

    Article  CAS  Google Scholar 

  • Cipolatti EP, Valério A, Henriques RO, Moritz DE, Ninow JL, Freire DMG, Manoel EA, Fernandez-Lafuente R, de Oliveira D (2016) Nanomaterials for biocatalyst immobilization—state of the art and future trends. RSC Adv 6(106):104675–104692

    Article  CAS  Google Scholar 

  • Dai J, Wang H, Chi H, Wang Y, Zhao J (2016) Immobilization of laccase from Pleurotus ostreatus on magnetic separable SiO2 support and excellent activity towards azo dye decolorization. J Environ Chem Eng 4(2):2585–2591

    Article  CAS  Google Scholar 

  • Darwesh OM, Matter IA, Eida MF (2019) Development of peroxidase enzyme immobilized magnetic nanoparticles for bioremediation of textile wastewater dye. J Environ Chem Eng 7(1):102805

    Article  CAS  Google Scholar 

  • Datta S, Christena LR, Rajaram YRS (2013) Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 3(1):1–9

    Article  Google Scholar 

  • Datta S, Veena R, Samuel MS, Selvarajan E (2021) Immobilization of laccases and applications for the detection and remediation of pollutants: a review. Environ Chem Lett 19:521–538

    Article  CAS  Google Scholar 

  • Daumann LJ, Larrabee JA, Ollis D, Schenk G, Gahan LR (2014) Immobilization of the enzyme GpdQ on magnetite nanoparticles for organophosphate pesticide bioremediation. J Inorg Biochem 131:1–7

    Article  CAS  Google Scholar 

  • De Gisi S, Minetto D, Lofrano G, Libralato G, Conte B, Todaro F, Notarnicola M (2017) Nano-scale zero valent iron (nZVI) treatment of marine sediments slightly polluted by heavy metals. Chem Eng Trans 60:139–144

    Google Scholar 

  • Debnath B, Majumdar M, Bhowmik M, Bhowmik KL, Debnath A, Roy DN (2020) The effective adsorption of tetracycline onto zirconia nanoparticles synthesized by novel microbial green technology. J Environ Manage 261:110235

    Article  CAS  Google Scholar 

  • Diederichs T, Pugh G, Dorey A, Xing Y, Burns JR, Nguyen QH, Tornow M, Tampé R, Howorka S (2019) Synthetic protein-conductive membrane nanopores built with DNA. Nat Commun 10(1):1–11

    Article  Google Scholar 

  • El-Ramady H, Alshaal T, Abowaly M, Abdalla N, Taha H, Al-Saeedi A, Shalaby T, Amer M, Fári M, Domokos-Szabolcsy E, Sztrik A, Joe P, Selmar D, Smits E, Pilon M (2017) Nanoremediation for sustainable crop production, vol 5. Springer, Cham, pp 335–363

    Google Scholar 

  • El-Sheshtawy HS, Ahmed W (2017) Bioremediation of crude oil by Bacillus licheniformis in the presence of different concentration nanoparticles and produced biosurfactant. Int J Environ Sci Technol 14(8):1603–1614

    Article  Google Scholar 

  • Fernández PM, Viñarta SC, Bernal AR, Cruz EL, Figueroa LI (2018) Bioremediation strategies for chromium removal: current research, scale-up approach and future perspectives. Chemosphere 208:139–148

    Article  Google Scholar 

  • Gao Y, Kyratzis I (2008) Covalent immobilization of proteins on carbon nanotubes using the cross-linker 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide—a critical assessment. Bioconjug Chem 19(10):1945–1950. https://doi.org/10.1021/bc800051c

    Article  CAS  Google Scholar 

  • Gao M, Li J, Bao Z, Hu M, Nian R, Feng D, An D, Li X, Xian M, Zhang H (2019) A natural in situ fabrication method of functional bacterial cellulose using a microorganism. Nat Commun 10(1):1–10

    Article  Google Scholar 

  • Gong X, Huang D, Liu Y, Zeng G, Wang R, Wei J, Huang C, Xu P, Wan J, Zhang C (2018) Pyrolysis and reutilization of plant residues after phytoremediation of heavy metals contaminated sediments: for heavy metals stabilization and dye adsorption. Bioresour Technol 253:64–71

    Article  CAS  Google Scholar 

  • Govarthanan M, Jeon CH, Jeon YH, Kwon JH, Bae H, Kim W (2020) Non-toxic nano approach for wastewater treatment using Chlorella vulgaris exopolysaccharides immobilized in iron-magnetic nanoparticles. Int J Biol Macromol 162:1241–1249

    Article  CAS  Google Scholar 

  • Gross E, Dean F, Gabor T, Somorjai A (2015) Polymer-encapsulated metallic nanoparticles as a bridge between homogeneous and heterogeneous catalysis. Catal Lett 145:126–138

    Article  CAS  Google Scholar 

  • Guisan JM (2006) Immobilization of enzymes as the 21st century begins. In: Guisan JM (ed) Immobilization of enzymes and cells, 2nd edn. Humana, pp 1–13

    Chapter  Google Scholar 

  • Guo J, Liu X, Zhang X, Wu J, Chai C, Ma D et al (2019) Immobilized lignin peroxidase on Fe3O4@ SiO2@ polydopamine nanoparticles for degradation of organic pollutants. Int J Biol Macromol 138:433–440

    Article  CAS  Google Scholar 

  • Gupta A, Joia J, Sood A, Sood R, Sidhu C, Kaur G (2016) Microbes as potential tool for remediation of heavy metals: a review. J Microb Biochem Technol 8:364–372

    Article  CAS  Google Scholar 

  • Hanefeld U, Gardossi L, Magner E (2009) Understanding enzyme immobilisation. Chem Soc Rev 38(2):453–468

    Article  CAS  Google Scholar 

  • He S, Zhong L, Duan J, Feng Y, Yang B, Yang L (2017) Bioremediation of wastewater by iron oxide-biochar nanocomposites loaded with photosynthetic bacteria. Front Microbiol 8:823

    Article  Google Scholar 

  • Hu L, Zeng G, Chen G, Dong H, Liu Y, Wan J, Chen A, Guo Z, Yan M, Wu H, Yu Z (2016) Treatment of landfill leachate using immobilized Phanerochaete chrysosporium loaded with nitrogen-doped TiO2 nanoparticles. J Hazard Mater 301:106–118

    Article  CAS  Google Scholar 

  • Huang J, Xiao H, Li B, Wang J, Jiang D (2006) Immobilization of Pycnoporus sanguineus laccase on copper tetra-aminophthalocyanine—Fe3O4 nanoparticle composite. Biotechnol Appl Biochem 44(2):93–100

    Article  CAS  Google Scholar 

  • Huang D-L, Wang C, Xu P, Zeng G-M, Lu B-A, Li N-J, Huang C, Lai C, Zhao M-H, Xu J-J, Luo X-Y (2015) A coupled photocatalytic-biological process for phenol degradation in the Phanerochaete chrysosporium-oxalate-Fe3O4 system. Int Biodeter Biodegr 97:115–123

    Article  CAS  Google Scholar 

  • Husain Q (2016) Magnetic nanoparticles as a tool for the immobilization/stabilization of hydrolases and their applications: an overview. Biointerface Res Appl Chem 6(6):1585–1606

    CAS  Google Scholar 

  • Jegannathan KR, Abang S, Poncelet D, Chan ES, Ravindra P (2008) Production of biodiesel using immobilized lipase—a critical review. Crit Rev Biotechnol 28(4):253–264

    Article  CAS  Google Scholar 

  • Jeon JR, Murugesan K, Baldrian P, Schmidt S, Chang YS (2016) Aerobic bacterial catabolism of persistent organic pollutants—potential impact of biotic and abiotic interaction. Curr Opin Biotechnol 38:71–78

    Article  CAS  Google Scholar 

  • Ji C, Nguyen LN, Hou J, Hai FI, Chen V (2017) Direct immobilization of laccase on titania nanoparticles from crude enzyme extracts of P. ostreatus culture for micro-pollutant degradation. Sep Purif Technol 178:215–223

    Article  CAS  Google Scholar 

  • Jiang Y, Deng T, Shang Y, Yang K, Wang H (2017) Biodegradation of phenol by entrapped cell of Debaryomyces sp. with nano-Fe3O4 under hypersaline conditions. Int Biodeter Biodegr 123:37–45

    Article  CAS  Google Scholar 

  • Kang JW (2014) Removing environmental organic pollutants with bioremediation and phytoremediation. Biotechnol Lett 36(6):1129–1139

    Article  CAS  Google Scholar 

  • Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme Res 2011:805187

    Article  Google Scholar 

  • Karthik V, Kumar PS, Vo D-VN, Selvakumar P, Gokulakrishnan M, Keerthana P, Audilakshmi V, Jeyanthi J (2021) Enzyme-loaded nanoparticles for the degradation of wastewater contaminants: a review. Environ Chem Lett 19:2331–2350

    Article  CAS  Google Scholar 

  • Kica E, Wessels RA (2017) Transnational arrangements in the governance of emerging technologies: the case of nanotechnologies. In: Bowman D, Stokes E, Rip A (eds) Embedding new technologies into society: a regulatory, ethical and societal perspective. Jenny Stanford, Singapore, pp 219–258

    Chapter  Google Scholar 

  • Koman V, Liu P, Kozawa D, Liu AT, Cottrill A, Strano MS (2018) Colloidal nanoelectronic state machines based on 2D materials for aerosolizable electronics. Nat Nanotechnol 13(9):819–827

    Article  CAS  Google Scholar 

  • Kumar PS, Carolin CF, Varjani SJ (2018) Pesticides bioremediation. In: Bioremediation: applications for environmental protection and management. Springer, Singapore, pp 197–222

    Chapter  Google Scholar 

  • Li M, Zhang C (2016) γ-Fe2O3 nanoparticle-facilitated bisphenol A degradation by white rot fungus. Sci Bull 61(6):468–472

    Article  CAS  Google Scholar 

  • Li C, Zhou L, Yang H, Lv R, Tian P, Li X, Zhang Y, Chen Z, Lin F (2017) Self-assembled exopolysaccharide nanoparticles for bioremediation and green synthesis of noble metal nanoparticles. ACS Appl Mater Interfaces 9:22808–22818

    Article  CAS  Google Scholar 

  • Li Z, Chen Z, Zhu Q, Song J, Li S, Liu X (2020) Improved performance of immobilized laccase on Fe3O4@ C-Cu2+ nanoparticles and its application for biodegradation of dyes. J Hazard Mater 399:123088

    Article  CAS  Google Scholar 

  • Licausi F, Giuntoli B (2021) Synthetic biology of hypoxia. New Phytol 229(1):50–56

    Article  Google Scholar 

  • Liu Y, Zeng Z, Zeng G, Tang L, Pang Y, Li Z, Liu C, Lei X, Wu M, Ren P, Liu Z, Chen M, Xie G (2012) Immobilization of laccase on magnetic bimodal mesoporous carbon and the application in the removal of phenolic compounds. Bioresour Technol 115:21–26

    Article  CAS  Google Scholar 

  • Liu J, Morales-Narváez E, Vicent T, Merkoçi A, Zhong GH (2018) Microorganism-decorated nanocellulose for efficient diuron removal. Chem Eng J 354:1083–1091

    Article  CAS  Google Scholar 

  • Lu Y-M, Yang Q-Y, Wang L-M, Zhang M-Z, Guo W-Q, Cai Z-N, Wang D-D, Yang W-W, Chen Y (2017) Enhanced activity of immobilized horseradish peroxidase by carbon nanospheres for phenols removal. CLEAN Soil Air Water 45(2):1600077

    Article  Google Scholar 

  • Mahanty S, Chatterjee S, Ghosh S, Tudu P, Gaine T, Bakshi M et al (2020) Synergistic approach towards the sustainable management of heavy metals in wastewater using mycosynthesized iron oxide nanoparticles: biofabrication, adsorptive dynamics and chemometric modeling study. J Water Proces Eng 37:101426

    Article  Google Scholar 

  • Mandeep, Shukla P (2020) Microbial nanotechnology for bioremediation of industrial wastewater. Front Microbiol 11:590631. https://doi.org/10.3389/fmicb.2020.590631

    Article  CAS  Google Scholar 

  • Mapelli F, Scoma A, Michoud G, Aulenta F, Boon N, Borin S, Kalogerakis N, Daffonchio D (2017) Biotechnologies for marine oil spill cleanup: indissoluble ties with microorganisms. Trends Biotechnol 35(9):860–870

    Article  CAS  Google Scholar 

  • Mechrez G, Krepker MA, Harel Y, Lellouche JP, Segal E (2014) Biocatalytic carbon nanotube paper: a “one-pot” route for fabrication of enzyme-immobilized membranes for organophosphate bioremediation. J Mater Chem B 2:915–922

    Article  CAS  Google Scholar 

  • Mishra A, Kumari M, Pandey S, Chaudhry V, Gupta KC, Nautiyal CS (2014) Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp. Bioresour Technol 166:235–242

    Article  CAS  Google Scholar 

  • Mitrano DM, Beltzung A, Frehland S, Schmiedgruber M, Cingolani A, Schmidt F (2019) Synthesis of metal-doped nanoplastics and their utility to investigate fate and behaviour in complex environmental systems. Nat Nanotechnol 14(4):362–368

    Article  CAS  Google Scholar 

  • Mitter N, Worrall EA, Robinson KE, Li P, Jain RG, Taochy C, Fletcher SJ, Carroll BJ, Lu GQM, Xu ZP (2017) Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat Plants 3(2):1–10

    Article  Google Scholar 

  • Mohanraj R, Gnanamangai BM, Poornima S, Oviyaa V, Ramesh K, Vijayalakshmi G et al (2020) Decolourisation efficiency of immobilized silica nanoparticles synthesized by Actinomycetes. In: Materials today: proceedings. Elsevier, Netherland

    Google Scholar 

  • Narayanan KB, Park HH, Sakthivel N (2013) Extracellular synthesis of mycogenic silver nanoparticles by Cylindrocladium floridanum and its homogeneous catalytic degradation of 4-nitrophenol. Spectrochim Acta A Mol Biomol Spectrosc 116:485–490

    Article  CAS  Google Scholar 

  • Nath BK, Chaliha C, Kalita E, Kalita MC (2016) Synthesis and characterization of ZnO: CeO2: nanocellulose: PANI bionanocomposite. A bimodal agent for arsenic adsorption and antibacterial action. Carbohydr Polym 148:397–405

    Article  CAS  Google Scholar 

  • Nath BK, Chaliha C, Kalita E (2019) Iron oxide permeated mesoporous rice-husk nanobiochar (IPMN) mediated removal of dissolved arsenic (As): Chemometric modelling and adsorption dynamics. J Environ Manage 246:397–409

    Article  CAS  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao A-J, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17(5):372–386

    Article  CAS  Google Scholar 

  • Noman M, Shahid M, Ahmed T, Niazi MBK, Hussain S, Song F, Manzoor I (2020) Use of biogenic copper nanoparticles synthesized from a native Escherichia sp. as photocatalysts for azo dye degradation and treatment of textile effluents. Environ Pollut 257:113514

    Article  CAS  Google Scholar 

  • Oh N, Park JH (2014) Endocytosis and exocytosis of nanoparticles in mammalian cells. Int J Nanomedicine 9:51–63

    Google Scholar 

  • Oliveira SF, da Luz JMR, Kasuya MCM, Ladeira LO, Junior AC (2018) Enzymatic extract containing lignin peroxidase immobilized on carbon nanotubes: potential biocatalyst in dye decolourization. Saudi J Biol Sci 25(4):651–659

    Article  CAS  Google Scholar 

  • Pang R, Li M, Zhang C (2015) Degradation of phenolic compounds by laccase immobilized on carbon nanomaterials: diffusional limitation investigation. Talanta 131:38–45

    Article  CAS  Google Scholar 

  • Patil SS, Shedbalkar UU, Truskewycz A, Chopade BA, Ball AS (2016) Nanoparticles for environmental clean-up: a review of potential risks and emerging solutions. Environ Technol Innov 5:10–21

    Article  Google Scholar 

  • Peixoto RS, Vermelho AB, Rosado AS (2011) Petroleum-degrading enzymes: bioremediation and new prospects. Enzyme Res 2011:475193

    Article  CAS  Google Scholar 

  • Perera F (2018) Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: solutions exist. Int J Environ Res Public Health 15(1):16

    Article  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis? WIREs Nanomed Nanobiotechnol 8:316–330

    Article  Google Scholar 

  • Qiu X, Wang Y, Xue Y, Li W, Hu Y (2020) Laccase immobilized on magnetic nanoparticles modified by amino-functionalized ionic liquid via dialdehyde starch for phenolic compounds biodegradation. Chem Eng J 391:123564

    Article  CAS  Google Scholar 

  • Ramírez-García R, Gohil N, Singh V (2019) Recent advances, challenges, and opportunities in bioremediation of hazardous materials. In: Phytomanagement of polluted sites. Elsevier, pp 517–568

    Chapter  Google Scholar 

  • Rani M, Shanker U, Chaurasia AK (2017) Catalytic potential of laccase immobilized on transition metal oxides nanomaterials: degradation of alizarin red S dye. J Environ Chem Eng 5(3):2730–2739

    Article  CAS  Google Scholar 

  • Ranjan B, Pillai S, Permaul K, Singh S (2018) A novel strategy for the efficient removal of toxic cyanate by the combinatorial use of recombinant enzymes immobilized on aminosilane modified magnetic nanoparticles. Bioresour Technol 253:105–111

    Article  CAS  Google Scholar 

  • Ranjan B, Pillai S, Permaul K, Singh S (2019) Simultaneous removal of heavy metals and cyanate in a wastewater sample using immobilized cyanate hydratase on magnetic-multiwall carbon nanotubes. J Hazard Mater 363:73–80

    Article  CAS  Google Scholar 

  • Rasmussen K, González M, Kearns P, Sintes JR, Rossi F, Sayre P (2016) Review of achievements of the OECD Working Party on Manufactured nanomaterials’ Testing and Assessment Programme. From exploratory testing to test guidelines. Regul Toxicol Pharmacol 74:147–160

    Article  CAS  Google Scholar 

  • Rizwan M, Singh M, Mitra CK, Morve RK (2014) Ecofriendly application of nanomaterials: nanobioremediation. Journal of Nanoparticles 2014:431787. https://doi.org/10.1155/2014/431787

    Article  CAS  Google Scholar 

  • Roy A, Baruah R, Borah M, Singh AK, Boruah H, Saikia N, Deka M, Dutta N, Bora T (2014) Bioremediation potential of native hydrocarbon degrading bacterial strains in crude oil contaminated soil under microcosm study. Int Biodeter Biodegr 94:79–89

    Article  CAS  Google Scholar 

  • Sadighi A, Faramarzi MA (2013) Congo red decolorization by immobilized laccase through chitosan nanoparticles on the glass beads. J Taiwan Inst Chem Eng 44:156–162

    Article  CAS  Google Scholar 

  • Sarioglu OF, San Keskin NO, Celebioglu A, Tekinay T, Uyar T (2017) Bacteria encapsulated electrospun nanofibrous webs for remediation of methylene blue dye in water. Colloids Surf B Biointerfaces 152:245–251

    Article  CAS  Google Scholar 

  • Seeger M, Hernández M, Méndez V, Ponce B, Córdova M, González M (2010) Bacterial degradation and bioremediation of chlorinated herbicides and biphenyls. J Soil Sci Plant Nutr 10(3):320–332

    Article  Google Scholar 

  • Shao B, Liu Z, Zeng G, Liu Y, Yang X, Zhou C, Chen M, Liu Y, Jiang Y, Yan M (2019) Immobilization of laccase on hollow mesoporous carbon nanospheres: noteworthy immobilization, excellent stability and efficacious for antibiotic contaminants removal. J Hazard Mater 362:318–326

    Article  CAS  Google Scholar 

  • Sharma B, Dangi AK, Shukla P (2018) Contemporary enzyme based technologies for bioremediation: a review. J Environ Manage 210:10–22

    Article  CAS  Google Scholar 

  • Shi L, Ma F, Han Y, Zhang X, Yu H (2014) Removal of sulfonamide antibiotics by oriented immobilized laccase on Fe3O4 nanoparticles with natural mediators. J Hazard Mater 279:203–211

    Article  CAS  Google Scholar 

  • Singh R, Manickam N, Mudiam MKR, Murthy RC, Misra V (2013) An integrated (nano-bio) technique for degradation of γ-HCH contaminated soil. J Hazard Mater 258:35–41

    Article  Google Scholar 

  • Singh R, Behera M, Kumar S (2020) Nano-bioremediation: an innovative remediation technology for treatment and management of contaminated sites. In: Bioremediation of industrial waste for environmental safety. Springer, Singapore, pp 165–182

    Chapter  Google Scholar 

  • Soleimani M, Khani A, Najafzadeh K (2012) α-Amylase immobilization on the silica nanoparticles for cleaning performance towards starch soils in laundry detergents. J Mol Catal B: Enzym 74(1–2):1–5

    Article  CAS  Google Scholar 

  • Stadlmair LF, Letzel T, Drewes JE, Grassmann J (2018) Enzymes in removal of pharmaceuticals from wastewater: a critical review of challenges, applications and screening methods for their selection. Chemosphere 205:649–661

    Article  CAS  Google Scholar 

  • Suherman AL, Zebda A, Martin DK (2018) Optimization of laccase adsorption-desorption behaviors on multi-walled carbon nanotubes for enzymatic biocathodes. Makara J Sci 22(1):7

    Article  Google Scholar 

  • Sun M, Andreassi JL II, Liu S, Pinto R, Triccas JA, Leyh TS (2005) The trifunctional sulfate-activating complex (SAC) of Mycobacterium tuberculosis. J Biol Chem 280(9):7861–7866

    Article  CAS  Google Scholar 

  • Sun H, Jin X, Long N, Zhang R (2017) Improved biodegradation of synthetic azo dye by horseradish peroxidase cross-linked on nano-composite support. Int J Biol Macromol 95:1049–1055

    Article  CAS  Google Scholar 

  • Tan W, Peralta-Videa JR, Gardea-Torresdey JL (2018) Interaction of titanium dioxide nanoparticles with soil components and plants: current knowledge and future research needs—a critical review. Environ Sci Nano 5(2):257–278

    Article  CAS  Google Scholar 

  • Tanzadeh J, Ghasemi MF (2016) A review on bioremediation of bulk oil in sea waters and shoreline. Chem Biol Interface 6(5):282–289

    CAS  Google Scholar 

  • Tanzadeh J, Ghasemi MF, Anvari M, Issazadeh K (2020) Biological removal of crude oil with the use of native bacterial consortia isolated from the shorelines of the Caspian Sea. Biotechnol Biotechnol Equip 34(1):361–374

    Article  CAS  Google Scholar 

  • Taylor A, Wilson KM, Murray P, Fernig DG, Lévy R (2012) Long-term tracking of cells using inorganic nanoparticles as contrast agents: are we there yet? Chem Soc Rev 41(7):2707–2717

    Article  CAS  Google Scholar 

  • Thallinger B, Prasetyo EN, Nyanhongo GS, Guebitz GM (2013) Antimicrobial enzymes: an emerging strategy to fight microbes and microbial biofilms. Biotechnol J 8(1):97–109

    Article  CAS  Google Scholar 

  • Thompson LA, Darwish WS (2019) Environmental chemical contaminants in food: review of a global problem. J Toxicol 2019:2345283

    Article  Google Scholar 

  • Torres-Duarte C, Vazquez-Duhalt R (2010) Applications and prospective of peroxidase biocatalysis in the environmental field. In: Biocatalysis based on heme peroxidases. Springer, Berlin, Heidelberg, pp 179–206

    Chapter  Google Scholar 

  • Vázquez-Núñez E, Molina-Guerrero CE, Peña-Castro JM, Fernández-Luqueño F, de la Rosa-Álvarez M (2020) Use of nanotechnology for the bioremediation of contaminants: a review. Processes 8(7):826

    Article  Google Scholar 

  • Vieira RH, Volesky B (2000) Biosorption: a solution to pollution? Int Microbiol 3(1):17–24

    CAS  Google Scholar 

  • Wang H, Zhang W, Zhao J, Xu L, Zhou C, Chang L, Wang L (2013) Rapid decolorization of phenolic azo dyes by immobilized laccase with Fe3O4/SiO2 nanoparticles as support. Ind Eng Chem Res 52(12):4401–4407

    Article  CAS  Google Scholar 

  • Wang M, Weiberg A, Lin FM, Thomma BP, Huang HD, Jin H (2016) Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nature plants 2(10):1–10

    Article  CAS  Google Scholar 

  • Wei X, Lyu S, Yu Y, Wang Z, Liu H, Pan D, Chen J (2017) Phylloremediation of air pollutants: exploiting the potential of plant leaves and leaf-associated microbes. Front Plant Sci 8:1318

    Article  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Commun Soil Sci Plant Anal 42:111–122. https://doi.org/10.5402/2011/402647

    Article  Google Scholar 

  • Xu P, Zeng G, Huang D, Hu S, Feng C, Lai C, Zhao M, Huang C, Li N, Wei Z, Xie G (2013) Synthesis of iron oxide nanoparticles and their application in Phanerochaete chrysosporium immobilization for Pb (II) removal. Colloids Surf A Physicochem Eng Asp 419:147–155

    Article  CAS  Google Scholar 

  • Xu J, Sun J, Wang Y, Sheng J, Wang F, Sun M (2014) Application of iron magnetic nanoparticles in protein immobilization. Molecules 19(8):11465–11486

    Article  Google Scholar 

  • Yang YX, Pi N, Zhang JB, Huang Y, Yao PP, Xi YJ, Yuan HM (2016) USPIO assisting degradation of MXC by host/guest-type immobilized laccase in AOT reverse micelle system. Environ Sci Pollut Res 23(13):13342–13354

    Article  CAS  Google Scholar 

  • Yogalakshmi KN, Das A, Rani G, Jaswal V, Randhawa JS (2020) Nano-bioremediation: a new age technology for the treatment of dyes in textile effluents. In: Bioremediation of industrial waste for environmental safety. Springer, Singapore, pp 313–347

    Chapter  Google Scholar 

  • Zhang K, Yang W, Liu Y, Zhang K, Chen Y, Yin X (2020) Laccase immobilized on chitosan-coated Fe3O4 nanoparticles as reusable biocatalyst for degradation of chlorophenol. J Mol Struct 1220:128769

    Article  CAS  Google Scholar 

  • Zhu X, Chen B, Zhu L, Xing B (2017) Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: a review. Environ Pollut 227:98–115

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eeshan Kalita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baruah, J., Chaliha, C., Kalita, E. (2023). Nanobioremediation: Innovative Technologies for Sustainable Remediation of Environmental Contaminants. In: Fernandez-Luqueno, F., Patra, J.K. (eds) Agricultural and Environmental Nanotechnology. Interdisciplinary Biotechnological Advances. Springer, Singapore. https://doi.org/10.1007/978-981-19-5454-2_18

Download citation

Publish with us

Policies and ethics