Skip to main content

Nano-bioremediation: A New Age Technology for the Treatment of Dyes in Textile Effluents

  • Chapter
  • First Online:
Bioremediation of Industrial Waste for Environmental Safety

Abstract

Heterogeneity, recalcitrance, and ubiquitous persistence of textile effluent make it the foulest industrial pollutant which poses a serious threat to soil and water bodies. Textile effluent like all other industrial effluents contributes considerably to environmental pollution. Presence of huge amount of water-soluble unfixed dyes, heavy metals, acids, alkalis, inorganic and organic salts has resulted in a highly concentrated, colored, and complex high strength wastewater that resists degradation. The conventional treatment methods including biological and physicochemical methods for treatment of textile waste are not convincing enough because of low biodegradability of dyes, fouling of filters, high pressure requirement, and generation of sludge containing iron hydroxide. Hence, it has become imperative to seek alternative advanced technology which must be essentially environment competent. Exquisite properties are shown to be possessed by the nanoparticles making it an efficient technology for cleanup of environmental pollutants. Nanoremediation is an upcoming field of research with huge prospects in the treatment of environmental contaminants. In addition to its high reactivity with the contaminants, they also act as suitable carriers for immobilization of whole cells and enzymes. Effluent treatment aided by enzymes has been demonstrated to be effective for recalcitrant pollutants and requires moderate reaction conditions, making them environmentally sound. The generic enzymes sought for the treatment of textile pollutants include most of the peroxidase, cytochrome reductase (Fe III), and oxidoreductase. This chapter extensively covers current know-how of nanoparticles as a carrier for several enzymes for the degradation of pollutants present in textile wastewater. The role of nanoparticle in the removal of dyes is also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aber S, Mahmoudikia E, Karimi A, Mahdizadeh F (2016) Immobilization of glucose oxidase on Fe3O4 magnetic nanoparticles and its application in the removal of acid yellow 12. Water Air Soil Pollut 227(3):1–11

    Article  CAS  Google Scholar 

  • Ahmet B, Ayfer Y, Doris L, Nese N, Antonius K (2003) Ozonation of high strength segregated effluents from a woollen textile dyeing and finishing plant. Dyes Pigments 58:93–98

    Article  CAS  Google Scholar 

  • Ai L, Zhang C, Liao F, Wang Y, Li M, Meng L, Jiang J (2011) Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: kinetic, isotherm and mechanism analysis. J Hazard Mater 198:282–290

    Article  CAS  Google Scholar 

  • Alcantara AR, Borreguero I, Lopez-Belmonte MT, Sinisterra JV (1998) Covalent immobilization of crude and partially-purified upases onto inorganic supports: stability and hyperactivation. Biotechnol Prog 15:571–576

    CAS  Google Scholar 

  • Al-Kdasi A, Idris A, Saed K, Guan CT (2004) Treatment of textile wastewater by advanced oxidation processes-a review. Global NEST J 6(3):222–230

    Google Scholar 

  • Arslan IA, Isil AB (2002) The effect of pre-ozonation on the H2O2/UV-C treatment of raw and biologically pre-treated textile industry wastewater. Water Sci Technol 45:297–304

    Article  Google Scholar 

  • Ay F, Catalkaya EC, Kargi F (2008) Advanced oxidation of Direct Red (DR 28) by Fenton treatment. Environ Eng Sci 25(10):1455–1462

    Article  CAS  Google Scholar 

  • Azbar N, Yonar T, Kestioglu K (2004) Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent. Chemosphere 55(1):35–43

    Article  CAS  Google Scholar 

  • Baig S, Liechti (2001) Ozone treatment for biorefractory COD removal. Water Sci Technol 43:197–204

    Article  CAS  Google Scholar 

  • Bayramoglu G, Yilmaz M, Arica MY (2010) Reversible immobilization of laccase to poly(4-vinylpyridine) grafted and Cu(II) chelated magnetic beads: biodegradation of reactive dyes. Bioresour Technol 101:6615–6621

    Article  CAS  Google Scholar 

  • Bharagava RN, Chowdhary P, Saxena G (2017) Bioremediation: an ecosustainable green technology: its applications and limitations. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press/Taylor & Francis Group, Boca Raton, pp 1–22. https://doi.org/10.1201/9781315173351-2

    Chapter  Google Scholar 

  • Bigg T, Judd SJ (2002) Reductive degradation of azo dyes in aqueous solution by zero-valent iron. IAHS Publ 275:383–390

    Google Scholar 

  • Blackburn RS (2004) Natural polysaccharides and their interactions with dye molecules: applications in effluent treatment. Environ Sci Technol 38(18):4905–4909

    Article  CAS  Google Scholar 

  • Brena BM, Batista-Viera F (2006) Immobilization of enzymes. In: Methods in biotechnology: immobilization of enzymes and cells. Humana Press, Totowa, pp 15–30

    Chapter  Google Scholar 

  • Brust M, Gordillo GJ (2012) Electrocatalytic hydrogen redox chemistry on gold nanoparticles. J Am Chem Soc 134(7):3318–3321

    Article  CAS  Google Scholar 

  • Cammarata RC (2009) Generalized Thermodynamics of Surfaces with Applications to Small Solid Systems. Solid State Phys 61:1–75

    Google Scholar 

  • Chan LS, Cheung WH, McKay G (2008) Adsorption of acid dyes by bamboo derived activated carbon. Desalination 218(1–3):304–312

    Article  CAS  Google Scholar 

  • Chanathaworn J, Bunyakan C, Wiyaratn W, Chungsiriporn J (2012) Photocatalytic decolorization of basic dye by TiO2 nanoparticle in photoreactor. Songklanakarin J Sci Technol 34(2)

    Google Scholar 

  • Chaturvedi S, Dave PN, Shah NK (2012) Applications of nano-catalyst in new era. J Saudi Chem Soc 16(3):307–325

    Article  CAS  Google Scholar 

  • Chaudhary GR, Saharan P, Kumar A, Mehta SK, Mor S, Umar A (2013) Adsorption studies of cationic, anionic and azo-dyes via monodispersed Fe3O4 nanoparticles. J Nanosci Nanotechnol 13(5):3240–3245

    Article  CAS  Google Scholar 

  • Chen J, Leng J, Yang X, Liao L, Liu L, Xiao A (2017) Enhanced performance of magnetic graphene oxide-immobilized laccase and its application for the decolorization of dyes. Molecules 22(221):1–11

    Google Scholar 

  • Cheval N, Gindy N, Flowkes C, Fahmi A (2012) Polyamide 66 microspheres metallised with in situ synthesized gold nanoparticles for catalytic application. Nanoscale Res Lett 7(1):182–190

    Article  CAS  Google Scholar 

  • Chiou SH, Wu WT (2004) Immobilization of Candida rugosa lipase on chitosan with activation of the hydroxyl groups. Biomaterials 25(2):197–204

    Article  CAS  Google Scholar 

  • Colombié S, Gaunand A, Lindet B (2001) Lysozyme inactivation under mechanical stirring: effect of physical and molecular interfaces. Enzym Microb Technol 28:820–826

    Article  Google Scholar 

  • D’Souza SF (1998) Immobilized enzymes in bioprocess. Curr Sci 77(1):69–79

    Google Scholar 

  • Dalal S, Kapoor M, Gupta MN (2007) Preparation and characterization of combi-CLEAs catalyzing multiple non-cascade reactions. J Mol Catal B Enzym 44:128–132

    Article  CAS  Google Scholar 

  • Darwesh OM, Moawad H, Barakat OS, Abd El-Rahim WM (2015) Bioremediation of textile Reactive Blue azo dye residues using nanobiotechnology approaches. Res J Pharm Biol Chem Sci 6(1):1202–1211

    Google Scholar 

  • Das A, Singh J, Yogalakshmi KN (2017) Laccase immobilized magnetic iron nanoparticles: Fabrication and its performance evaluation in chlorpyrifos degradation. Int Biodeter Biodegr 117:183–189

    Article  CAS  Google Scholar 

  • Datta S, Rene CL, Rajaram YRS (2013) Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 3(1):1–9

    Article  Google Scholar 

  • Dong T, Zhao L, Huang Y, Tan X (2010) Preparation of cross-linked aggregates of aminoacylase from Aspergillus melleus by using bovine serum albumin as an inert additive. Bioresour Technol 101:6569–6571

    Article  CAS  Google Scholar 

  • Dubinin MM, Radushkevich LV (1947) The equation of the characteristic curve of the activated charcoal. Proc Acad Sci USSR Phys Chem Sect 55:331–337

    Google Scholar 

  • Dyer HJ, Hudson PA (1993) Williams, ion exchange processes: advances and applications. Royal Society of Chemistry, Cambridge

    Google Scholar 

  • El-Gohary F, Tawfik A (2009) Decolorization and COD reduction of disperse and reactive dyes wastewater using chemical-coagulation followed by sequential batch reactor (SBR) process. Desalination 249(3):1159–1164

    Article  CAS  Google Scholar 

  • El-Safty SA, Shenashen MA, Ismael M, Khairy M, Awual MR (2012) Optical mesosensors for monitoring and removal of ultra-trace concentration of Zn (II) and Cu (II) ions from water. Analyst 137(22):5278–5290

    Article  CAS  Google Scholar 

  • Endo M, Takeuchi K, Kobori K, Takahashi K, Kroto HW, Sarkar A (1995) Pyrolytic carbon nanotubes from vapor-grown carbon fibers. Carbon 33(7):873–881

    Article  CAS  Google Scholar 

  • Eyasu A, Yadav OP, Bachheti RK (2013) Photocatalytic degradation of methyl orange dye using Cr-doped ZnS nanoparticles under visible radiation. Int J ChemTech Res 5(4):1452–1461

    Google Scholar 

  • Fernandes RA, Daniel-da-Silva AL, Tavares AP, Xavier AM (2017) EDTA-Cu (II) chelating magnetic nanoparticles as a support for laccase immobilization. Chem Eng Sci 158:599–605

    Article  CAS  Google Scholar 

  • Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10

    Article  CAS  Google Scholar 

  • Freundlich HMF (1906) Over the adsorption in solution. J Phys Chem 57:385–471

    CAS  Google Scholar 

  • Fu J, Reinhold J, Woodbury NW (2011) Peptide-modified surfaces for enzyme immobilization. PLoS One 6(4):1–6

    Article  CAS  Google Scholar 

  • Garcia-Galan C, Berenguer-Murcia A, Fernandez-Lafuente R, Rodrigues RC (2011) Potential of different enzyme immobilization strategies to improve enzyme performance. Adv Synth Catal 353(16):2885–2904

    Article  CAS  Google Scholar 

  • Garg VK, Kaushik P (2008) Influence of textile mill wastewater irrigation on the growth of sorghum cultivars. Appl Ecol Environ Res 6(2):1–2

    Article  Google Scholar 

  • Gautam S, Kaithwas G, Bharagava RN, Saxena G (2017) Pollutants in tannery wastewater, pharmacological effects and bioremediation approaches for human health protection and environmental safety. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press/Taylor & Francis Group, Boca Raton, pp 369–396. https://doi.org/10.1201/9781315173351-14

    Chapter  Google Scholar 

  • Georgiou D, Melidis P, Aivasidis A, Gimouhopoulos K (2002) Degradation of azo-reactive dyes by ultraviolet radiation in the presence of hydrogen peroxide. Dyes Pigments 52(2):69–78

    Article  CAS  Google Scholar 

  • Ghaedi M, Ramazani S, Roosta M (2011) Gold nanoparticle loaded activated carbon as novel adsorbent for the removal of Congo red. Indian J Sci Technol 4(10):1208–1217

    CAS  Google Scholar 

  • Gianluca C, Nicola R (2001) Technical note, the treatment and reuse of wastewater in the textile industry means of ozonation and electroflocculation. Water Res 35:567–572

    Google Scholar 

  • Golob V, Vinder A, Simonic M (2005) Efficiency of the coagulation/flocculation method for the treatment of dyebath effluents. Dyes Pigments 67:93–97

    Article  CAS  Google Scholar 

  • Guibal E, Roussy J (2007) Coagulation and flocculation of dye containing solutions using a biopolymer (chitosan). React Funct Polym 67:33–42

    Article  CAS  Google Scholar 

  • Guisan JM (2006) Immobilization of enzymes as the 21st century begins. In: Immobilization of enzymes and cells, 2nd edn, vol 22. Humana Press, Totowa, pp 1–13

    Chapter  Google Scholar 

  • Guzman J, Saucedo I, Revilla J, Navarro R, Guibal E (2003) Copper sorption by chitosan in the presence of citrate ions: influence of metal speciation on sorption mechanism and uptake capacities. Int J Biol Macromol 33:57–65

    Article  CAS  Google Scholar 

  • Han R, Ding D, Xu Y, Zou W, Wang Y, Li Y, Zou L (2008) Use of rice husk for adsorption of Congo red from aqueous solution in column mode. Bioresour Technol 99:2938–2946

    Article  CAS  Google Scholar 

  • Hemapriyamvadha, R. and Sivasankar, T. (2015). Sonophotocatalytic treatment of methyl orange dye and real textile effluent using synthesised nano-zinc oxide. Coloration Technology 131(2):110–119

    Article  CAS  Google Scholar 

  • Hariani PL, Faizal M, Setiabudidaya D (2013) Synthesis and properties of Fe3O4 nanoparticles by co-precipitation method to removal procion dye. Int J Environ Sci Dev 4(3):336–340

    Article  CAS  Google Scholar 

  • Honda T, Miyazaki M, Nakamura H, Maeda H (2006) Facile preparation of an enzyme-immobilized microreactor using a cross-linking enzyme membrane on a microchannel surface. Adv Synth Catal 348(15):2163–2171

    Article  CAS  Google Scholar 

  • Hsieh HJ, Liu PC, Liao WJ (2000) Immobilization of invertase via carbohydrate moiety on chitosan to enhance its thermal stability. Biotechnol Lett 22(18):1459–1464

    Article  CAS  Google Scholar 

  • Hul JP (1999) Membrane separation in textile washing processes. Universiteit Twente, Enschede

    Google Scholar 

  • Hu B, Pan J, Yu H-L, Liu J-W, Xu J-H (2009) Immobilization of Serratia marcescens lipase onto amino-functionalized magnetic nanoparticles for repeated use in enzymatic synthesis of Diltiazem intermediate. Process Biochem 44(9):1019–1024

    Article  CAS  Google Scholar 

  • Huong PTL, Huyen NT, Giang CD, Nguyen T, Phan VN, Van Quy N, Huy TQ, Hue DTM, Chinh HD, Le A-T (2016) Facile Synthesis and Excellent Adsorption Property of GO-Fe<SUB>3</SUB>O<SUB>4</SUB> Magnetic Nanohybrids for Removal of Organic Dyes. J Nanosci Nanotechnol 16(9):9544–9556

    Google Scholar 

  • Hwang ET, Gu MB (2013) Enzyme stabilization by nano/microsized hybrid materials. Eng Life Sci 13(1):49–61

    Article  CAS  Google Scholar 

  • Ibrahim Z, Amin MFM, Yahya A, Aris A, Umor NA, Muda K, Sofian NS (2009) Characterisation of microbial flocs formed from raw textile wastewater in aerobic biofilm reactor (ABR). Water Sci Technol 60(3):683–688

    Article  CAS  Google Scholar 

  • Iram M, Guo C, Guan YP, Ishfaq A, Liu HZ (2010) Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres. J Hazard Mater 181(1–3):1039–1050

    Article  CAS  Google Scholar 

  • Ispas C, Sokolov I, Andreescu S (2009) Enzyme-functionalized mesoporous silica for bioanalytical applications. Anal Bioanal Chem 393(2):543–554

    Article  CAS  Google Scholar 

  • Jethava AD, Gohil MS, Vaghela SS, Gour PM, Susarla VRKS, Ramachandraiah G, Ghosh PK (2001) Electrochemical treatment of dye effluents: decolouration and reduction of COD of reactive azo dyes of two leading textile industries. In: Proceedings of national conference on recent advances in waste management, BHU, Varanasi. pp 377–380

    Google Scholar 

  • Jiang Y, Tang W, Gao J, Zhou L, He Y (2014) Immobilization of horseradish peroxidase in phospholipid-templated titania and its applications in phenolic compounds and dye removal. Enzym Microb Technol 55:1–6

    Article  CAS  Google Scholar 

  • Jiraratananon R, Sungpet A, Luangsowan P (2000) Performance evaluation of nanofiltration membranes for treatment of effluents containing reactive dye and salt. Desalination 130(2):177–183

    Article  CAS  Google Scholar 

  • Jorfi S, Barzegar G, Ahmadi M, Soltani RDC, Takdastan A, Saeedi R, Abtahi M (2016) Enhanced coagulation-photocatalytic treatment of Acid red 73 dye and real textile wastewater using UVA/synthesized MgO nanoparticles. J Environ Manag 177:111–118

    Article  CAS  Google Scholar 

  • Joshi M, Bansal R, Purwar R (2004) Colour removal from textile effluents. Indian J Fibre Text Res 29:239–259

    Google Scholar 

  • Karimi H, Mousavi S, Sadeghian B (2012) Silver nanoparticle loaded on activated carbon as efficient adsorbent for removal of methyl orange. Indian J Sci Technol 5(3):2346–2353

    Google Scholar 

  • Karthikeyan S, Sivakumar P, Palanisamy PN (2008) Novel activated carbons from agricultural wastes and their characterization. EJ Chem 5(2):409–426

    Article  CAS  Google Scholar 

  • Khallaf H, Oladeji IO, Chow L (2008) Optimization of chemical bath deposited CdS thin films using nitrilotriacetic acid as a complexing agent. Thin Solid Films 516(18):5967–5973

    Article  CAS  Google Scholar 

  • Khanna A, Shetty VK (2014) Solar light induced photocatalytic degradation of Reactive Blue 220 (RB-220) dye with highly efficient Ag@TiO2 core–shell nanoparticles: a comparison with UV photocatalysis. Sol Energy 99:67–76

    Article  CAS  Google Scholar 

  • Kim TH, Park C, Lee J, Shin EB, Kim S (2002) Pilot scale treatment of textile wastewater by combined processes (fluidized biofilm process–chemical coagulation–electrochemical oxidation). J Hazard Mater 112:5–103

    Google Scholar 

  • Koch M, Yediler A, Lienert D, Insel G, Kettrup A (2002) Ozonation of hydrolyzed azo dye reactive yellow 84 (CI). Chemosphere 46(1):109–113

    Article  CAS  Google Scholar 

  • Kumar VV, Sivanesan S, Cabana H (2014) Magnetic cross-linked laccase aggregates-bioremediation tool for decolorization of distinct classes of recalcitrant dyes. Sci Total Environ 487:830–839

    Article  CAS  Google Scholar 

  • Kumar PS, Narayan AS, Dutta A (2017) Nanochemicals and effluent treatment in textile industries. In: Textiles and clothing sustainability. Springer, Singapore, pp 57–96

    Google Scholar 

  • Langmuir I (1916) The constitution and fundamental properties of solids and liquids. J Am Chem Soc 38:2221–2295

    Article  CAS  Google Scholar 

  • Ledakowicz S, Solecka M, Zylla R (2001) Biodegradation, decolourisation and detoxification of textile wastewater enhanced by advanced oxidation processes. J Biotechnol 89(2–3):175–184

    Article  CAS  Google Scholar 

  • Lee J, Yoon S, Oh SM, Shin CH, Hyeon T (2000) Development of a new mesoporous carbon using an HMS aluminosilicate template. Adv Mater 12(5):359–362

    Article  CAS  Google Scholar 

  • Lei J, Ju H (2012) Signal amplification using functional nanomaterials for biosensing. Chem Soc Rev 41(6):2122–2134

    Article  CAS  Google Scholar 

  • Lin ST, Thirumavalavan M, Jiang TY, Lee JF (2014) Synthesis of ZnO/Zn nano photocatalyst using modified polysaccharides for photodegradation of dyes. Carbohydr Polym 105:1–9

    Article  CAS  Google Scholar 

  • Liu Z, Zhang X, Nishimoto S, Jin M, Tryk D, Murakami T, Fujishima A (2008) Highly ordered TiO2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol. J Phys Chem C 112:253–259

    Article  CAS  Google Scholar 

  • Liu X, Wang M, Zhang S, Pan B (2013) Application potential of carbon nanotubes in water treatment: a review. J Environ Sci (China) 25:S1263–S1280

    Article  CAS  Google Scholar 

  • Liu Y, Yang W, Liu H (2015) Azobenzene-functionalized cage silsesquioxanes as inorganic–organic hybrid, photoresponsive, nanoscale, building blocks. Chem Eur J 21(12):4731–4738

    Article  CAS  Google Scholar 

  • Liu Y, Yan M, Geng Y, Huang J (2016) Laccase immobilization on poly (p-phenylenediamine)/Fe3O4 nanocomposite for reactive blue 19 dye removal. Appl Sci 6(232):1–13

    Google Scholar 

  • Machado FM, Bergmann CP, Lima EC, Adebayo MA, Fagan SB (2014) Adsorption of a textile dye from aqueous solutions by carbon nanotubes. Mater Res 17:153–160

    Article  CAS  Google Scholar 

  • Mahmoodi NM (2011) Photocatalytic ozonation of dyes using copper ferrite nanoparticle prepared by co-precipitation method. Desalination 279(1):332–337

    Article  CAS  Google Scholar 

  • Mahmoodi NM, Abdi J, Bastani D (2014) Direct dyes removal using modified magnetic ferrite nanoparticle. J Environ Health Sci Eng 12(1):1–10

    Article  CAS  Google Scholar 

  • Manisankar P, Viswanathan S, Rani C (2001) Electrochemical decolourization of disperse-blue-26 dye Eϕϕλuent. Proceedings of national conference on recent advances in waste management BHU, Varanasi. pp 385–388

    Google Scholar 

  • Mattiasson B, Kaul R (1991) Determination of coupling yields and handling of labile proteins in immobilization technology. Bioprocess Technol 14:161–179

    CAS  Google Scholar 

  • McHenry ME, Laughlin DE (2000) Nano-scale materials development for future magnetic applications. Acta Mater 48(1):223–238

    Article  CAS  Google Scholar 

  • McNaught AD, Wilkinson A (1997) Compendium of chemical terminology: IUPAC. Blackwell Science, Oxford

    Google Scholar 

  • Mehmet FS, Hasan ZS (2002) Ozone treatment of textile effluents and dyes: effect of applied ozone dose, pH and dye concentration. J Chem Technol Biotechnol 77:842–850

    Article  CAS  Google Scholar 

  • Meng F, Hong Z, Arndt J, Li M, Zhi M, Yang F, Wu N (2012) Visible light photocatalytic activity of nitrogen-doped La2Ti2O7 nanosheets originating from band gap narrowing. Nano Res 5(3):213–221

    Article  CAS  Google Scholar 

  • Metcalf, Eddy Inc (2003) Wastewater engineering treatment and reuse, 4th edn. McGrawHill, New York

    Google Scholar 

  • Mezohegyi G, Gonçalves F, Órfão JJ, Fabregat A, Fortuny A, Font J, Bengoa C, Stuber F (2010) Tailored activated carbons as catalysts in biodecolourisation of textile azo dyes. Appl Catal B 94(1):179–185

    Article  CAS  Google Scholar 

  • Migneault I, Dartiguenave C, Bertrand MJ, Waldron KC (2004) Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques 37(5):790–806

    Article  CAS  Google Scholar 

  • Moreno JM, Sinisterra JV (1994) Immobilization of lipase from candida cylindracea on inorganic supports. J Mol Catal 93:357–369

    Article  CAS  Google Scholar 

  • MoT (2001) Census of textile power processing industry in India, vol VII. Textile Committee, Ministry of Textiles, Government of India, Mumbai

    Google Scholar 

  • Moustafa S (2008) Environmental impacts of textile industries. Process analysis of textile manufacturing. J Agric Food Chem 52:1331–1337

    Google Scholar 

  • Nam S, Tratnyek PG (2000) Reduction of azo dyes with zero-valent iron. Water Res 34(6):1837–1845

    Article  CAS  Google Scholar 

  • Namboodri CG, Perkins WS, Walsh WK (1994) Decolorizing dyes with chlorine and ozone – part-I. Am Dyest Rep 83(3):17–26

    Google Scholar 

  • Nassar NN, Marei NN, Vitale G, Arar LA (2015) Adsorptive removal of dyes from synthetic and real textile wastewater using magnetic iron oxide nanoparticles: thermodynamic and mechanistic insights. Can J Chem Eng 93(11):1965–1974

    Article  CAS  Google Scholar 

  • Nimni ME, Cheung D, Strates B, Kodama M, Sheikh K (1987) Chemically modified collagen: a natural biomaterial for tissue replacement. J Biomed Mater Res 21:741–771

    Article  CAS  Google Scholar 

  • Niu C, Sichel EK, Hoch R, Moy D, Tennent H (1997) High power electrochemical capacitors based on carbon nanotube electrodes. Appl Phys Lett 70(11):1480–1482

    Article  CAS  Google Scholar 

  • Pala A, Tokat E (2002) Color removal from cotton textile industry wastewater in an activated sludge system with various additives. Water Res 36(11):2920–2925

    Article  CAS  Google Scholar 

  • Pan B, Xing BS (2008) Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ Sci Technol 42:9005–9013

    Article  CAS  Google Scholar 

  • Pan JR, Huang CP, Chen SC, Chung YC (1999) Evaluation of a modified chitosan biopolymer for coagulation of colloidal particles. Colloids Surf A 147:359–364

    Article  CAS  Google Scholar 

  • Pereira L, Pereira R, Pereira MFR, Van der Zee FP, Cervantes FJ, Alves MM (2010) Thermal modification of activated carbon surface chemistry improves its capacity as redox mediator for azo dye reduction. J Hazard Mater 183(1):931–939

    Article  CAS  Google Scholar 

  • Pereira RA, Pereira MFR, Alves MM, Pereira L (2014) Carbon based materials as novel redox mediators for dye wastewater biodegradation. Appl Catal B 144:713–720

    Article  CAS  Google Scholar 

  • Perkowski J, Kos L (2003) Decolouration of model dye house wastewater with advanced oxidation processes. Fibres Text East Eur 11:67–71

    Google Scholar 

  • Porter JJ, Gomes AC (2000) The rejection of anionic dyes and salt from water solutions using a polypropylene microfilter. Desalination 128(1):81–90

    Article  CAS  Google Scholar 

  • Pradhan N, Pal A, Pal T (2002) Silver nanoparticle catalyzed reduction of aromatic nitro compounds. Colloids Surf A Physicochem Eng Asp 196(2):247–257

    Article  CAS  Google Scholar 

  • Qadri S, Ganoe A, Haik Y (2009) Removal and recovery of acridine orange from solutions by use of magnetic nanoparticles. J Hazard Mater 169(1):318–323

    Article  CAS  Google Scholar 

  • Qu S, Huang F, Yu S, Chen G, Kong J (2008) Magnetic removal of dyes from aqueous solution using multi-walled carbon nanotubes filled with Fe2O3 particles. J Hazard Mater 160:643–647

    Article  CAS  Google Scholar 

  • Rahman FBA, Akter M (2016) Removal of dyes form textile wastewater by adsorption using shrimp Shell. Int J Waste Resour 6:244

    Google Scholar 

  • Rajeswari KR (2000) Ozonation treatment of textile dyes wastewater using plasma ozoniser. PhD thesis, University Malaysia, Malaysia

    Google Scholar 

  • Ramasamyaa RK, Rahmana NA, San WC (2001) Effect of temperature on the ozonation of textile waste effluent. Color Technol 117(2):95–97

    Article  Google Scholar 

  • Rao GP, Lu C, Su F (2008) Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep Purif Technol 58:224–231

    Article  CAS  Google Scholar 

  • Rashed MN, El-Amin AA (2007) Photocatalytic degradation of methyl orange in aqueous TiO2 under different solar irradiation sources. Int J Phys Sci 2(3):73–81

    Google Scholar 

  • Robinson T, McMullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255

    Article  CAS  Google Scholar 

  • Saranya M, Santhosh C, Ramachandran R, Kollu P, Saravanan P, Vinoba M, Jeong SK, Grace AN (2014) Hydrothermal growth of CuS nanostructures and its photocatalytic properties. Powder Technol 252:25–32

    Article  CAS  Google Scholar 

  • Saravanan R, Shankar H, Prakash T, Narayanan V, Stephen A (2011) ZnO/CdO composite nanorods for photocatalytic degradation of methylene blue under visible light. Mater Chem Phys 125(1):277–280

    Article  CAS  Google Scholar 

  • Saravanan R, Thirumal E, Gupta VK, Narayanan V, Stephen A (2013) The photocatalytic activity of ZnO prepared by simple thermal decomposition method at various temperatures. J Mol Liq 177:394–401

    Article  CAS  Google Scholar 

  • Saravanan R, Gupta VK, Mosquera E, Gracia F, Narayanan V, Stephen A (2015) Visible light induced degradation of methyl orange using β-Ag 0.333 V2O5 nanorod catalysts by facile thermal decomposition method. J Saudi Chem Soc 19(5):521–527

    Article  Google Scholar 

  • Saxena G, Bharagava RN (2015) Persistent organic pollutants and bacterial communities present during the treatment of tannery wastewater. In: Chandra R (ed) Environmental waste management, 1st edn. CRC Press/Taylor & Francis Group, Boca Raton, pp 217–247. https://doi.org/10.1201/b19243-10

    Chapter  Google Scholar 

  • Saxena G, Bharagava RN (2017) Organic and inorganic pollutants in industrial wastes, their ecotoxicological effects, health hazards and bioremediation approaches. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press/Taylor & Francis Group, Boca Raton, pp 23–56. https://doi.org/10.1201/9781315173351-3

    Chapter  Google Scholar 

  • Saxena G, Chandra R, Bharagava RN (2016) Environmental pollution, toxicity profile and treatment approaches for tannery wastewater and its chemical pollutants. Rev Environ Contam Toxicol 240:31–69. https://doi.org/10.1007/398_2015_5009

    Article  CAS  Google Scholar 

  • Schoevaart R, Wolbers MW, Golubovic M, Ottens M, Kieboom APG, van Rantwijk F, van der Wielen LAM, Sheldon RA (2004) Preparation, optimization and structures of cross-linked enzyme aggregates (CLEAs). Biotechnol Bioeng 87:754–762. https://doi.org/10.1002/bit.20184

    Article  CAS  Google Scholar 

  • Sheldon RA (2007) Enzyme immobilization: the quest for optimum performance. Adv Synth Catal 349(8–9):1289–1307

    Article  CAS  Google Scholar 

  • Sheldon RA (2011) Characteristic features and biotechnological applications of cross-linked enzyme aggregates (CLEAs). Appl Microbiol Biotechnol 92(3):467–477

    Article  CAS  Google Scholar 

  • Sheydaei M, Khataee A (2015) Sonocatalytic decolorization of textile wastewater using synthesized γ-FeOOH nanoparticles. Ultrason Sonochem 27:616–622

    Article  CAS  Google Scholar 

  • Shi Y, Jin F, Wu Y, Yan F, Yu X, Quan Y (1997) Improvement of immobilized cells through permealizing and cross-linking. Chin J Biotechnol 13(1):111–113

    CAS  Google Scholar 

  • Singh BD (2009) Biotechnology expanding horizons. Kalyani, Ludhiana

    Google Scholar 

  • Sinirlioglu ZA, Sinirlioglu D, Akbas F (2013) Preparation and characterization of stable cross-linked enzyme aggregates of novel laccase enzyme from Shewanella putrefaciens and using malachite green decolorization. Bioresour Technol 146:807–811

    Article  CAS  Google Scholar 

  • Sohn Y, Smith Y, Misra M, Subramanian V (2008) Electrochemically assisted photocatalytic degradation of methyl orange using anodized titanium dioxide nanotubes. Appl Catal B Environ 84:372–378

    Article  CAS  Google Scholar 

  • Szpyrkowicz L, Juzzolino C, Kaul SN (2001) A Comparative study on oxidation of disperse dyes by electrochemical process, ozone, hypochlorite and fenton reagent. Water Res 35(9):2129–2136

    Article  CAS  Google Scholar 

  • Talekar S, Waingade S, Gaikwad V, Patil S, Nagavekar N (2012) Preparation and characterization of cross linked enzyme aggregates (CLEAs) of Bacillus amyloliquefaciens alpha amylase. J Biochem Technol 3(4):349–353

    CAS  Google Scholar 

  • Thanha TKN, Greena LAW (2010) Functionalisation of nanoparticles for biomedical applications. Nano Today 5:213–230

    Article  CAS  Google Scholar 

  • Thompson G, Swain J, Kay M, Forster CF (2009) The treatment of pulp and paper mill effluent: a review. Bioresour Technol 77:275–286

    Article  Google Scholar 

  • Tischer W, Wedekind F (1999) Immobilized enzymes: methods and applications. In: Biocatalysis-from discovery to application. Springer, Berlin, pp. 95–126

    Google Scholar 

  • Torres MR, Bouzán CG, Crespi M (2010) Combination of coagulation–flocculation and nanofiltration techniques for dye removal and water reuse in textile effluents. Desalination 252:53–59

    Article  CAS  Google Scholar 

  • Tran DN, Balkus KJ Jr (2011) Perspective of recent progress in immobilization of enzymes. ACS Catal 1(8):956–968

    Article  CAS  Google Scholar 

  • Tristão JC, Magalhães F, Corio P, Sansiviero MTC (2006) Electronic characterization and photocatalytic properties of CdS/TiO2 semiconductor composite. J Photochem Photobiol A Chem 181(2):152–157

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency (1997) Profile of the Textile Industry. Office of Compliance Sector Notebook Project. U.S. Environmental Protection Agency, Washington, D.C., p 40

    Google Scholar 

  • Vaidya BK, Kuwar SS, Golegaonkar SB, Nene SN (2012) Preparation of cross-linked enzyme aggregates of l-aminoacylase via co-aggregation with polyethyleneimine. J Mol Catal B Enzym 74(3):184–191

    Article  CAS  Google Scholar 

  • Van Der Zee FP, Bisschops IA, Lettinga G, Field JA (2003) Activated carbon as an electron acceptor and redox mediator during the anaerobic biotransformation of azo dyes. Environ Sci Technol 37(2):402–408

    Article  CAS  Google Scholar 

  • Vera G, Aleksandra V, Marjana S (2005) Efficiency of the coagulation/flocculation method for the treatment of dye bath effluents. Dyes Pigments 67:93–97

    Article  CAS  Google Scholar 

  • Verma AK, Dash RR, Bhunia P (2012) A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J Environ Manag 93(1):154–168

    Article  CAS  Google Scholar 

  • Vlyssides AG, Papaioannou D, Loizidoy M, Karlis PK, Zorpas AA (2000) Testing an electrochemical method for treatment of textile dye wastewater. Waste Manag 20:569–574

    Article  CAS  Google Scholar 

  • Wang Y (2000) Solar photocatalytic degradation of eight commercial dyes in TiO2 suspension. Water Res 34(3):990–994

    Article  CAS  Google Scholar 

  • Wang H, Huang Y (2011) Prussian-blue-modified iron oxide magnetic nanoparticles as effective peroxidase-like catalysts to degrade methylene blue with H2O2. J Hazard Mater 191(1):163–169

    Article  CAS  Google Scholar 

  • Wang H, Xie C, Zhang W, Cai S, Yang Z, Gui Y (2007) Comparison of dye degradation efficiency using ZnO powders with various size scales. J Hazard Mater 141(3):645–652

    Article  CAS  Google Scholar 

  • Wang Z, Xue M, Huang K, Liu Z (2011) Textile dyeing wastewater treatment. In: Advances in treating textile effluent. InTech, pp 1–27. ISBN: 978-953-307-704-8

    Google Scholar 

  • Wang H, Zhang W, Zhao J, Xu L, Zhou C, Chang L, Wang L (2013) Rapid decolorization of phenolic azo dyes by immobilized laccase with Fe3O4/SiO2 nanoparticles as support. Ind Eng Chem Res 52(12):4401–4407

    Article  CAS  Google Scholar 

  • Wararkar P, Kothari M, Wararkar K (2016) Performance analysis of supply chain management technique at textile industry in India in accordance with Indian textile market. Int J Text Eng Process 2(3):34–39

    Google Scholar 

  • Weng CH, Lin YT, Yeh CL, Sharma YC (2010) Magnetic Fe3O4 nanoparticles for adsorptive removal of acid dye (new coccine) from aqueous solutions. Water Sci Technol 62(4):844–851

    Article  CAS  Google Scholar 

  • Wyckoff RWG (1964) Crystal structures, 2nd edn. Wiley, New York

    Google Scholar 

  • Yamaguchi M, Namiki Y, Okada H, Mori Y, Furukawa H, Wang J, Ohkusu M, Kawamoto S (2011) Structome of Saccharomyces cerevisiae determined by freeze-substitution and serial ultrathin-sectioning electron microscopy. J Electron Microsc 60(5):321–335

    Google Scholar 

  • Yang K, Wu W, Jing Q, Zhu L (2008) Aqueous adsorption of aniline, phenol, and their substitutes by multi-walled carbon nanotubes. Environ Sci Technol 42(21):7931–7936

    Article  CAS  Google Scholar 

  • Zhang J, Zhai S, Li S, Xiao Z, Song Y, An Q, Tian G (2013) Pb(II) removal of Fe3O4@SiO2-NH2 core-shell nanomaterials prepared via a controllable sol-gel process. Chem Eng J 215-216:461–471

    Article  CAS  Google Scholar 

  • Zhou L, Tang W, Jiang Y, Ma L, He Y, Gao J (2016) Magnetic combined cross-linked enzyme aggregates of horseradish peroxidase and glucose oxidase: an efficient biocatalyst for dye decolourization. RSC Adv 6(93):90061–90068

    Article  CAS  Google Scholar 

  • Zhu H, Jiang R, Xiao L, Chang Y, Guan Y, Li X, Zeng G (2009) Photocatalytic decolorization and degradation of Congo Red on innovative crosslinked chitosan/nano-CdS composite catalyst under visible light irradiation. J Hazard Mater 169(1):933–940

    Article  CAS  Google Scholar 

  • Zucca P, Sanjust E (2014) Inorganic materials as supports for covalent enzyme immobilization: methods and mechanisms. Molecules 19(9):14139–14194

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yogalakshmi, K.N., Das, A., Rani, G., Jaswal, V., Randhawa, J.S. (2020). Nano-bioremediation: A New Age Technology for the Treatment of Dyes in Textile Effluents. In: Saxena, G., Bharagava, R. (eds) Bioremediation of Industrial Waste for Environmental Safety. Springer, Singapore. https://doi.org/10.1007/978-981-13-1891-7_15

Download citation

Publish with us

Policies and ethics