Skip to main content

Nano-bioremediation: An Innovative Remediation Technology for Treatment and Management of Contaminated Sites

  • Chapter
  • First Online:
Bioremediation of Industrial Waste for Environmental Safety

Abstract

As every method has its own benefits and setbacks, the integration of remediation methods could be thought of as a solution to tackle remediation problems. Integrated approaches could overcome the disadvantages of individual technologies and provide a better alternative to conventional remediation methods. Nano-bioremediation is one of such kind of methods which received a lot of attention in the past few years. It aims at reducing the contaminant concentrations to risk-based levels, alleviating the additional environmental impacts simultaneously. This method brings the benefits of both nanotechnology and bioremediation together to achieve a remediation that is more efficient, less time taking, and environment friendly than the individual processes. The present chapter provides a brief account of nanotechnology and variety of nanostructured materials reported for removing organic and inorganic contaminants from environmental matrices followed by detailed description of nano-bioremediation technique, its process, and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adikesavan S, Nilanjana D (2016) Degradation of cefdinir by Candida Sp. SMN04 and MgO nanoparticles—An integrated (nano-bio) approach. Environ Prog Sustain Energy 35(3):706–714

    Article  CAS  Google Scholar 

  • Ahn JY, Kim C, Kim HS, Hwang KY, Hwang I (2016) Effects of oxidants on in situ treatment of a DNAPL source by nanoscale zero-valent iron: a field study. Water Res 107:57–65

    Article  CAS  Google Scholar 

  • Akanyeti İ, Kraft A, Ferrari MC (2017) Hybrid polystyrene nanoparticle-ultrafiltration system for hormone removal from water. J Water Process Eng 17:102–109

    Article  Google Scholar 

  • An Y, Li T, Jin Z, Dong M, Xia H, Wang X (2010) Effect of bimetallic and polymercoated Fe nanoparticles on biological denitrification. Bioresour Technol 101(2010):9825–9828

    Article  CAS  Google Scholar 

  • Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol 32(11):180

    Article  Google Scholar 

  • Barrocas B, Entradas TJ, Nunes CD, Monteiro OC (2017) Titanate nanofibers sensitized with ZnS and Ag2S nanoparticles as novel photocatalysts for phenol removal. Appl Catal B Environ 218:709–720

    Article  CAS  Google Scholar 

  • Benelmekki M (2015) An introduction to nanoparticles and nanotechnology. In: Designing hybrid nanoparticles. Morgan & Claypool Publishers, San Rafael

    Chapter  Google Scholar 

  • Bharagava RN, Saxena G, Chowdhary P (2017a) Constructed wetlands: an emerging phytotechnology for degradation and detoxification of industrial wastewaters. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press, Taylor & Francis Group, Boca Raton, pp 397–426. https://doi.org/10.1201/9781315173351-15

    Chapter  Google Scholar 

  • Bharagava RN, Chowdhary P, Saxena G (2017b) Bioremediation: an ecosustainable green technology: its applications and limitations. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press, Taylor & Francis Group, Boca Raton, pp 1–22. https://doi.org/10.1201/9781315173351-2

    Chapter  Google Scholar 

  • Bhunia SK, Jana NR (2014) Reduced graphene oxide-silver nanoparticle composite as visible light photocatalyst for degradation of colorless endocrine disruptors. ACS Appl Mater Interfaces 6(22):20085–20092

    Article  CAS  Google Scholar 

  • Boente C, Sierra C, Martínez-Blanco D, Menéndez-Aguado JM, Gallego JR (2018) Nanoscale zero-valent iron-assisted soil washing for the removal of potentially toxic elements. J Hazard Mater 350:55–65

    Article  CAS  Google Scholar 

  • Bokare V, Murugesan K, Kim YM, Jeon JR, Kim EJ, Chang YS (2010) Degradation of triclosan by an integrated nano-bio redox process. Bioresour Technol 101(16):6354–6360

    Article  CAS  Google Scholar 

  • Bokare V, Murugesan K, Kim JH, Kim EJ, Chang YS (2012) Integrated hybrid treatment for the remediation of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin. Sci Total Environ 435:563–566

    Article  Google Scholar 

  • Chandra R, Saxena G, Kumar V (2015) Phytoremediation of environmental pollutants: an eco-sustainable green technology to environmental management. In: Chandra R (ed) Advances in biodegradation and bioremediation of industrial waste, 1st edn. CRC Press, Taylor & Francis Group, Boca Raton, pp 1–30. https://doi.org/10.1201/b18218-2

    Chapter  Google Scholar 

  • Chidambaram D, Hennebel T, Taghavi S, Mast J, Boon N, Verstraete W, van der Lelie D, Fitts JP (2010) Concomitant microbial generation of palladium nanoparticles and hydrogen to immobilize chromate. Environ Sci Technol 44(19):7635–7640

    Article  CAS  Google Scholar 

  • Contreras AR, Casals E, Puntes V, Komilis D, Sánchez A, Font X (2015) Use of cerium oxide (CeO2) nanoparticles for the adsorption of dissolved cadmium (II), lead (II) and chromium (VI) at two different pHs in single and multi-component systems. Global NEST J 17(3):536–543

    Article  CAS  Google Scholar 

  • Czech B, Rubinowska K (2013) TiO 2-assisted photocatalytic degradation of diclofenac, metoprolol, estrone and chloramphenicol as endocrine disruptors in water. Adsorption 19(2–4):619–630

    Article  CAS  Google Scholar 

  • Diao MH, Yao MS (2009) Use of zero-valent iron nanoparticles in inactivating microbes. Water Res 43:5243–5251

    Article  CAS  Google Scholar 

  • Dong H, Jiang Z, Deng J, Zhang C, Cheng Y, Hou K, Zhang L, Tang L, Zeng G (2018) Physicochemical transformation of Fe/Ni bimetallic nanoparticles during aging in simulated groundwater and the consequent effect on contaminant removal. Water Res 129:51–57

    Article  CAS  Google Scholar 

  • Ekka B, Sahu MK, Patel RK, Dash P (2016) Titania coated silica nanocomposite prepared via encapsulation method for the degradation of Safranin-O dye from aqueous solution: optimization using statistical design. Water Resour Ind. https://doi.org/10.1016/j.wri.2016.08.001

  • Elfeky SA, Mahmoud SE, Youssef AF (2017) Applications of CTAB modified magnetic nanoparticles for removal of chromium (VI) from contaminated water. J Adv Res 8(4):435–443

    Article  CAS  Google Scholar 

  • Gautam S, Kaithwas G, Bharagava RN, Saxena G (2017) Pollutants in tannery wastewater, pharmacological effects and bioremediation approaches for human health protection and environmental safety. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press, Taylor & Francis Group, Boca Raton, pp 369–396. https://doi.org/10.1201/9781315173351-14

    Chapter  Google Scholar 

  • Goutam SP, Saxena G, Singh V, Yadav AK, Bharagava RN (2018) Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater. Chem Eng J 336:386–396. https://doi.org/10.1016/j.cej.2017.12.029

    Article  CAS  Google Scholar 

  • Guo P, Tang L, Tang J, Zeng G, Huang B, Dong H, Zhang Y, Zhou Y, Deng Y, Ma L, Tan S (2016) Catalytic reduction–adsorption for removal of p-nitrophenol and its conversion p-aminophenol from water by gold nanoparticles supported on oxidized mesoporous carbon. J Colloid Interface Sci 469:78–85

    Article  CAS  Google Scholar 

  • Hadavifar M, Bahramifar N, Younesi H, Li Q (2014) Adsorption of mercury ions from synthetic and real wastewater aqueous solution by functionalized multi-walled carbon nanotube with both amino and thiolated groups. Chem Eng J 237:217–228

    Article  CAS  Google Scholar 

  • Han B, Zhang M, Zhao D (2017) In-situ degradation of soil-sorbed 17β-estradiol using carboxymethyl cellulose stabilized manganese oxide nanoparticles: column studies. Environ Pollut 223:238–246

    Article  CAS  Google Scholar 

  • He N, Li P, Zhou Y, Fan S, Ren W (2009) Degradation of pentachlorobiphenyl by a sequential treatment using Pd coated iron and an aerobic bacterium (H1). Chemosphere 76(11):1491–1497

    Article  CAS  Google Scholar 

  • Hosseini SM, Amini SH, Khodabakhshi AR, Bagheripour E, Van der Bruggen B (2018) Activated carbon nanoparticles entrapped mixed matrix polyethersulfone based nanofiltration membrane for sulfate and copper removal from water. J Taiwan Inst Chem Eng 82:169–178

    Article  CAS  Google Scholar 

  • Huang Y, Fulton AN, Keller AA (2016) Simultaneous removal of PAHs and metal contaminants from water using magnetic nanoparticle adsorbents. Sci Total Environ 571:1029–1036

    Article  CAS  Google Scholar 

  • Hussain I, Li M, Zhang Y, Li Y, Huang S, Du X, Liu G, Hayat W, Anwar N (2017) Insights into the mechanism of persulfate activation with nZVI/BC nanocomposite for the degradation of nonylphenol. Chem Eng J 311:163–172

    Article  CAS  Google Scholar 

  • Karn B, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Perspect 117(12):1813

    Article  Google Scholar 

  • Kim YM, Murugesan K, Chang YY, Kim EJ, Chang YS (2012) Degradation of polybrominated diphenyl ethers by a sequential treatment with nanoscale zero valent iron and aerobic biodegradation. J Chem Technol Biotechnol 87(2):216–224

    Article  CAS  Google Scholar 

  • Koenig JC, Boparai HK, Lee MJ, O’Carroll DM, Barnes RJ, Manefield MJ (2016) Particles and enzymes: combining nanoscale zero valent iron and organochlorine respiring bacteria for the detoxification of chloroethane mixtures. J Hazard Mater 308:106–112

    Article  CAS  Google Scholar 

  • Lacina P, Dvorak V, Vodickova E, Barson P, Kalivoda J, Goold S (2015) The application of nano-sized zero-valent iron for in situ remediation of chlorinated ethylenes in groundwater: a field case study. Water Environ Res 87(4):326–333

    Article  CAS  Google Scholar 

  • Le TT, Nguyen KH, Jeon JR, Francis AJ, Chang YS (2015) Nano/bio treatment of polychlorinated biphenyls with evaluation of comparative toxicity. J Hazard Mater 287:335–341

    Article  CAS  Google Scholar 

  • Li Z, Greden K, Alvarez PJJ, Gregory KB, Lowry GV (2010) Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron to E. coli. Environ Sci Technol 44:3462–3467

    Article  CAS  Google Scholar 

  • Li Y, Du X, Wu C, Liu X, Wang X, Xu P (2013) An efficient magnetically modified microbial cell biocomposite for carbazole biodegradation. Nanoscale Res Lett 8(1):522

    Article  CAS  Google Scholar 

  • Liu Y, Li S, Chen Z, Megharaj M, Naidu R (2014) Influence of zero-valent iron nanoparticles on nitrate removal by Paracoccus sp. Chemosphere 108:426–432

    Article  CAS  Google Scholar 

  • Liu Y, Majetich SA, Tilton RD, Sholl DS, Lowry GV (2005) TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ Sci Technol 39(5):1338–1345

    Article  CAS  Google Scholar 

  • Mosa KA, Saadoun I, Kumar K, Helmy M, Dhankher OP (2016) Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front Plant Sci 7:303

    Article  Google Scholar 

  • Mueller NC, Nowack B (2010) Nanoparticles for remediation: solving big problems with little particles. Elements 6(6):395–400

    Article  CAS  Google Scholar 

  • National Nanotechnology Initiative. https://www.nano.gov/nanotech-101/what/definition

  • Němeček J, Pokorný P, Lhotský O, Knytl V, Najmanová P, Steinová J, Černík M, Filipová A, Filip J, Cajthaml T (2016) Combined nano-biotechnology for in-situ remediation of mixed contamination of groundwater by hexavalent chromium and chlorinated solvents. Sci Total Environ 563:822–834

    Article  Google Scholar 

  • Nurmi JT, Tratnyek PG, Sarathy V, Baer DR, Amonette JE, Pecher WC, Linehan JC, Matson DW, Penn RL, Driessen MD (2005) Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ Sci Technol 39(5):1221–1230

    Article  CAS  Google Scholar 

  • Oh BT, Just CL, Alvarez PJ (2001) Hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine mineralization by zerovalent iron and mixed anaerobic cultures. Environ Sci Technol 35(21):4341–4346

    Article  CAS  Google Scholar 

  • Outlook on the Global Agenda 2015, World Economic Forum. http://reports.weforum.org/outlook-global-agenda-2015/top-10-trends-of-2015/6-rising-pollution-in-the-developing-world/

  • Pang Y, Zeng GM, Tang L, Zhang Y, Liu YY, Lei XX, Wu MS, Li Z, Liu C (2011) Cr (VI) reduction by Pseudomonas aeruginosa immobilized in a polyvinyl alcohol/sodium alginate matrix containing multi-walled carbon nanotubes. Bioresour Technol 102(22):10733–10736

    Article  CAS  Google Scholar 

  • Patil SS, Shedbalkar UU, Truskewycz A, Chopade BA, Ball AS (2016) Nanoparticles for environmental clean-up: a review of potential risks and emerging solutions. Environ Technol Innov 5:10–21

    Article  Google Scholar 

  • Perelo LW (2010) In situ and bioremediation of organic pollutants in aquatic sediments. J Hazard Mater 177(1–3):81–89

    Article  CAS  Google Scholar 

  • Phenrat T, Long TC, Lowry GV, Veronesi B (2009) Partial oxidation (aging) and surface modification decrease the toxicity of nanosized zerovalent iron. Environ Sci Technol 43:195–200

    Article  CAS  Google Scholar 

  • Prabhakar R, Samadder SR (2018) Low cost and easy synthesis of aluminium oxide nanoparticles for arsenite removal from groundwater: a complete batch study. J Mol Liq 250:192–201

    Article  CAS  Google Scholar 

  • Qi FF, Cao Y, Wang M, Rong F, Xu Q (2014) Nylon 6 electrospun nanofibers mat as effective sorbent for the removal of estrogens: kinetic and thermodynamic studies. Nanoscale Res Lett 9(1):353

    Article  Google Scholar 

  • Rajendran K, Sen S (2018) Adsorptive removal of carbamazepine using biosynthesized hematite nanoparticles. Environ Nanotechnol Monit Manag 9:122–127

    Google Scholar 

  • Rajesha JB, Ramasami A, Nagaraju G, Balakrishna G (2017) Photochemical elimination of Endocrine Disrupting Chemical (EDC) by ZnO nanoparticles, synthesized by gel combustion. Water Environ Res 89(5):396–405

    Article  CAS  Google Scholar 

  • Ramamurthy AS, Eglal MM (2014) Degradation of TCE by TEOS coated nZVI in the presence of Cu (II) for groundwater remediation. J Nanomater 2014:226

    Article  Google Scholar 

  • Rashid M, Price NT, Pinilla MÁG, O'Shea KE (2017) Effective removal of phosphate from aqueous solution using humic acid coated magnetite nanoparticles. Water Res 123:353–360

    Article  CAS  Google Scholar 

  • Ravikumar KVG, Kumar D, Kumar G, Mrudula P, Natarajan C, Mukherjee A (2016) Enhanced Cr (VI) removal by nanozerovalent iron-immobilized alginate beads in the presence of a biofilm in a continuous-flow reactor. Ind Eng Chem Res 55(20):5973–5982

    Article  CAS  Google Scholar 

  • Reddy KJ, McDonald KJ, King H (2013) A novel arsenic removal process for water using cupric oxide nanoparticles. J Colloid Interface Sci 397:96–102

    Article  CAS  Google Scholar 

  • Sakulchaicharoen N, O'Carroll DM, Herrera JE (2010) Enhanced stability and dechlorination activity of pre-synthesis stabilized nanoscale FePd particles. J Contam Hydrol 118(3–4):117–127

    Article  CAS  Google Scholar 

  • Sarkar B, Mandal S, Tsang YF, Kumar P, Kim KH, Ok YS (2018) Designer carbon nanotubes for contaminant removal in water and wastewater: a critical review. Sci Total Environ 612:561–581

    Article  CAS  Google Scholar 

  • Saxena G, Bharagava RN (2015) Persistent organic pollutants and bacterial communities present during the treatment of tannery wastewater. In: Chandra R (ed) Environmental waste management, 1st edn. CRC Press, Taylor & Francis Group, Boca Raton, pp 217–247. https://doi.org/10.1201/b19243-10

    Chapter  Google Scholar 

  • Saxena G, Bharagava RN (2017) Organic and inorganic pollutants in industrial wastes, their ecotoxicological effects, health hazards and bioremediation approaches. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches, 1st edn. CRC Press, Taylor & Francis Group, Boca Raton, pp 23–56. https://doi.org/10.1201/9781315173351-3

    Chapter  Google Scholar 

  • Saxena G, Chandra R, Bharagava RN (2016) Environmental pollution, toxicity profile and treatment approaches for tannery wastewater and its chemical pollutants. Rev Environ Contam Toxicol 240:31–69. https://doi.org/10.1007/398_2015_5009

    Article  CAS  Google Scholar 

  • Saxena G, Purchase D, Mulla SI, Saratale GD, Bharagava RN (2019) Phytoremediation of heavy metal-contaminated sites: Eco-environmental concerns, field studies, sustainability issues, and future prospects. Rev Environ Contam Toxicol. https://doi.org/10.1007/398_2019_24

    Google Scholar 

  • Shan G, Xing J, Zhang H, Liu H (2005) Biodesulfurization of dibenzothiophene by microbial cells coated with magnetite nanoparticles. Appl Environ Microbiol 71(8):4497–4502

    Article  CAS  Google Scholar 

  • Shin KH, Cha DK (2008) Microbial reduction of nitrate in the presence of nanoscale zero-valent iron. Chemosphere 72(2):257–262

    Article  CAS  Google Scholar 

  • Singh R, Misra V (2014) Application of zero-valent iron nanoparticles for environmental clean up. In: Advanced materials for agriculture, food, and environmental safety, pp 385–420

    Google Scholar 

  • Singh R, Misra V (2016) Stabilization of zero-valent iron nanoparticles: role of polymers and surfactants. Handbook of nanoparticles. Springer International Publishing, Cham, pp 985–1007

    Google Scholar 

  • Singh J, Comfort SD, Shea PJ (1998) Remediating RDX-contaminated water and soil using zero-valent iron. J Environ Qual 27(5):1240–1245

    Article  CAS  Google Scholar 

  • Singh R, Manickam N, Mudiam MKR, Murthy RC, Misra V (2013) An integrated (nano-bio) technique for degradation of γ-HCH contaminated soil. J Hazard Mater 258:35–41

    Article  Google Scholar 

  • Sun YP, Li XQ, Cao J, Zhang WX, Wang HP (2006) Characterization of zero-valent iron nanoparticles. Adv Colloid Interf Sci 120(1–3):47–56

    Article  CAS  Google Scholar 

  • Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nano Today 1(2):44–48

    Article  Google Scholar 

  • Vellaichamy B, Periakaruppan P (2016) Ag nanoshell catalyzed dedying of industrial effluents. RSC Adv 6(38):31653–31660

    Article  CAS  Google Scholar 

  • Wang JS, Chiu K (2009) Destruction of pentachlorobiphenyl in soil by supercritical CO2 extraction coupled with polymer-stabilized palladium nanoparticles. Chemosphere 75(5):629–633

    Article  CAS  Google Scholar 

  • Wang X, Gai Z, Yu B, Feng J, Xu C, Yuan Y, Lin Z, Xu P (2007) Degradation of carbazole by microbial cells immobilized in magnetic gellan gum gel beads. Appl Environ Microbiol 73(20):6421–6428

    Article  CAS  Google Scholar 

  • Weathers LJ, Parkin GF, Alvarez PJ (1997) Utilization of cathodic hydrogen as electron donor for chloroform cometabolism by a mixed, methanogenic culture. Environ Sci Technol 31(3):880–885

    Article  CAS  Google Scholar 

  • Windt WD, Aelterman P, Verstraete W (2005) Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls. Environ Microbiol 7(3):314–325

    Article  Google Scholar 

  • Wu Z, Yang S, Wu W (2016) Shape control of inorganic nanoparticles from solution. Nanoscale 8(3):1237–1259

    Article  CAS  Google Scholar 

  • Xiu ZM, Gregory KB, Lowry GV, Alvarez PJ (2010a) Effect of bare and coated nanoscale zerovalent iron on tceA and vcrA gene expression in Dehalococcoides spp. Environ Sci Technol 44(19):7647–7651

    Article  CAS  Google Scholar 

  • Xiu ZM, Jin ZH, Li TL, Mahendra S, Lowry GV, Alvarez PJ (2010b) Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating trichloroethylene. Bioresour Technol 101(4):1141–1146

    Article  CAS  Google Scholar 

  • Yan FF, Wu C, Cheng YY, He YR, Li WW, Yu HQ (2013) Carbon nanotubes promote Cr (VI) reduction by alginate-immobilized Shewanella oneidensis MR-1. Biochem Eng J 77:183–189

    Article  CAS  Google Scholar 

  • Zelmanov G, Semiat R (2008) Iron (3) oxide-based nanoparticles as catalysts in advanced organic aqueous oxidation. Water Res 42(1–2):492–498

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, R., Behera, M., Kumar, S. (2020). Nano-bioremediation: An Innovative Remediation Technology for Treatment and Management of Contaminated Sites. In: Bharagava, R., Saxena, G. (eds) Bioremediation of Industrial Waste for Environmental Safety. Springer, Singapore. https://doi.org/10.1007/978-981-13-3426-9_7

Download citation

Publish with us

Policies and ethics