Skip to main content

Applications of Nanotechnology in Preservation and Development of the Plants: A Look Back

  • Chapter
  • First Online:
Phytonanotechnology

Abstract

In this era of global warming, agrarian strategies across the world are plagued with a slew of issues. Improved nano-engineering is a useful technique for increasing agricultural output and ensuring long-term sustainability in the pursuit of rural livelihoods. Nanotechnology aids in the improvement of agricultural output by boosting input efficiency and reducing relevant losses. Fertilisers and insecticides have a smaller specific surface area than nanomaterials. Nanoparticles also enable regulated, forum nutrition delivery with increased crop protection as distinctive drivers of industrial chemicals. Whilst nanotechnology’s rapid advancement in biomedical sciences has transformed therapeutic and diagnostic techniques in recent years, understanding nanoparticle–plant interactions, such as absorption, mobility, and accumulation, is still in its infancy. Because of their direct and intentional use in the specific administration and management of efforts, nanotools, such as nanobiosensors, enable the growth of high-tech farming (fertilisers, pesticides, herbicides). Nonosensors that combine biology and nanotechnology have substantially enhanced their ability to perceive and recognise environmental circumstances or impairments, with the ultimate goal of improving plant defence and/or enhancing photosynthetic activity, as well as farming methods. Humans also feel that multidisciplinary collaboration approaches will be crucial in narrowing the research gaps in plant nanotechnology and increasing the practice of NMs in farming and plant science research a broad sense.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Aziz HMM, Hasaneen MNA, Omer AM (2016) Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Span J Agric Res 14:1–9

    Article  Google Scholar 

  • Ahmed HM, Roy A, Wahab M, Ahmed M, Othman-Qadir G, Elesawy BH, Khandaker MU, Islam MN, Emran TB (2021) Applications of nanomaterials in agrifood and pharmaceutical industry. J Nanomat 2021:1–10. https://doi.org/10.1155/2021/1472096

  • Alawadhi H, Ramamoorthy K, Mosa KA, Elnaggar A, Ibrahim E, El-Naggar M et al (2018) Copper nanoparticles induced genotoxicty, oxidative stress, and changes in superoxide dismutase (SOD) gene expression in cucumber (Cucumis sativus) plants. Front Plant Sci 9:872

    Google Scholar 

  • Almutairi ZM, Alharbi A (2015) Effect of silver nanoparticles on seed germination of crop plants. Int J Biol Biomol Agric Food Biotechnol Eng 9:572–576

    Google Scholar 

  • Al-Salim N, Barraclough E, Burgess E, Clothier B, Deurer M, Green S et al (2011) Quantum dot transport in soil, plants, and insects. Sci Total Environ 409:3237–3248

    Article  CAS  Google Scholar 

  • Avellan A, Schwab F, Masion A, Chaurand P, Borschneck D, Vidal V et al (2017) Nanoparticle uptake in plants: gold nanomaterial localized in roots of Arabidopsis thaliana by X-ray computed nanotomography and hyperspectral imaging. Environ Sci Technol 51:8682–8691

    Article  CAS  Google Scholar 

  • Bagal-Kestwal D, Kestwal RM, Chiang BH (2015) Invertase-nanogold clusters decorated plant membranes for fluorescence-based sucrose sensor. J Nanobiotechnol 13:30

    Article  CAS  Google Scholar 

  • Chaudhry N, Dwivedi S, Chaudhry V, Singh A, Saquib Q, Azam A et al (2018) Bio-inspired nanomaterials in agriculture and food: current status, foreseen applications and challenges. Microb Pathog 123:196–200

    Article  CAS  Google Scholar 

  • Chichiriccò G, Poma A (2015) Penetration and toxicity of nanomaterials in higher plants. Nanomaterials 5:851–873

    Article  CAS  Google Scholar 

  • Cunningham FJ, Goh NS, Demirer GS, Matos JL, Landry MP (2018) Nanoparticle-mediated delivery towards advancing plant genetic engineering. Trends Biotechnol 36:882–897

    Article  CAS  Google Scholar 

  • Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new prospective in precision agriculture. Biotechnol Rep 15(15):11–23

    Google Scholar 

  • Eichert T, Kurtz A, Steiner U, Goldbach HE (2008) Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol Plant 134:151–160

    Google Scholar 

  • Etxeberria E, Gonzalez P, Bhattacharya P, Sharma P, Ke PC (2019) Determining the size exclusion for nanoparticles in citrus leaves. Hort Sci 51:732–737

    Google Scholar 

  • Faisal M, Saquib Q, Alatar AA, Al-Khedhairy AA, Hegazy AK, Musarrat J (2013) Phytotoxic hazards of NiO – nanoparticles in tomato: a study on mechanism of cell death. J Hazard Mater 250–251C:318–332. https://doi.org/10.1016/j.jhazmat.2013.01.063

  • Fathi A, Zahedi M, Torabian S, Khoshgoftar A (2017) Response of wheat genotypes to foliar spray of ZnO and Fe2O3 nanoparticles under salt stress. J Plant Nutr 40:1376–1385

    Google Scholar 

  • Gao F, Hong F, Liu C, Zheng L, Su M, Wu X et al (2006) Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach: inducing complex of Rubisco-Rubisco activase. Biol Trace Elem Res 111:239–253

    Article  CAS  Google Scholar 

  • García-Gómez C, Obrador A, González D, Babín M, Fernández MD (2018) Comparative study of the phytotoxicity of ZnO nanoparticles and Zn accumulation in nine crops grown in a calcareous soil and an acidic soil. Sci Total Environ 644:770–780

    Google Scholar 

  • Geisler-Lee J, Wang Q, Yao Y, Zhang W, Geisler M, Li K et al (2013) Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology 7:323–337

    Article  CAS  Google Scholar 

  • Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA et al (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13:400–408

    Article  CAS  Google Scholar 

  • Glass Z, Lee M, Li Y, Xu Q (2018) Engineering the delivery system for CRISPR-based genome editing. Trends Biotechnol 36:173–185

    Article  CAS  Google Scholar 

  • Goncalves MFM, Gomes SIL, Scott-Fordsmand JJ, Amorim M JB (2017) Shorter lifetime of a soil invertebrate species when exposed to copper oxide nanoparticles in a full lifespan exposure test. Sci Rep 7:1355

    Google Scholar 

  • González-Melendi P, Fernández-Pacheco R, Coronado MJ, Corredor E, Testillano PS, Risueño MC et al (2008) Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Ann Bot 101:187–195

    Google Scholar 

  • Gopinath K, Gowri S, Karthika V, Arumugam A (2014) Green synthesis of gold nanoparticles from fruit extract of Terminalia arjuna, for the enhanced seed germination activity of Gloriosa superba. J Nanostruct Chem 4:115

    Article  Google Scholar 

  • Islam P, Water JJ, Bohr A, Rantanen J (2017) Chitosan-based nano-embedded microparticles: impact of Nanogel composition on physicochemical properties. Pharmaceutics 9:1–12

    Google Scholar 

  • Ivanov I, Khodakovskaya M, Dervishi E, Lahiani MH, Chen J (2016) Comparative study of plant responses to carbon-based nanomaterials with different morphologies. Nanotechnology 27:265102

    Article  CAS  Google Scholar 

  • Jahan S, Alias YB, Bakar AFBA, Yusoff IB (2018) Toxicity evaluation of ZnO and TiO2 nanomaterials in hydroponic red bean (Vigna angularis) plant: physiology, biochemistry and kinetic transport. J Environ Sci 72:140–152

    Article  CAS  Google Scholar 

  • Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9:1050–1074

    Article  CAS  Google Scholar 

  • Khan MN, Mobin M, Abbas ZK, AlMutairi KA, Siddiqui ZH (2017) Role of nanomaterials in plants under challenging environments. Plant Physiol Biochem 110:194–209

    Article  CAS  Google Scholar 

  • Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu J et al (2010) Uptake and distribution of ultrasmall anatase TiO2 alizarin red s nanoconjugates in Arabidopsis thaliana. Nano Lett 10:2296–2302

    Article  CAS  Google Scholar 

  • Lattanzio VMT, Nivarlet N (2017) Multiplex dipstick immunoassay for semiquantitative determination of fusarium mycotoxins in oat. Methods Mol Biol 1536:137–142

    Google Scholar 

  • Lau HY, Wu H, Wee EJH, Trau M, Wang Y, Botella JR (2017) Specific and sensitive isothermal electrochemical biosensor for plant pathogen DNA detection with colloidal gold nanoparticles as probes. Sci Rep 7:38896

    Article  CAS  Google Scholar 

  • Laware SL, Raskar S (2014) Influence of zinc oxide nanoparticles on growth, flowering and seed productivity in onion. Int J Curr Microbiol App Sci 3:874–881

    CAS  Google Scholar 

  • Lee K, Conboy M, Park HM, Jiang F, Kim HJ, Dewitt MA et al (2017) Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat Biomed Eng 1:889–901

    Article  CAS  Google Scholar 

  • Liu J, Williams PC, Goodson BM, Geisler-Lee J, Fakharifar M, Gemeinhardt ME (2019) TiO2 nanoparticles in irrigation water mitigate impacts of aged Ag nanoparticles on soil microorganisms, Arabidopsis thalianaplants, and Eisenia fetida earthworms. Environ Res 172:202–215

    Article  CAS  Google Scholar 

  • Lv J, Christie P, Zhang S (2019) Uptake, translocation, and transformation of metal-based nanoparticles in plants: recent advances and methodological challenges. Environ Sci Nano 6:41–59

    Article  CAS  Google Scholar 

  • Ma L, Liu C, Qu C, Yin S, Liu J, Gao F, Hong F (2008) Rubisco activase mRNA expression in spinach: modulation by nanoanatase treatment. Biol Trace Elem Res 122(2):168–178

    Google Scholar 

  • Majumdar S, Almeida IC, Arigi EA, Choi H, VerBerkmoes NC, Trujillo-Reyes J et al (2015) Environmental effects of nanoceria on seed production of common bean (Phaseolus vulgaris): a proteomic analysis. Environ Sci Technol 49:13283–13293

    Google Scholar 

  • Malerba M, Cerana R (2018) Recent advances of chitosan applications in plants. Polymers 10:1–10

    Article  CAS  Google Scholar 

  • Marchesano V, Hernandez Y, Salvenmoser W, Ambrosone A, Tino A, Hobmayer B et al (2013) Imaging inward and outward trafficking of gold nanoparticles in whole animals. ACS Nano 7:2431–2442

    Article  CAS  Google Scholar 

  • Milewska-Hendel A, Zubko M, Karcz J, Stróz D, Kurczynska E (2017) Fate of neutral-charged gold nanoparticles in the roots of the Hordeum vulgare L. cultivar Karat Sci Rep 7:3014

    Google Scholar 

  • Modlitbová P, Porízka P, Novotný K, Drbohlavová J, Chamradová I, Farka Z et al (2018) Short-term assessment of cadmium toxicity and uptake from different types of Cd-based quantum dots in the model plant Allium cepa L. Ecotoxicol Environ Saf 153:23–31

    Article  CAS  Google Scholar 

  • Moon JW, Phelps TJ, Fitzgerald CL, Lind RF, Elkins JG, Jang GG et al (2016) Manufacturing demonstration of microbially mediated zinc sulfide nanoparticles in pilot-plant scale reactors. Appl Microbiol Biotechnol 100:7921–7931

    Article  CAS  Google Scholar 

  • Neamtu I, Rusu AG, Diaconu A, Nita LE, Chiriac AP (2017) Basic concepts and recent advances in nanogels as carriers for medical applications. Drug Deliv 24:539–557

    Article  CAS  Google Scholar 

  • Pagano L, Servin AD, De La Torre-Roche R, Mukherjee A, Majumdar S, Hawthorne J et al (2016) Molecular response of crop plants to engineered nanomaterials. Environ Sci Technol 50:7198–7207

    Article  CAS  Google Scholar 

  • Pakrashi S, Jain N, Dalai S, Jayakumar J, Chandrasekaran PT, Raichur AM et al (2014) In vivo genotoxicity assessment of titanium dioxide nanoparticles by Allium cepa root tip assay at high exposure concentrations. PLoS ONE 9:e98828

    Article  CAS  Google Scholar 

  • Palocci C, Valletta A, Chronopoulou L, Donati L, Bramosanti M, Brasili E et al (2017) Endocytic pathways involved in PLGA nanoparticle uptake by grapevine cells and role of cell wall and membrane in size selection. Plant Cell Rep 36:1917–1928

    Article  CAS  Google Scholar 

  • Pandit C, Roy A, Ghotekar S, Khusro A, Islam MN, Emran TB, Bradley DA (2022) Biological agents for synthesis of nanoparticles and their applications. J King Saud Univ Sci 101869

    Google Scholar 

  • Pérez-de-Luque A (2017) Interaction of nanomaterials with plants: what do we need for real applications in agriculture? Front Environ Sci 5:12

    Article  Google Scholar 

  • Perrault SD, Walkey C, Jennings T, Fischer HC, Chan WCW (2009) Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett 9:1909–1915

    Article  CAS  Google Scholar 

  • Pokhrel LR, Dubey B (2013) Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci Total Environ 452–453:321–332

    Article  CAS  Google Scholar 

  • Rad F, Mohsenifar A, Tabatabaei M, Safarnejad MR, Shahryari F, Safarpour H et al (2012) Detection of Candidatus phytoplasma aurantifolia with a quantum dots fret-based biosensor. J Plant Pathol 94:525–534

    Google Scholar 

  • Rai V, Acharya S, Dey N (2012) Implications of nanobiosensors in agriculture. J. Biomater. Nanobiotechnol. 03:315–324

    Article  CAS  Google Scholar 

  • Raliya R, Franke C, Chavalmane S, Nair R, Reed N, Biswas P (2016) Quantitative understanding of nanoparticle uptake in watermelon plants. Front Plant Sci 7:1288

    Article  Google Scholar 

  • Ranjan S, Dasgupta N, Lichtfouse E (2017) Nanoscience in food and agriculture 5. Springer International Publishing

    Google Scholar 

  • Rastogi A, Tripathi DK, Yadav S, Chauhan DK, Živčák M, Ghorbanpour M et al (2019) Application of silicon nanoparticles in agriculture. 3 Biotech 9:90

    Google Scholar 

  • Roy A, Bharadvaja N (2019) Silver nanoparticle synthesis from Plumbago zeylanica and its dye degradation activity. Bioinspired Biomimetic Nanobiomaterials 8(2):130–140

    Article  Google Scholar 

  • Roy A (2021) Plant derived silver nanoparticles and their therapeutic applications. Curr Pharm Biotechnol 22(14):1834–1847

    Article  CAS  Google Scholar 

  • Roy A, Elzaki A, Tirth V, Kajoak S, Osman H, Algahtani A, Islam S, Faizo NL, Khandaker MU, Islam MN, Bilal M (2021) Biological synthesis of nanocatalysts and their applications. Catalysts 11(12):1494

    Google Scholar 

  • Roy A, Singh V, Sharma S, Ali D, Azad AK, Kumar G, Emran TB (2022) Antibacterial and dye degradation activity of green synthesized iron nanoparticles. J Nanomater 2022:1–6. https://doi.org/10.1155/2022/3636481

  • Sabo-Attwood T, Unrine JM, Stone JW, Murphy CJ, Ghoshroy S, Blom D et al (2012) Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings. Nanotoxicology 6:353–360

    Article  CAS  Google Scholar 

  • Saharan V, Kumaraswamy RV, Choudhary RC, Kumari S, Pal A, Raliya R et al (2016) Cu-chitosan nanoparticle mediated sustainable approach to enhance seedling growth in maize by mobilizing reserved food. J Agric Food Chem 64:6148–6155

    Article  CAS  Google Scholar 

  • Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR (2016) Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants—critical review. Nanotoxicology 10:257–278

    Article  CAS  Google Scholar 

  • Servin AD, White JC (2016) Nanotechnology in agriculture: next steps for understanding engineered nanoparticle exposure and risk. Nano Impact 1:9–12

    Google Scholar 

  • Sharma P, Bhatt D, Zaidi MGH, Saradhi PP, Khanna PK, Arora S (2012) Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol 167:2225–2233

    Article  CAS  Google Scholar 

  • Shi J, Yang Y, Hu T, Yuan X, Peng C, Chen Y et al (2013) Phytotoxicity and accumulation of copper oxide nanoparticles to the Cu-tolerant plant Elsholtzia splendens. Nanotoxicology 8:179–188

    Article  CAS  Google Scholar 

  • Simonin M, Richaume A, Guyonnet JP, Dubost A, Martins JMF, Pommier T (2016) Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers. Sci Rep 6:33643

    Article  CAS  Google Scholar 

  • Sun D, Hussain HI, Yi Z, Siegele R, Cresswell T, Kong L et al (2014) Uptake and cellular distribution, in four plant species, of fluorescently labeled mesoporous silica nanoparticles. Plant Cell Rep 33:1389–1402

    Article  CAS  Google Scholar 

  • Tarafdar JC, Raliya R, Mahawar H, Rathore I (2014) Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agric Res 3:257–262

    Article  CAS  Google Scholar 

  • Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300

    Article  CAS  Google Scholar 

  • Valletta A, Chronopoulou L, Palocci C, Baldan B, Donati L, Pasqua G (2014) Poly(lactic-co-glycolic) acid nanoparticles uptake by Vitis vinifera and grapevine-pathogenic fungi. J Nanoparticle Res. 16:1917–1928

    Article  CAS  Google Scholar 

  • Verma SK, Das AK, Patel MK, Shah A, Kumar V, Gantait S (2018) Engineered nanomaterials for plant growth and development: a perspective analysis. Sci Total Environ 630:1413–1435

    Article  CAS  Google Scholar 

  • Vidyalakshmi N, Thomas R, Aswani R, Gayatri GP, Radhakrishnan EK, Remakanthan A (2017) Comparative analysis of the effect of silver nanoparticle and silver nitrate on morphological and anatomical parameters of banana under in vitro conditions. Inorg Nano Metal Chem 47:1530–1536

    Article  CAS  Google Scholar 

  • Waalewijn-Kool PL, Ortiz MD, Lofts S, van Gestel CA (2013) The effect of ph on the toxicity of zinc oxide nanoparticles to Folsomia candida in amended field soil. Environ Toxicol Chem 32:2349–2355

    Google Scholar 

  • Wang K, Drayton P, Frame B, Dunwell J, Thompson J (1995) Whisker-mediated plant transformation: an alternative technology. In Vitro Cell Dev Biol Plant 31:101–104

    Article  CAS  Google Scholar 

  • Wang P, Lombi E, Zhao FJ, Kopittke PM (2016) Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci 21:699–712

    Article  CAS  Google Scholar 

  • Yao KS, Li SJ, Tzeng KC, Cheng TC, Chang CY, Chiu CY et al (2009) Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. Adv Mater Res 79–82:513–516

    Article  CAS  Google Scholar 

  • Zhao X, Meng Z, Wang Y, Chen W, Sun C, Cui B et al (2017) Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nat Plants 3:956–964

    Article  CAS  Google Scholar 

  • Zhu ZJ, Wang H, Yan B, Zheng H, Jiang Y, Miranda OR et al (2012) Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species. Environ Sci Technol 46:12391–12398

    Article  CAS  Google Scholar 

  • Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104(1):83–91

    Article  CAS  Google Scholar 

  • Zheng L, Su M, Liu C, Chen L, Huang H, Wu X, Liu X, Yang F, Gao F, Hong F (2007) Effects of nanoanatase TiO2 on photosynthesis of spinach chloroplasts under different light illumination. Biol Trace Elem Res 119(1):68–76

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyanaranjan Sahoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahoo, G., Roul, P.K., Mishra, P., Nakella, A.K. (2022). Applications of Nanotechnology in Preservation and Development of the Plants: A Look Back. In: Shah, M.P., Roy, A. (eds) Phytonanotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-19-4811-4_6

Download citation

Publish with us

Policies and ethics