Skip to main content

Treeline Dynamics in Nepal Himalaya in a Response to Complexity of Factors

  • Chapter
  • First Online:
Ecology of Himalayan Treeline Ecotone

Abstract

The Nepal Himalaya is experiencing a higher temperature rise with erratic rainfall and more drought events in recent decades. Alpine treelines are proven bio-indicator and bio-monitor to understand the environmental impacts at high elevation. This chapter provides an overview of studies conducted at treelines of the Nepal Himalaya. Treeline elevation ranges from ~3400 to 4500 masl, regardless of the treeline type. The elevation decreases from east to west and is composed of multiple species, usually three to six species with some exception of mono-species. The studies found that site- and species-specific regeneration has maintained the treeline dynamics. The average rate of upward treeline shift is 0.46 m/year with the site- and species-specific differences in the rate ranging from 0 to 2.6 m/year. Various biotic and abiotic factors including winter and summer temperature and spring month’s precipitation are responsible for the treeline dynamics. The study indicated that unidirectional upward shifting of the treeline is not the sole response of the treeline in the Nepal Himalaya to climate change. For further understanding, integrative research considering multiple species, multiple sites, and the assessment of multiple factors is recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aakala T, Hari P, Dengel S, Newberry SL, Mizunuma T, Grace J (2014) A prominent stepwise advance of the tree line in Northeast Finland. J Ecol 102:1582–1591

    Article  Google Scholar 

  • Anderson K, Fawcett D, Cugulliere A, Benford S, Jones D, Leng R (2020) Vegetation expansion in the subnival Hindu Kush Himalaya. Glob Chang Biol 26:1608–1625

    Article  PubMed  PubMed Central  Google Scholar 

  • Arno SF (1984) Timberline. Mountain and Arctic Forest Frontiers, Seattle

    Google Scholar 

  • Aryal A, Raubenheimer D, Subedi S, Kattel B (2010) Spatial habitat overlap & habitat preference of Himalayan musk deer ‘Moschuschrysogaster’ in Sagarmatha (Mt. Everest) National Park, Nepal. Curr Res J Biol Sci 2:217–225

    Google Scholar 

  • Aryal S, Ghimire SK, Dhakal YR, Gaire NP, Bhandari S (2017) Perceptions of agro-pastoralists towards the change in temperature and precipitation in the trans-Himalayan regions of Nepal. Banko Janakari 27:21–30

    Article  Google Scholar 

  • Aryal S, Panthi J, Dhakal YR, Gaire NP, Karki K, Joshi NR (2018) Historically evolved practices of the Himalayan transhumant pastoralists and their implications for climate change adaptation. Int J Glob Warm 14:356–371

    Article  Google Scholar 

  • Baniya B, Tang Q, Huang Z, Sun S, Techato KA (2018) Spatial and temporal variation of NDVI in response to climate change and the implication for carbondynamics in Nepal. Forest 9:329

    Google Scholar 

  • Basnet P, Gaire NP(2017) Growth and dynamics of Abies spectabilis with climate change at tree-line ecotone in the western Nepal Himalaya. In: Proceedings from the International Conference: Wild harvests, governance, and livelihoods in Asia" held in Kathmandu; pp. 71–84

    Google Scholar 

  • Batllori E, Camarero JJ, Ninot JM, Gutiérrez E (2009) Seedling recruitment, survival and facilitation in alpine Pinus uncinatatree line ecotones. Implications and potential responses to climate warming. Glob Ecol Biogeogr 18:460–472

    Article  Google Scholar 

  • Baumgartner A (1980) Mountain climates from a perspective of forest growth. In: Benecke U, Davis MR (eds) Mountain environments and subalpine tree growth. New Zealand Forest Service, Wellington, pp 27–40

    Google Scholar 

  • Bäumler R, Zech W (1994) Soils of the high mountain region of eastern Nepal: classification, distribution and soil-forming processes. Catena 22:85–103

    Article  Google Scholar 

  • Bhandari S, Gaire NP, Shah SK, Speer JH, Bhuju DR, Thapa UK (2019) A 307-year tree-ring SPEI reconstruction indicates modern drought in western Nepal Himalayas. Tree-Ring Res 75:73–85

    Article  Google Scholar 

  • Bharti RR, Adhikari BS, Rawat GS (2012) Assessing vegetation changes in timberline ecotone of Nanda Devi national park, Uttarakhand. Int J Appl Earth Obs Geoinf 18:472–479

    Google Scholar 

  • Bhuju DR, Carrer M, Gaire NP, Soraruf L, Riondato R, Salerno F, Maharjan SR (2010) Dendroecological study of high altitude forest at Sagarmatha National Park, Nepal. In: Jha PK, Khanal IP (eds) Contemporary research in Sagarmatha (Mt. Everest) region, Nepal. Nepal Academy of Science and Technology, Lalitpur, pp 119–130

    Google Scholar 

  • Bhuju DR, Shah SK, Gaire NP (2016) Environmental reconstruction and impact of climate change on vegetation at tree-lines of Nepal Himalaya. Annual Rep Pro Nat Foundation Jpn 24:170–181

    Google Scholar 

  • Bhuju DR, Adhikari K, Bashila SR, Shrestha L, Upadhyay S (2019) Livelihood strategy under climate change stress: assessing climate vulnerability and preparing an adaptation framework with communities in Kanchenjungha conservation area. Resources Himalaya Foundation and International Centre for Integrated Mountain Development, Kathmandu, Nepal

    Google Scholar 

  • Björklund JA, Gunnarson BE, Seftigen K, Esper J, Linderholm HW (2014) Blue intensity and density from northern Fennoscandian tree rings, exploring the potential to improve summer temperature reconstructions with earlywood information. Clim Past 10:877–885

    Article  Google Scholar 

  • Björklund J, Gunnarson BE, Seftigen K, Zhang P, Linderholm HW (2015) Using adjusted blue intensity datato attain high-quality summer temperature information: a case study from Central Scandinavia. Holocene 25:547–556

    Article  Google Scholar 

  • Bobrowski M, Gerlitz L, Schickhoff U (2017) Modelling the potential distribution of Betula utilis in theHimalaya. Glob Ecol Conserv 11:69–83

    Article  Google Scholar 

  • Bräuning A (2004) Tree-ring studies in the Dolpo-Himalya (western Nepal). TRACE – tree rings in archaeology. Climatol Ecol 2:8–12

    Google Scholar 

  • Brunello CF, Andermann C, Helle G, Comiti F, TononG TA, Hovius N (2019) Hydroclimatic seasonality recorded by tree ring δ18O signature across a Himalayan altitudinal transect. Earth Planet Sci Lett 518:148–159

    Article  CAS  Google Scholar 

  • Bürzle B, Schickhoff U, Schwab N, Oldeland J, Müller M, Böhner J, Chaudhary RP, Scholten T, Dickoré WB (2017) Phytosociology and ecology of treeline ecotone vegetation in Rolwaling Himal, Nepal. Phytocoenologia 47:197–220

    Article  Google Scholar 

  • Bürzle B, Schickhoff U, Schwab N, Wernicke LM, Müller YK, Böhner J, Chaudhary RP, Scholten T, Oldeland J (2018) Seedling recruitment and facilitation dependence on safe site characteristics in a Himalayan treeline ecotone. Plant Ecol 219:115–132

    Article  Google Scholar 

  • Camarero JJ, Gutiérrez E (2004) Pace and pattern of recent treeline dynamics: response of ecotones to climatic variability in the Spanish Pyrenees. Clim Chang 63:181–200

    Article  Google Scholar 

  • Camarero JJ, Gazol A, Sánchez-Salguero R, Fajardo A, McIntire EJB, Gutiérrez E, Batllori E, Boudreau S, Carrer M, Diez J, Dufour-Tremblay G, Gaire NP, Hofgaard A, Jomelli V, Kirdyanov A, Lévesque E, Liang E, Linares JC, Mathisen IE, Moiseev PA, Sangüesa-Barreda G, Shrestha KB, Toivonen JM, Tutubalina OV, Wilmking M (2021) Global fading of the temperature–growth coupling at alpine and polar treelines. Glob Chang Biol 27(9):1879–1889

    Article  CAS  PubMed  Google Scholar 

  • Chhetri PK, Cairns DM (2015) Contemporary and historic population structure of Abies spectabilis at treeline in Barun valley, eastern Nepal Himalaya. J Mt Sci 12:558–570

    Article  Google Scholar 

  • Chhetri PK, Cairns DM (2016) Dendroclimatic response of Abies spectabilis at treeline ecotone of Barun Valley, eastern Nepal Himalaya. J For Res 27:1163–1170

    Article  Google Scholar 

  • Chhetri PK, Cairns DM (2018) Low recruitment above treeline indicates treeline stability under changing climate in Dhorpatan hunting reserve, Western Nepal. Phys Geogr 39:329–342

    Article  Google Scholar 

  • Chhetri PK, Bista R, Cairns DM (2016) Population structure and dynamics of Abies spectabilis at treeline ecotone of Barun Valley, Makalu Barun National Park, Nepal. Acta Ecol Sin 36:269–274

    Article  Google Scholar 

  • Chhetri PK, Shrestha KB, Cairns DM (2017) Topography and human disturbances are major controlling factors in treeline pattern at Barun and Manang area in the Nepal Himalaya. J. Mt. Sci. 14:119–127

    Google Scholar 

  • Chhetri PK, Gaddis KD, Cairns DM (2018) Predicting the suitable habitat of treeline species in theNepalese Himalayas under climate change. Mt Res Dev 38:153–163

    Article  Google Scholar 

  • Cook ER, Krusic PJ, Jones PD (2003) Dendroclimatic signals in long tree-ringchronologies from the Himalayas of Nepal. Int J Climatol 23:707–732

    Article  Google Scholar 

  • Dawadi B, Liang E, Tian L, Devkota LP, Yao T (2013) Premonsoon precipitation signal in tree rings of timberline Betula utilis in the Central Himalayas. Quat Int 283:72–77

    Article  Google Scholar 

  • Dhakal YR, Gaire NP, Aryal S, Shah SK, Bhandari S, Kunwar U, Rayamajhi S (2016) Treeline shift in Central Nepal Himalaya and climate reconstruction of past millennia. In: Bhuju DR, McLaughlin K, Sijapati J, Devkota BD, Shrestha N, Ghimire GP, Neupane PK (eds) Building knowledge for climate resilience in Nepal. Nepal Academy of Science and Technology, Khumaltar, Lalitpur

    Google Scholar 

  • DHM (2017) Observed climate trend analysis in the districts and physiographic regions of Nepal (1971–2014). Department of Hydrology and Meteorology, Kathmandu

    Google Scholar 

  • Dobremez JF, Shrestha TB(1980) Carte écologique du Népal. Région Jumla-Saipal 1:250 000. Cahiers Népalais 9. Paris

    Google Scholar 

  • Drollinger S, Müller M, Kobl T, Schwab N, Böhner J, Schickhoff U, Scholten T (2017) Decreasing nutrient concentrations in soils and trees with increasing elevation across a treeline ecotone in Rolwaling Himal, Nepal. J Mt Sci 14:843–858

    Article  Google Scholar 

  • Du H, Liu J, Li MH, Büntgen U, Yang Y, Wang L, Wu Z, He HS (2017) Warming-induced upward migration of the alpine treeline inthe Changbai Mountains, Northeast China. Glob Chang Biol 24:1256–1266

    Article  PubMed  Google Scholar 

  • Dubey B, Yadav RR, Singh J, Chaturvedi R (2003) Upward shift of Himalayan pine in Western Himalaya, India. Curr Sci 85:1135–1136

    Google Scholar 

  • Elliott GP, Cowell CM (2015) Slope aspect mediates fine-scale tree establishment patterns at upper treeline during wet and dry periods of the 20th century. Arct Antarct Alp Res 47:681–692

    Article  Google Scholar 

  • Forrest JL, Wikramanayake E, Shrestha R, Areendran G, Gyeltshen K, Maheshwari A, Mazumdar S, Naidoo R, Thapa GJ, Thapa K (2012) Conservation and climate change: assessing the vulnerability of snow leopard habitat to treeline shift in the Himalaya. Biol Conserv 150:129–135

    Article  Google Scholar 

  • Fritts HC (1976) Tree rings and climate. University Press Cambridge, Cambridge, p 567

    Google Scholar 

  • Gaire NP, Dhakal YR, Lekhak H, Bhuju DR, Shah SK (2010) Vegetation dynamics in treeline ecotoneof Langtang National Park, Central Nepal. Nepal J Sci Technol 11:107–114

    Article  Google Scholar 

  • Gaire NP, Dhakal YR, Lekhak HC, Bhuju DR, Shah SK (2011) Dynamics of Abies spectabilis in relationto climate change at the treeline ecotone in Langtang National Park. Nepal J Sci Technol 12:220–229

    Article  Google Scholar 

  • Gaire NP, Koirala M, Bhuju DR, Borgaonkar HP (2014) Treeline dynamics with climate change at thecentral Nepal Himalaya. Clim Past 10:1277–1290

    Article  Google Scholar 

  • Gaire NP, Rana P, Koirala M, Bhuju DR, Carrer M (2015) Study of treelineecotone to assess long-term impact of environmental change in Mt. Everestregion, Nepal Himalaya. FUUAST J. Biol. 5:1–11

    Google Scholar 

  • Gaire NP, Koirala M, Bhuju DR, Carrer M (2017a) Site- and species-specific treeline responses toclimatic variability in eastern Nepal Himalaya. Dendrochronologia 41:44–56

    Article  Google Scholar 

  • Gaire NP, Bhuju DR, Koirala M, Shah SK, Carrer M, Timilsena R (2017b) Tree-ring based spring precipitationreconstruction in western Nepal Himalaya sinceAD 1840. Dendrochronologia 42:21–30

    Article  Google Scholar 

  • Gaire NP, Dhakal YR, Shah SK, Fan ZX, Bräuning A, Thapa UK, Bhandari S, Aryal S, Bhuju DR (2019) Drought (scPDSI) reconstruction of trans-Himalayan region of central Himalaya using Pinus wallichiana tree-rings.Palaeogeography. Palaeoclimatol Palaeoecol 514:251–264

    Article  Google Scholar 

  • Gaire NP, Fan ZX, Bräuning A, Panthi S, Rana P, Shrestha A, Bhuju DR (2020) Abies spectabilis shows stable growth relations to temperature, but changing response to moisture conditions along an elevation gradient in the central Himalaya. Dendrochronologia 60:125675

    Article  Google Scholar 

  • Gerlitz L, Bechtel B, Böhner J, Bobrowski M, BürzleB MM, Scholten T, Schickhoff U, Schwab N, Weidinger J (2016) Analytic comparison of temperaturelapse rates and precipitation gradients in a Himalayantreeline environment: implications for statistical downscaling. In: Singh RB, Schickhoff U, Mal S (eds) Climate change, glacier response and vegetation dynamicsin the Himalaya. Springer, Cham, pp 49–64

    Google Scholar 

  • Ghimire B, Lekhak HD (2007) Regeneration of Abies spectabilis (D. Don) Mirb. in subalpine forest of UpperManang, North-central Nepal. In: Chaudhary RP, Aase TH, Vetaas OR, Subedi BP (eds) Local effectsof global changes in the Himalayas: Manang, Nepal. Tribhuvan University, Nepal and University of Bergen, Norway, pp 139–149

    Google Scholar 

  • Ghimire B, Mainali KP, Lekhak HD, Chaudhary RP, Ghimeray AK (2010) Regeneration of Pinuswallichiana AB Jackson in a trans-Himalayan dry valley of north-Central Nepal. Himal J Sci 6:19–26

    Google Scholar 

  • Hamid M, Khuroo AA, Charles B, Ahmad R, Singh CP, Aravind NA (2018) Impact of climate change on the distribution rangeand niche dynamics of Himalayan birch, a typical treelinespecies in Himalayas. Biodivers Conserv 28:2345–2370

    Article  Google Scholar 

  • Harsch MA, Bader MY (2011) Treeline form—a potential key to understanding treeline dynamics. Glob Ecol Biogeogr 20:582–596

    Article  Google Scholar 

  • Harsch MA, Hulme PE, McGlone MS, Duncan RP (2009) Are treelinesadvancing? A global meta-analysis of treeline response to climate warming. Ecol Lett 12:1040–1049

    Article  PubMed  Google Scholar 

  • Hofgaard A, Tømmervik H, Rees G, Hanssen F (2013) Latitudinal forest advancein northernmost Norway since the early 20th century. J Biogeogr 40:938–949

    Article  Google Scholar 

  • Holtmeier FK (2009) Mountain timberlines.Ecology, patchiness, and dynamics. Springer, Dordrecht

    Book  Google Scholar 

  • Holtmeier FK, Broll G (2005) Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Glob Ecol Biogeogr 14:395–410

    Article  Google Scholar 

  • Holtmeier FK, Broll G (2009) Altitudinal and polar Treelines in the northern hemisphere –causes and response to climate change. Polarforschung 79:139–153

    Google Scholar 

  • IPCC (2007) Climate change 2007: impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Contribution of working group II to the fourthassessment report of the IPCC. Cambridge University Press, Cambridge, p 976

    Google Scholar 

  • IPCC (2013) Climate change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Reportof the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY T.F

    Google Scholar 

  • IPCC (2014) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmentalpanel on climate change. Cambridge University Press, Cambridge, UK; pp 1132

    Google Scholar 

  • Kaczka RJ, Spyt B, Janecka K, Beil I, Büntgen U, Scharnweber T, Nievergelt D, Wilmking M (2018) Different maximum latewood density and blue intensity measurements techniques reveal similar results. Dendrochronologia 49:94–101

    Article  Google Scholar 

  • Karki R, ul Hasson S, Gerlitz L, Talchabhadel R, Schickhoff U, Scholten T, Böhner J (2019) Rising mean and extreme near-surface air temperature across Nepal. Int J Climatol 40:2445–2463

    Article  Google Scholar 

  • Kharal DK, Bhuju DR, Gaire NP, Rayamajhi S, Meilby H, Chaudhary A (2015) Population structure and distribution of Abies spectabilis (D. Don) in Central Nepal Himalaya: a comparison with the total woody vegetation of the forests at the three different elevation ranges in Manang District. BankoJanakari 25:3–14

    Google Scholar 

  • Kharal DK, Thapa UK, St. George S, Meilby H, Rayamajhi S, Bhuju DR (2017) Tree-climate relations along an elevational transect in Manang Valley, Central Nepal. Dendrochronologia 41:57–64

    Article  Google Scholar 

  • Kirdyanov AV, Hagedorn F, Knorre AA, Fedotova EV, Vaganov A, Naurzbaev MM, Moiseev PA, Rigling A (2012) 20th century treelineadvance and vegetation changes along an altitudinal transect in the PutoranaMountains, Northern Siberia. Boreas 41:56–67

    Article  Google Scholar 

  • Körner C (1998) A re-assessment of high elevation treeline position and their explanation. Oecologia 115:445–459

    Article  PubMed  Google Scholar 

  • Körner C (2012) Alpine treelines: functional ecology of the global high elevation tree limits. Springer, Cham

    Book  Google Scholar 

  • Körner C, Paulsen J (2004) A worldwide study of high altitude treelinetemperatures. J Biogeogr 31:713–732

    Article  Google Scholar 

  • Kullman L (1998) Tree-limits and montane forests in the Swedish Scandes: sensitive biomonitors of climate change and variability. Ambio 27:312–321

    Google Scholar 

  • Kullman L (2001) 20th century climate warming trend and tree-limit rise in the southern Scandes of Sweden. Ambio 30:72–80

    Article  CAS  PubMed  Google Scholar 

  • Kullman L, Öberg L (2009) Post-little ice age tree line rise and climate warming inthe Swedish Scandes: a landscape ecological perspective. J Ecol 97:415–429

    Article  Google Scholar 

  • Lamsal P, Kumar L, Shabani F, Atreya K (2017) Thegreening of the Himalayas and Tibetan plateau under climatechange. Glob Planet Chang 159:77–92

    Article  Google Scholar 

  • Li MH, Xiao WF, Wang SG, Cheng GW, Cherubini P, Cai XH, Liu XL, Wang XD, Zhu WZ (2008) Mobile carbohydrates in Himalayan treeline trees: evidence for carbon gain limitation but not for growth limitation. Tree Physiol 28:1287–1296

    Article  CAS  PubMed  Google Scholar 

  • Liang EY, Wang Y, Eckstein D, Luo T (2011) Little change in the fir tree-lineposition on the southeastern Tibetan plateau after 200 years of warming. New Phytol 190:760–769

    Article  PubMed  Google Scholar 

  • Liang EY, Dawadi B, Pederson N, Eckstein D (2014) Is the growth of birch at theupper timberline in the Himalayas limited by moisture or by temperature? Ecology 95:2453–2465

    Article  Google Scholar 

  • Liang E, Wang Y, Piao S, Lu X, Camarero JJ, Zhu H, Ellison AM, Ciais P, Peñuelas J (2016) Species interactions slow warming-induced upward shifts of treelines on the Tibetan plateau. Proc Natl Acad Sci U S A 113:4380–4385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang EY, Dawadi B, Pederson N, Piao S, Zhu H, Sigdel SR, Chen D (2019) Strong link between large tropical volcanic eruptions and severe droughts prior to monsoon in the Central Himalayas revealed by tree-ring records. Sci Bull 64:1018–1023

    Article  Google Scholar 

  • Lv LX, Zhang QB (2012) Asynchronous recruitment history of Abies spectabilisalong an altitudinal gradient in the Mt. Everest region. J Plant Ecol 5:147–156

    Article  Google Scholar 

  • Lyu L, Zhang QB, Deng X, Mäkinen H (2016) Fine-scale distribution of treeline trees and the nurse plant facilitation on the eastern Tibetan plateau. Ecol Indic 66:251–258

    Article  Google Scholar 

  • Mainali K, Shrestha BB, Sharma RK, Adhikari A, Gurarie E, Singer M, Parmesan C (2020) Contrasting responses to climate change at Himalayan treelines revealed by population demographics of two dominant species. Ecol Evol 10:1209–1222

    Article  PubMed  PubMed Central  Google Scholar 

  • McCarroll D, Pettigrew E, Luckman A, Guibal F, Edouard JL (2002) Blue reflectance provides a surrogate forlatewood density of high-latitude pine tree rings. Arct Antarct Alp Res 34:450–453

    Article  Google Scholar 

  • Miehe G (1989) Vegetation patterns of Mt. Everest as influenced by monsoon and föhn. Vegetatio 79:21–32

    Article  Google Scholar 

  • Miehe G (1991) DieVegetationskarte des KhumbuHimal (Mt. Everest-Südabdachung) 1:50.000.Gefügemuster der Vegetation und Probleme der Kartierung. Erdkunde 45:81–94

    Article  Google Scholar 

  • Miehe G, Miehe S (2000) Comparative high mountainresearch on the treeline ecotone under human impact. Erdkunde 54:34–50

    Article  Google Scholar 

  • Miehe G, Miehe S, Schlütz F (2002) Vegetationskundliche und palynologischeBefundeausdemMuktinath-Tal (Tibetischer Himalaya, Nepal). Erdkunde 56:268–285

    Article  Google Scholar 

  • Miehe G, Miehe S, Vogel J, Co S, Duo L (2007) Highest treeline in the northern hemisphere found in southern Tibet. Mt Res Dev 27:169–173

    Article  Google Scholar 

  • Miehe G, Miehe S, Schlütz F (2009) Early human impact in the forest ecotone of southern high Asia (Hindu Kush, Himalaya). Quat Res 71:255–265

    Article  Google Scholar 

  • Mishra NB, Mainali KP, Shrestha BB, Radenz J, Karki D (2018) Species-level vegetation mapping in a Himalayan treeline ecotone using unmanned aerial system (UAS) imagery. ISPRS. Int J Geo-Inf 7:445

    Article  Google Scholar 

  • Mong CE, Vetaas OR (2006) Establishment of Pinus wallichianaon a Himalayan glacier foreland: stochastic distribution or safe sites? Arct Antarct Alp Res 38:584–592

    Article  Google Scholar 

  • Müller M, Schickhoff U, Scholten T, Drollinger S, Böhner J, Chaudhary RP (2016a) How do soil properties affect alpine treelines? General principles in a global perspective and novel findings from Rolwaling Himal, Nepal. Progr Phys Geogr Earth Environ 40:135–160

    Article  Google Scholar 

  • Müller M, Schwab N, Schickhoff U, Böhner J, Scholten T (2016b) Soil temperature and soil moisture patterns in a Himalayan alpine treeline ecotone. Arct Antarct Alp Res 48:501–521

    Article  Google Scholar 

  • Müller M, Oelmann Y, Schickhoff U, Böhner J, Scholten T (2017) Himalayan treeline soil and foliar C:N:P stoichiometry indicate nutrient shortage with elevation. Geoderma 291:21–32

    Article  Google Scholar 

  • Munier A, Hermanutz L, Jacobs JD, Lewis K (2012) The interacting effects oftemperature, ground disturbance, and herbivory on seedling establishment:implications for treeline advance with climate warming. Plant Ecol 210:19–30

    Article  Google Scholar 

  • Numata M (1967) Notes on botanical trip in eastern Nepal, I. Chiba Univ. J Coll Arts Sci 5:57–74

    Google Scholar 

  • Öberg L, Kullman L (2012) Contrasting short-term performance of mountainbirch (Betula pubescens ssp. czerepanovii) treeline along a latitudinalcontinentality-maritimity gradient in the southern Swedish Scandes. Fennia 190:19–40

    Google Scholar 

  • Pandey S, Carrer M, Castagneri D, Petit G (2018) Xylem anatomical responses to climate variability in Himalayan birch trees at one of the world’s highest forest limit. Perspect Plant Ecol Evol Syst 33:34–41

    Article  Google Scholar 

  • Pandey S, Cherubini P, Saurer M, Carrer M, Petit G (2020) Effects of climate change on treeline trees in Sagarmatha (Mt. Everest, central Himalaya). J Veg Sci 31(6):1144–1153

    Article  Google Scholar 

  • Panigrahy S, Anitha D, Kimothi MM, Singh SP (2010) Timberline changedetection using topographic map and satellite imagery. Trop Ecol 51:87–91

    Google Scholar 

  • Panthi S, Bräuning A, Zhou ZK, Fan ZX (2017) Tree rings reveal recent intensified spring drought in the central Himalaya. Nepal Glob Planet Chang 157:26–34

    Article  Google Scholar 

  • Panthi S, Fan ZX, van der Sleen P, Zuidema PA (2020) Long-term physiological and growth responses of Himalayan fir to environmental change are mediated by mean climate. Glob Chang Biol 26:1778–1794

    Article  PubMed  Google Scholar 

  • Panthi S, Fan ZX, Bräuning A (2021) Ring widths of rhododendron shrubs reveal a persistent winter warming in the central Himalaya. Dendrochronologia 65:125799

    Article  Google Scholar 

  • Qi W, Zhang Y, Gao J, Yang X, Liu L, Khanal NR (2013) Climate change on thesouthern slope of Mt. Qomolangma (Everest) region in Nepal since 1971. J Geogr Sci 23:595–611

    Article  Google Scholar 

  • Rai S, Dawadi B, Wang Y, Lu X, Ru H, Sigdel SR (2019) Growth response of Abiesspectabilis to climate along an elevation gradient of the Manang valley in the Central Himalayas. J For Res 31:2245–2254

    Article  Google Scholar 

  • Rana P, Koirala M, Bhuju DR, Boonchird C (2016) Population structure of Rhododendron campanulatum D. Don and associated tree species along the elevational gradient of Manaslu conservation area, Nepal. J Inst Sci Technol 21:95–102

    Article  Google Scholar 

  • Rana P, Bhuju DR, Koirala M, Boonchird C (2017) Dendroecological studies of rhododendron campanulatumD.Don along the elevational gradient of Manaslu conservation area, Nepal Himalaya. Pak J Bot 49:1749–1755

    Google Scholar 

  • Rayback SA, Shrestha KB, Hofgaard A (2017) Growth variable-specific moisture and temperature limitations in co-occurring alpine tree and shrub species, Central Himalayas, Nepal. Dendrochronologia 44:193–202

    Article  Google Scholar 

  • Ren YY, Ren GY, Sun XB et al (2017) Observed changes in surface air temperature and precipitation in the Hindu Kush Himalayan region during 1901-2014. Adv Clim Chang Res 8:148–156

    Article  Google Scholar 

  • Rydval M, Larsson L-Å, McGlynn L, Gunnarson BE, Loader NJ, Young GHF, Wilson R (2014) Blueintensity for dendroclimatology: should we have the blues? Experiments from Scotland. Dendrochronologia 32:191–204

    Article  Google Scholar 

  • Salerno F, Guyennon N, Thakuri S, Viviano G, Romano E, Vuillermoz E, Cristofanelli P, Stocchi P, Agrillo G, Ma Y, Tartari G (2015) Weakprecipitation, warm winters and springs impact glaciers of south slopes of Mt.Everest (central Himalaya) in the last two decades (1994–2013). Cryosphere 9:1229–1247

    Article  Google Scholar 

  • Sano M, Furuta F, Kobayashi O, Sweda T (2005) Temperature variations since themid-18th century for Western Nepal, as reconstructed from tree-ring width anddensity of Abies spectabilis. Dendrochronologia 23:83–92

    Article  Google Scholar 

  • Sano M, Ramesh R, Sheshshayee MS, Sukumar R (2012) Increasing aridity over the past 223 years in Nepal Himalayainferred from a tree ring δ18O chronology. The Holocene 22:809–817

    Article  Google Scholar 

  • Schickhoff U (2005) The upper timberline in the Himalayas, Hindu Kush and Karakorum: a review of geographicaland ecological aspects. In: Broll G, Keplin B (eds) Mountain ecosystems. Studies in treeline ecology. Springer, Berlin, pp 275–354

    Chapter  Google Scholar 

  • Schickhoff U, Bobrowski M, Böhner J, Bürzle B, Chaudhary RP, Gerlitz L, Heyken H, Lange J, Müller M, Scholten T, Schwab N, Wedegärtner R (2015) Do Himalayan treelines respond to recent climate change? An evaluation of sensitivity indicators. Earth Syst Dynam 6:245–265

    Article  Google Scholar 

  • Schickhoff U, Bobrowski M, Böhner J, Bürzle B, Chaudhary RP, Gerlitz L, Lange J, Müller M, Scholten T, Schwab N (2016a) Climate change and treeline dynamics in the Himalaya. In: Singh RB, Schickhoff U, Mal S (eds) Climate change, glacier response, and vegetation dynamics in the Himalaya. Springer, Cham, pp 271–306

    Google Scholar 

  • Schickhoff U, Singh RB, Mal S (2016b) Climate change and dynamics of glaciers and vegetation in theHimalaya: an overview. In: Singh RB, Schickhoff U, Mal S (eds) Climate change, glacier response, and vegetation dynamics in the Himalaya. Springer, Cham, pp 1–26

    Google Scholar 

  • Schlütz F, Zech W (2004) Palynological investigations on vegetation and climate change in theLate quaternary of Lake Rukche area, GorkhaHimal, Central Nepal. Veg Hist Archaeobot 13:81–90

    Article  Google Scholar 

  • Schwab N, Schickhoff U, Müller M, Gerlitz L, Bürzle B, Böhner J, Chaudhary RP, Scholten T (2016) Treeline responsiveness to climate warming: insights from a krummholz treeline in Rolwaling Himal, Nepal. In: Singh RB, Schickhoff U, Mal S (eds) Climate change, glacier response, and vegetation dynamics in the Himalaya. Springer, Cham, pp 307–345

    Google Scholar 

  • Schwab N, Schickhoff U, Bürzle B, Müller M, Böhner J, Chaudhary RP, Scholten T, Oldeland J (2017) Implications of tree species – environment relationships for the responsiveness of Himalayan krummholz treelines to climate change. J Mt Sci 14:453–473

    Article  Google Scholar 

  • Schwab N, Kaczka RJ, Janecka K, Böhner J, Chaudhary RP, Scholten T, Schickhoff U (2018) Climate change-induced shift of tree growth sensitivity at a central Himalayan treeline ecotone. Forests 9:267

    Article  Google Scholar 

  • Schwab N, Janecka K, Kaczka RJ, Böhner J, Chaudhary RP, Scholten T, Schickhoff U (2020) Ecological relationships at a near-natural treeline, Rolwaling valley, Nepal Himalaya: implications for the sensitivity to climate change. Erdkunde 74:15–44

    Article  Google Scholar 

  • Shao X, Wang S, Zhu H, Xu Y, Liang E, Yin ZY, Xu X, Xiao Y (2009) A 3585-year ring-width dating chronology of Qilian juniper from the northeastern Qinghai-Tibetan plateau. IAWA J 30:379–394

    Article  Google Scholar 

  • Sharma KP, Tiwari A, Shrestha BB (2020) Changes in regeneration and leaf traits of Rhododendron campanulatum along a treeline ecotone in central Nepal. J. Mt. Sci. 17:602–613

    Google Scholar 

  • Shen W, Zhang L, Liu X, Luo T (2014) Seed-based treeline seedlings arevulnerable to freezing events in the early growing season under a warmerclimate: evidence from a reciprocal transplant experiment in the SergyemlaMountains, Southeast Tibet. Agric For Meteorol 187:83–92

    Article  Google Scholar 

  • Shen W, Zhang L, Guo Y, Luo T (2018) Causes for treeline stability under climate warming: evidence from seed and seedling transplant experiments in Southeast Tibet. For Ecol Manag 408:45–53

    Article  Google Scholar 

  • Shrestha BB, Ghimire B, Lekhak HD, Jha PK (2007) Regeneration of treeline birch (Betula utilis D. Don) forest in a trans-Himalayan dry valley in Central Nepal. Mt Res Dev 27:259–267

    Article  Google Scholar 

  • Shrestha UB, Gautam S, Bawa KS (2012) Widespread climate change in the Himalayas and associated changes in local ecosystems. PLoS One 7:e36741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrestha KB, Hofgaard A, Vandvik V (2015a) Recent treeline dynamics are similar between dry and Mesic areas of Nepal, central Himalaya. J Plant Ecol 8:347–358

    Article  Google Scholar 

  • Shrestha KB, Hofgaard A, Vandvik V (2015b) Tree growth response to climatic variability in two climatically contrasting treeline ecotone areas, central Himalaya, Nepal. Can J For Res 45:1643–1653

    Article  Google Scholar 

  • Shrestha KB, Chhetri PK, Bista R (2017) Growth responses of Abies spectabilis to climate variations along an elevational gradient in Langtang National Park in the central Himalaya, Nepal. J For Res 22:274–281

    Google Scholar 

  • Sigdel SR, Wang Y, Camarero JJ, Zhu H, Liang E, Peñuelas J (2018) Moisture-mediated responsivenessof treeline shifts to global warming in the Himalayas. Glob Chang Biol 24:5549–5559

    Article  PubMed  Google Scholar 

  • Sigdel SR, Zhang H, Zhu H, Muhammad S, Liang E (2020a) Retreating glacier and advancing forest over the past 200 years in the Central Himalayas. Geophys Res J Geophys Res Biogeosci 125:e2020JG005751

    Google Scholar 

  • Sigdel SR, Liang E, Wang Y, Dawadi B, Camarero JJ (2020b) Tree-to-tree interactions slow down Himalayan treeline shifts as inferred from tree spatial patterns. J Biogeogr 47:1816–1826

    Article  Google Scholar 

  • Singh CP, Panigrahy S, Thapliyal A, Kimothi MM, Soni P, Parihar JS (2012) Monitoring the alpine treeline shift in parts of the Indian Himalayas usingremote sensing. Curr Sci 102:559–562

    Google Scholar 

  • Singh U, Phulara M, David B, Ranhotra PS, Shekhar M, Bhattacharyya A, Dhyani R, Joshi R, Pal AK (2018) Static tree line of Himalayan silver fir since last several decades at Tungnath, Western Himalaya. Trop Ecol 59:351–363

    Google Scholar 

  • Speer JH (2010) Fundamentals of tree ring research. The University of Arizona Press, Tucson

    Google Scholar 

  • Sujakhu H, Gosai KR, Karmacharya SB (2013) Forest structure and regeneration pattern of Betula utilisD. Don in Manaslu conservation area, Nepal. Ecoprint 20:107–113

    Article  Google Scholar 

  • Suwal MK, Shrestha KB, Guragain L, Shakya R, Shrestha K, Bhuju DR, Vetaas OR (2016) Land-use change under a warming climate facilitatedupslope expansion of Himalayan silver fir (Abies spectabilis(D. Don) Spach). Plant Ecol 217:993–1002

    Article  Google Scholar 

  • Tabata H, Tsuchiya K, Shimzu Y, Fuzita N, Matsui K, Koike F, Yumoto T (1988) Vegetation and climatic changes in Nepal Himalayas I. Vegetation and climatic changes in Nepal Himalayas as the basis of palaeoecological studies. Proc Indian Natl Sci Acad 54A(4):530–537

    Google Scholar 

  • Talchabhadel R, Karki R, Thapa BR, Maharjan M, Parajuli B (2018) Spatio-temporal variability of extreme precipitation in Nepal. Int J Climatol 38:4296–4313

    Article  Google Scholar 

  • Tenca A, Carrer M (2010) Growth climate response at high elevation: comparing Alps and Himalayas. Tree Rings Archaeol Climatol Ecol 8:89–97

    Google Scholar 

  • Thakuri S, Dahal S, Shrestha D, Guyennon N, Romano E, Colombo N, Salerno F (2019) Elevation-dependent warming of maximum air temperature in Nepal during 1976–2015. Atmos Res 228:261–269

    Article  Google Scholar 

  • Thapa UK, St. George S, Kharal DK, Gaire NP (2017) Tree growth across the Nepal Himalaya during the last four centuries. Prog Phys Geogr 41:478–495

    Article  Google Scholar 

  • Tiwari A (2020) Age-dependent growth responses to climate from trees in Himalayan treeline. Nepal J Zool 4:16–22

    Article  Google Scholar 

  • Tiwari A, Jha PK (2018) An overview of treeline response to environmental changes in Nepal Himalaya. Trop Ecol 59:273–285

    Google Scholar 

  • Tiwari A, Fan ZX, Jump AS, Li SF, Zhou ZK (2017a) Gradual expansion of moisture sensitiveAbies spectabilis forest in the trans-Himalayan zone ofcentral Nepal associated with climate change. Dendrochronologia 41:34–43

    Article  Google Scholar 

  • Tiwari A, Fan ZX, Jump AS, Zhou ZK (2017b) Warming induced growth decline of Himalayan birch at its lower range edge in a semi-arid region of trans- Himalaya, Central Nepal. Plant Ecol 218:621–633

    Article  Google Scholar 

  • Tiwari A, Uprety Y, Rana SK (2020) Plant endemism in the Nepal Himalayas and phytogeographical implications. Plant Divers 4:174–182

    Google Scholar 

  • Troll C (1973) The upper timberlines in different climatic zones. Arct Alp Res 5(3):A 3-A18

    Google Scholar 

  • Udas E(2009) Influence of climate variability on the growth performance of Abies spectabilis at tree line of west-Central Nepal. Master Thesis, University of Greifswald, Germany

    Google Scholar 

  • Wang Y, Pederson N, Ellison AM, Buckley HL, Case BS, Liang E, Camarero JJ (2016) Increased stem density and competition may diminish the positive effects of warming at alpine treeline. Ecology 97:1668–1679

    Article  PubMed  Google Scholar 

  • Wang Y, Sylvester SP, Lu X, Dawadi B, Sigdel SR, Liang E, Camarero JJ (2019a) The stability of spruce treelines on the eastern Tibetan plateau over the last century is explained by pastoral disturbance. For Ecol Manag 442:34–45

    Article  Google Scholar 

  • Wang Y, Case B, Lu X, Ellison AM, Peñuelas J, Zhu H, Liang E, Camarero JJ (2019b) Fire facilitates warming-induced upward shifts of alpine treelines by alteringinterspecific interactions. Trees 33:1051–1061

    Article  Google Scholar 

  • Wardle P (1974) Alpine timberlines. In: Ives JD, Barry RG (eds) Arctic and alpine environments. Routledge, London, pp 371–402

    Google Scholar 

  • Weiser G, Tausz M (eds) (2007) Trees at their upper limit: tree life limitations at the alpine timberline. Springer, Cham, p 232

    Google Scholar 

  • Williams LHJ (1953) The 1952 expedition to western Nepal. J R Hort Soc 78:323–337

    Google Scholar 

  • Yadav RR, Singh J, Dubey B, Mishra KG (2006) A 1584-year ring-width chronology of juniper from Lahul, HimachalPradesh: prospects of developing millennia long climaterecords. Curr Sci 90:1122–1126

    Google Scholar 

  • Yadava AK, Sharma YK, Dubey B, Singh J, Singh V, Bhutiyani MR, Yadav RR, Misra KG (2017) Altitudinal treeline dynamics of Himalayan pine in western Himalaya, India. Quat Int 444:44–52

    Article  Google Scholar 

  • Yoda K (1967) A preliminary survey of the forest vegetation of eastern Nepal. II. General description, structure and floristic composition of the sample plots chosen from different vegetation zones. J Coll Arts Sci Chiba Univ 5:99–140

    Google Scholar 

  • Yonebayashi C, Minaki M (1997) Late quaternary vegetation and climatic history of eastern Nepal. J Biogeogr 24:837–843

    Article  Google Scholar 

  • Zhan YJ, Ren GY, Shrestha AB et al (2017) Change in extreme precipitation events over the Hindu Kush Himalayan region during 1961-2012. Adv Clim Chang Res. 8:166–175

    Article  Google Scholar 

  • Zhou TY, Gaire NP, Liao LB, Zheng LL, Wang JN, Sun J, Wei YQ, Xie Y, Wu Y (2018) Spatio-temporal dynamics of two alpine treeline ecotones and ecological characteristics of their dominate species at the eastern margin of Qinghai-Xizang plateau. Chin J Plant Ecol 42:1082–1093

    Article  Google Scholar 

Download references

Acknowledgments

The authors are deeply indebted to the various workers who dedicated a lifetime to treeline studies in Nepal Himalaya. NPG is grateful to the Chinese Academy of Sciences for CAS-PIFI Postdoc Fellowship (2019PC0102). This study was also jointly supported by the National Natural Science Foundation of China (Grant No. 41661144045). SKS is thankful to the Director, Birbal Sahni Institute of Palaeosciences for the kind support given. We thank editors and reviewers for their constructive comments in the earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Narayan Prasad Gaire or Ze-Xin Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gaire, N.P. et al. (2023). Treeline Dynamics in Nepal Himalaya in a Response to Complexity of Factors. In: Singh, S.P., Reshi, Z.A., Joshi, R. (eds) Ecology of Himalayan Treeline Ecotone. Springer, Singapore. https://doi.org/10.1007/978-981-19-4476-5_22

Download citation

Publish with us

Policies and ethics