Skip to main content

Treeline Responsiveness to Climate Warming: Insights from a Krummholz Treeline in Rolwaling Himal, Nepal

  • Chapter
  • First Online:
Climate Change, Glacier Response, and Vegetation Dynamics in the Himalaya

Abstract

At a global scale, the elevational position of natural upper treelines is determined by low temperatures during growing season. Thus, climate warming is expected to induce treelines to advance to higher elevations. Empirical studies in diverse mountain ranges, however, give evidence of both advancing alpine treelines as well as rather insignificant responses. Himalayan treeline ecotones show considerable differences in altitudinal position as well as in physiognomy and species composition. To assess the sensitivity of a near-natural treeline to climate warming at local scale, we analysed the relations between changes of growth parameters and temperature gradients along the elevational gradient in the treeline ecotone in Rolwaling valley, Nepal, by a multispecies approach. We observed species-specific transition patterns (diameter at breast height, height, tree and recruit densities) and varying degrees of abruptness of these transitions across the treeline ecotone resulting in a complex stand structure. Soil temperatures are associated with physiognomic transitions, treeline position and spatial regeneration patterns. In conclusion, treeline tree species have the potential to migrate upslope in future. Upslope migration, however, is controlled by a dense krummholz belt of Rhododendron campanulatum. Currently, the treeline is rather stable; however we found a prolific regeneration as well as signs of stand densification. Given the spatial heterogeneity of Himalayan treeline ecotones, further studies are needed to fully understand the complex conditions for the establishment and development of tree seedlings and the responsiveness of Himalayan treeline ecotones to climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baker BB, Moseley RK (2007) Advancing treeline and retreating glaciers: implications for conservation in Yunnan, P.R. China. Arct Antarct Alp Res 39:200–209. doi:10.1657/1523-0430(2007)39[200:ATARGI]2.0.CO;2

    Article  Google Scholar 

  • Batllori E, Gutiérrez E (2008) Regional tree line dynamics in response to global change in the Pyrenees. J Ecol 96:1275–1288. doi:10.1111/j.1365-2745.2008.01429.x

    Article  Google Scholar 

  • Batllori E, Camarero JJ, Ninot JM, Gutiérrez E (2009) Seedling recruitment, survival and facilitation in alpine Pinus uncinata tree line ecotones. Implications and potential responses to climate warming. Glob Ecol Biogeogr 18:460–472. doi:10.1111/j.1466-8238.2009.00464.x

    Article  Google Scholar 

  • Batllori E, Camarero JJ, Gutiérrez E (2010) Current regeneration patterns at the tree line in the Pyrenees indicate similar recruitment processes irrespective of the past disturbance regime. J Biogeogr 37:1938–1950. doi:10.1111/j.1365-2699.2010.02348.x

    Google Scholar 

  • Baumgartner R (2015) Farewell to yak and yeti? The Rolwaling Sherpas facing a globalised world. Vajra Books, Kathmandu

    Google Scholar 

  • Bernoulli M, Körner C (1999) Dry matter allocation in treeline trees. Phyton (Austria) 39:7–12

    Google Scholar 

  • Bhusal NP (2012) Buffer zone management system in protected areas of Nepal. Third Pole J Geogr Educ 11–12:34–44. doi:10.3126/ttp.v11i0.11558

    Google Scholar 

  • Bhutiyani MR, Kale VS, Pawar NJ (2010) Climate change and the precipitation variations in the northwestern Himalaya: 1866–2006. Int J Climatol 30:535–548. doi:10.1002/joc.1920

    Google Scholar 

  • Bolli JC, Rigling A, Bugmann H (2007) The influence of changes in climate and land-use on regeneration dynamics of Norway spruce at the treeline in the Swiss Alps. Silva Fenn 41:55–70

    Article  Google Scholar 

  • Camarero JJ, Gutiérrez E (2004) Pace and pattern of recent treeline dynamics: response of ecotones to climatic variability in the Spanish Pyrenees. Clim Chang 63:181–200. doi:10.1023/B:CLIM.0000018507.71343.46

    Article  Google Scholar 

  • Chhetri PK, Cairns DM (2015) Contemporary and historic population structure of Abies spectabilis at treeline in Barun valley, eastern Nepal Himalaya. J Mt Sci 12:558–570. doi:10.1007/s11629-015-3454-5

    Article  Google Scholar 

  • Cieraad E, McGlone MS (2014) Thermal environment of New Zealand’s gradual and abrupt treeline ecotones. N Z J Ecol 38:12–25

    Google Scholar 

  • Crawford RMM (2008) Plants at the margin: ecological limits and climate change. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Dirnböck T, Dullinger S, Grabherr G (2003) A regional impact assessment of climate and land-use change on alpine vegetation. J Biogeogr 30:401–417. doi:10.1046/j.1365-2699.2003.00839.x

    Article  Google Scholar 

  • Duan K, Yao T, Thompson LG (2006) Response of monsoon precipitation in the Himalayas to global warming. J Geophys Res Atmos 111:D19110. doi:10.1029/2006JD007084

    Article  Google Scholar 

  • Durak T, Żywiec M, Kapusta P, Holeksa J (2015) Impact of land use and climate changes on expansion of woody species on subalpine meadows in the eastern Carpathians. For Ecol Manag 339:127–135. doi:10.1016/j.foreco.2014.12.014

    Article  Google Scholar 

  • Dutta PK, Dutta BK, Das AK, Sundriyal RC (2014) Alpine timberline research gap in Himalaya: a literature review. Indian For 140:419–427

    Google Scholar 

  • Elliott GP (2011) Influences of 20th-century warming at the upper tree line contingent on local-scale interactions: evidence from a latitudinal gradient in the Rocky Mountains, USA. Glob Ecol Biogeogr 20:46–57. doi:10.1111/j.1466-8238.2010.00588.x

    Article  Google Scholar 

  • Elliott G (2012) The role of thresholds and fine-scale processes in driving upper treeline dynamics in the Bighorn Mountains, Wyoming. Phys Geogr 33:129–145. doi:10.2747/0272-3646.33.2.129

    Article  Google Scholar 

  • Gaire N, Dhakal Y, Lekhak H, Bhuju D, Shah S (2010) Vegetation dynamics in treeline ecotone of Langtang National Park, Central Nepal. Nepal J Sci Technol 11:107–114. doi:10.3126/njst.v11i0.4132

    Google Scholar 

  • Gaire NP, Dhakal YR, Lekhak HC, Bhuju DR, Shah SK (2011) Dynamics of Abies spectabilis in relation to climate change at the treeline ecotone in Langtang National Park. Nepal J Sci Technol 12:220–229. doi:10.3126/njst.v12i0.6506

    Google Scholar 

  • Gaire NP, Koirala M, Bhuju DR, Borgaonkar HP (2014) Treeline dynamics with climate change at the central Nepal Himalaya. Clim Past 10:1277–1290. doi:10.5194/cp-10-1277-2014

    Article  Google Scholar 

  • Gallenmüller F, Bogenrieder A, Speck T (1999) Biomechanische und ökologische Untersuchungen an Alnus viridis (Chaix) DC. in verschiedenen Höhenlagen der Schweizer Alpen. Ber. Eidgenöss. Forsch.anst. Wald Schnee Landsch. 347. Publikationen WSL, Birmensdorf

    Google Scholar 

  • Gehrig-Fasel J, Guisan A, Zimmermann NE (2007) Tree line shifts in the Swiss Alps: climate change or land abandonment? J Veg Sci 18:571–582. doi:10.1111/j.1654-1103.2007.tb02571.x

    Article  Google Scholar 

  • Gehrig-Fasel J, Guisan A, Zimmermann NE (2008) Evaluating thermal treeline indicators based on air and soil temperature using an air-to-soil temperature transfer model. Ecol Model 213:345–355. doi:10.1016/j.ecolmodel.2008.01.003

    Article  Google Scholar 

  • Gerlitz L, Bechtel B, Böhner J, Bobrowski B, Bürzle B, Müller M, Scholten T, Schickhoff U, Schwab N, Weidinger J (2016) Analytic comparison of temperature lapse rates and precipitation gradients in a Himalayan treeline environment – Implications for statistical downscaling. In: Singh RB, Schickhoff U, Mal S (eds) Climate change, glacier response, and vegetation dynamics in the Himalaya. Springer, Cham, pp 49–64

    Google Scholar 

  • Gerlitz L, Conrad O, Thomas A, Böhner J (2014) Warming patterns over the Tibetan Plateau and adjacent lowlands derived from elevation- and bias-corrected ERA-Interim data. Clim Res 58:235–246. doi:10.3354/cr01193

    Article  Google Scholar 

  • Germino MJ, Smith WK, Resor AC (2002) Conifer seedling distribution and survival in an alpine-treeline ecotone. Plant Ecol 162:157–168. doi:10.1023/A:1020385320738

    Article  Google Scholar 

  • Ghimire B, Lekhak HD (2007) Regeneration of Abies spectabilis (D. Don) Mirb. in subalpine forest of Upper Manang, north-central Nepal. In: Chaudhary RP, Aase TH, Vetaas OR, Subedi BP (eds) Local effects of global changes in the Himalayas: Manang, Nepal. Tribhuvan University/Nepal and University of Bergen, Norway, Kathmandu, pp 139–149

    Google Scholar 

  • Ghimire B, Mainali KP, Lekhak HD, Chaudhary RP, Ghimeray AK (2010) Regeneration of Pinus wallichiana AB Jackson in a trans-Himalayan dry valley of north-central Nepal. Himal J Sci 6:19–26. doi:10.3126/hjs.v6i8.1798

    Google Scholar 

  • Grigor’ev AA, Moiseev PA, Nagimov ZY (2013) Dynamics of the timberline in high mountain areas of the nether-polar Urals under the influence of current climate change. Russ J Ecol 44:312–323. doi:10.1134/S1067413613040061

    Article  Google Scholar 

  • Harsch MA, Bader MY (2011) Treeline form – a potential key to understanding treeline dynamics. Glob Ecol Biogeogr 20:582–596. doi:10.1111/j.1466-8238.2010.00622.x

    Article  Google Scholar 

  • Harsch MA, Hulme PE, McGlone MS, Duncan RP (2009) Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol Lett 12:1040–1049. doi:10.1111/j.1461-0248.2009.01355.x

    Article  Google Scholar 

  • Hoch G, Körner C (2009) Growth and carbon relations of tree line forming conifers at constant vs. variable low temperatures. J Ecol 97:57–66. doi:10.1111/j.1365-2745.2008.01447.x

    Article  Google Scholar 

  • Hofgaard A, Dalen L, Hytteborn H (2009) Tree recruitment above the treeline and potential for climate-driven treeline change. J Veg Sci 20:1133–1144. doi:10.1111/j.1654-1103.2009.01114.x

    Article  Google Scholar 

  • Holtmeier F-K (2009) Mountain timberlines. Ecology, patchiness, and dynamics. Springer, New York

    Book  Google Scholar 

  • Holtmeier F-K, Broll G (2005) Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Glob Ecol Biogeogr 14:395–410. doi:10.1111/j.1466-822X.2005.00168.x

    Article  Google Scholar 

  • Holtmeier F-K, Broll G (2010) Wind as an ecological agent at treelines in North America, the Alps, and the European Subarctic. Phys Geogr 31:203–233. doi:10.2747/0272-3646.31.3.203

    Article  Google Scholar 

  • Jain SK, Kumar V, Saharia M (2013) Analysis of rainfall and temperature trends in northeast India. Int J Climatol 33:968–978. doi:10.1002/joc.3483

    Article  Google Scholar 

  • Jalkanen R, Konocpka B (1998) Snow-packing as a potential harmful factor on Picea abies, Pinus sylvestris and Betula pubescens at high altitude in northern Finland. Eur J For Pathol 28:373–382. doi:10.1111/j.1439-0329.1998.tb01191.x

    Article  Google Scholar 

  • Kessler M, Toivonen JM, Sylvester SP, Kluge J, Hertel D (2014) Elevational patterns of Polylepis tree height (Rosaceae) in the high Andes of Peru: role of human impact and climatic conditions. Front Plant Sci 5:194. doi:10.3389/fpls.2014.00194

    Article  Google Scholar 

  • Kirdyanov AV, Hagedorn F, Knorre AA, Fedotova EV, Vaganov EA, Naurzbaev MM, Moiseev PA, Rigling A (2012) 20th century tree-line advance and vegetation changes along an altitudinal transect in the Putorana Mountains, northern Siberia. Boreas 41:56–67. doi:10.1111/j.1502-3885.2011.00214.x

    Article  Google Scholar 

  • Körner C (2012) Alpine treelines: functional ecology of the global high elevation tree limits. Springer, Basel

    Book  Google Scholar 

  • Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeogr 31:713–732. doi:10.1111/j.1365-2699.2003.01043.x

    Article  Google Scholar 

  • Liu X, Chen B (2000) Climatic warming in the Tibetan Plateau during recent decades. Int J Climatol 20:1729–1742. doi:10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y

    Article  Google Scholar 

  • Lloyd AH (2005) Ecological histories from Alaskan tree lines provide insight into future change. Ecology 86:1687–1695

    Article  Google Scholar 

  • Lv L-X, Zhang Q-B (2012) Asynchronous recruitment history of Abies spectabilis along an altitudinal gradient in the Mt. Everest region. J Plant Ecol 5:147–156. doi:10.1093/jpe/rtr016

    Article  Google Scholar 

  • Malanson G, Butler D, Fagre D, Walsh S, Tomback D, Daniels L, Resler L, Smith W, Weiss D, Peterson D, Bunn A, Hiemstra C, Liptzin D, Bourgeron P, Shen Z, Millar C (2007) Alpine treeline of Western North America: linking organism-to-landscape dynamics. Phys Geogr 28:378–396. doi:10.2747/0272-3646.28.5.378

    Article  Google Scholar 

  • Malanson GP, Resler LM, Bader MY, Holtmeier F-K, Butler DR, Weiss DJ, Daniels LD, Fagre DB (2011) Mountain treelines: a roadmap for research orientation. Arct Antarct Alp Res 43:167–177. doi:10.1657/1938-4246-43.2.167

    Article  Google Scholar 

  • Masuzawa T (1985) Ecological studies on the timberline of Mt. Fuji I. Structure of plant community and soil development on the timberline. Bot Mag Tokyo 98:15–28

    Article  Google Scholar 

  • Miehe G (1990) Langtang Himal: Flora und Vegetation als Klimazeiger und -zeugen im Himalaya. Dissertationes Botanicae 158. Cramer, Berlin

    Google Scholar 

  • Miehe G (1991) Die Vegetationskarte des Khumbu Himal (Mt. Everest-Südabdachung) 1: 50 000: Gefügemuster der Vegetation und Probleme der Kartierung (The vegetation map of the Khumbu Himal (Mt. Everest South Slope) 1: 50,000. Vegetation patterns and problems of mapping). Erdkunde 45:81–94. doi:10.3112/erdkunde.1991.02.01

    Article  Google Scholar 

  • Miehe G, Miehe S (2000) Comparative high mountain research on the treeline ecotone under human impact. Carl Troll’s “Asymmetrical zonation of the humid vegetation types of the world” of 1948 reconsidered. Erdkunde 54:34–50. doi:10.3112/erdkunde.2000.01.03

    Article  Google Scholar 

  • Miehe G, Miehe S, Böhner J, Bäumler R, Ghimire SK, Bhattarai K, Chaudhary RP, Subedi M, Jha PK, Pendry C (2015) Vegetation ecology. In: Miehe G, Pendry C, Chaudhary RP (eds) Nepal: An introduction to the natural history, ecology and human environment of the Himalayas. Royal Botanic Garden Edinburgh, pp 385–472

    Google Scholar 

  • Müller M, Schickhoff U, Scholten T, Drollinger S, Böhner J, Chaudhary RP (2016) How do soil properties affect alpine treelines? General principles in a global perspective and novel findings from Rolwaling Himal, Nepal. Progr Phys Geogr 40:135–160. doi:10.1177/0309133315615802

    Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2014) Vegan: community ecology package. R package version 2.2-0. http://CRAN.R-project.org/package=vegan

  • Pauchard A, Kueffer C, Dietz H, Daehler CC, Alexander J, Edwards PJ, Arévalo JR, Cavieres LA, Guisan A, Haider S, Jakobs G, McDougall K, Millar CI, Naylor BJ, Parks CG, Rew LJ, Seipel T (2009) Ain’t no mountain high enough: plant invasions reaching new elevations. Front Ecol Environ 7:479–486. doi:10.1890/080072

    Article  Google Scholar 

  • Penniston R, Lundberg A (2014) Forest expansion as explained by climate change and changes in land use: a study from Bergen, western Norway. Geogr Ann Ser Phys Geogr 96:579–589. doi:10.1111/geoa.12056

    Google Scholar 

  • Piermattei A, Garbarino M, Urbinati C (2014) Structural attributes, tree-ring growth and climate sensitivity of Pinus nigra Arn. at high altitude: common patterns of a possible treeline shift in the central Apennines (Italy). Dendrochronologia 32:210–219. doi:10.1016/j.dendro.2014.05.002

    Article  Google Scholar 

  • Press JR, Shrestha KK, Sutton DA (2000) Annotated checklist of the flowering plants of Nepal. The Natural History Museum, London. http://www.efloras.org/flora_page.aspx?flora_id=110, updated online version accessed 21 Apr 2015

    Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Renaud V, Innes JL, Dobbertin M, Rebetez M (2011) Comparison between open-site and below-canopy climatic conditions in Switzerland for different types of forests over 10 years (1998−2007). Theor Appl Climatol 105:119–127. doi:10.1007/s00704-010-0361-0

    Article  Google Scholar 

  • Sacherer J (1979) The high altitude ethnobotany of the Rolwaling Sherpas. Contrib Nepal Stud 6:45–64

    Google Scholar 

  • Schickhoff U (2002) Die Degradierung der Gebirgswälder Nordpakistans: Faktoren, Prozesse und Wirkungszusammenhänge in einem regionalen Mensch-Umwelt-System. Steiner, Stuttgart

    Google Scholar 

  • Schickhoff U (2005) The upper timberline in the Himalayas, Hindu Kush and Karakorum: a review of geographical and ecological aspects. In: Broll G, Keplin B (eds) Mountain ecosystems. Studies in treeline ecology. Springer, Berlin, pp 275–354

    Chapter  Google Scholar 

  • Schickhoff U (2011) Dynamics of mountain ecosystems. In: Millington AC, Blumler MA, Schickhoff U (eds) The SAGE handbook of biogeography. Sage, London, pp 313–337

    Google Scholar 

  • Schickhoff U, Bobrowski M, Böhner J, Bürzle B, Chaudhary RP, Gerlitz L, Heyken H, Lange J, Müller M, Scholten T, Schwab N, Wedegärtner R (2015) Do Himalayan treelines respond to recent climate change? An evaluation of sensitivity indicators. Earth Syst Dyn 6:245–265. doi:10.5194/esd-6-245-2015

    Google Scholar 

  • Schickhoff U, Bobrowski M, Böhner J, Bürzle B, Chaudhary RP, Gerlitz L, Lange J, Müller M, Scholten T, Schwab N (2016) Climate change and treeline dynamics in the Himalaya. In: Singh RB, Schickhoff U, Mal S (eds) Climate change, glacier response, and vegetation dynamics in the Himalaya. Springer, Cham, pp 271–306

    Google Scholar 

  • Schmidt-Vogt D (1990) High altitude forests in the Jugal Himal (eastern central Nepal): forest types and human impact. Steiner, Stuttgart

    Google Scholar 

  • Shi P, Wu N (2013) The timberline ecotone in the Himalayan region: an ecological review. In: Wu N, Rawat GS, Joshi S, Ismail M, Sharma E (eds) High-altitude rangelands and their interfaces in the Hindu Kush Himalayas. ICIMOD, Kathmandu, pp 108–116

    Google Scholar 

  • Shi P, Körner C, Hoch G (2008) A test of the growth-limitation theory for alpine tree line formation in evergreen and deciduous taxa of the eastern Himalayas. Funct Ecol 22:213–220. doi:10.1111/j.1365-2435.2007.01370.x

    Article  Google Scholar 

  • Shrestha AB, Wake CP, Mayewski PA, Dibb JE (1999) Maximum temperature trends in the Himalaya and its vicinity: an analysis based on temperature records from Nepal for the period 1971–94. J Clim 12:2775–2786. doi:10.1175/1520-0442(1999)012<2775:MTTITH>2.0.CO;2

    Article  Google Scholar 

  • Shrestha BB, Ghimire B, Lekhak HD, Jha PK (2007) Regeneration of treeline Birch (Betula utilis D. Don) forest in a trans-Himalayan dry valley in central Nepal. Mt Res Dev 27:259–267. doi:10.1659/mrdd.0784

    Article  Google Scholar 

  • Shrestha UB, Shrestha S, Chaudhary P, Chaudhary RP (2010) How representative is the protected areas system of Nepal? Mt Res Dev 30:282–294. doi:10.1659/MRD-JOURNAL-D-10-00019.1

    Article  Google Scholar 

  • Shrestha UB, Gautam S, Bawa KS (2012) Widespread climate change in the Himalayas and associated changes in local ecosystems. PLoS ONE 7:e36741. doi:10.1371/journal.pone.0036741

    Article  Google Scholar 

  • Shrestha KB, Hofgaard A, Vandvik V (2014) Recent treeline dynamics are similar between dry and mesic areas of Nepal, central Himalaya. J Plant Ecol 8:347–358. doi:10.1093/jpe/rtu035

    Article  Google Scholar 

  • Smith WK, Germino MJ, Hancock TE, Johnson DM (2003) Another perspective on altitudinal limits of alpine timberlines. Tree Physiol 23:1101–1112

    Article  Google Scholar 

  • Stevens GC, Fox JF (1991) The causes of treeline. Annu Rev Ecol Syst 22:177–191. doi:10.1146/annurev.es.22.110191.001141

    Article  Google Scholar 

  • Sujakhu H, Gosai KR, Karmacharya SB (2013) Forest structure and regeneration pattern of Betula utilis D. Don in Manaslu Conservation Area, Nepal. Ecoprint Int J Ecol 20:107–113. doi:10.3126/eco.v20i0.11472

    Google Scholar 

  • Trant AJ, Hermanutz L (2014) Advancing towards novel tree lines? A multispecies approach to recent tree line dynamics in subarctic alpine Labrador, northern Canada. J Biogeogr 41:1115–1125. doi:10.1111/jbi.12287

    Article  Google Scholar 

  • Treml V, Chuman T (2015) Ecotonal dynamics of the altitudinal forest limit are affected by terrain and vegetation structure variables: an example from the Sudetes mountains in central Europe. Arct Antarct Alp Res 47:133–146. doi:10.1657/AAAR0013-108

    Article  Google Scholar 

  • Troll C (1973) The upper timberlines in different climatic zones. Arct Alp Res 5:A3–A18. doi:10.2307/1550148

    Google Scholar 

  • Van Laar A, Akça A (2007) Forest mensuration. Springer, Dordrecht

    Book  Google Scholar 

  • Walter H, Medina E (1969) Die Bodentemperatur als ausschlaggebender Faktor für die Gliederung der subalpinen und alpinen Stufe in den Anden Venezuelas (Vorläufige Mitteilung). Ber Dtsch Bot Ges 82:275–281. doi:10.1111/j.1438-8677.1969.tb02269.x

    Google Scholar 

  • Wang T, Zhang Q-B, Ma K (2006) Treeline dynamics in relation to climatic variability in the central Tianshan mountains, northwestern China. Glob Ecol Biogeogr 15:406–415. doi:10.1111/j.1466-822X.2006.00233.x

    Article  Google Scholar 

  • Wang Y, Camarero JJ, Luo T, Liang E (2012) Spatial patterns of Smith fir alpine treelines on the south-eastern Tibetan Plateau support that contingent local conditions drive recent treeline patterns. Plant Ecol Divers 5:311–321. doi:10.1080/17550874.2012.704647

    Article  Google Scholar 

  • Wang S-Y, Yoon J-H, Gillies RR, Cho C (2013) What caused the winter drought in western Nepal during recent years? J Clim 26:8241–8256. doi:10.1175/JCLI-D-12-00800.1

    Article  Google Scholar 

  • Wickham H (2011) The split-apply-combine strategy for data analysis. J Stat Softw 40:1–29

    Google Scholar 

  • Wiegand T, Camarero JJ, Rüger N, Gutiérrez E (2006) Abrupt population changes in treeline ecotones along smooth gradients. J Ecol 94:880–892. doi:10.1111/j.1365-2745.2006.01135.x

    Article  Google Scholar 

  • Wieser G, Matyssek R, Luzian R, Zwerger P, Pindur P, Oberhuber W, Gruber A (2009) Effects of atmospheric and climate change at the timberline of the central European Alps. Ann For Sci 66:402–402. doi:10.1051/forest/2009023

    Article  Google Scholar 

  • Wieser G, Holtmeier F-K, Smith WK (2014) Treelines in a changing global environment. In: Tausz M, Grulke N (eds) Trees in a changing environment. Springer, Dordrecht, pp 221–263

    Google Scholar 

  • Winiger M (1981) Zur thermisch-hygrischen Gliederung des Mount Kenya (Causes and effects of the thermo-hygric differentiation of Mt. Kenya). Erdkunde 35:248–263. doi:10.3112/erdkunde.1981.04.02

    Article  Google Scholar 

  • Zurbriggen N, Hättenschwiler S, Frei ES, Hagedorn F, Bebi P (2013) Performance of germinating tree seedlings below and above treeline in the Swiss Alps. Plant Ecol 214:385–396. doi:10.1007/s11258-013-0176-z

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Ram Bahadur, Bijay Raj Subedi, Simon Drollinger, Helge Heyken, Nina Kiese, Madan K. Suwal, Hanna Wanli and Ronja Wedegärtner who helped us during field work and to Julika Hellmold for suggestions on an earlier draft. We acknowledge Chandra Subedi for great support in logistics and administrative issues. B. Bürzle was funded by Studienstiftung des deutschen Volkes. We are indebted to the German Research Foundation (DFG SCHI 436/14-1, SCHO 739/14-1, BO 1333/4-1), to Nepalese authorities for research permits and to the community in Rolwaling for the assistance in fieldwork, willingness to cooperate and hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niels Schwab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schwab, N. et al. (2016). Treeline Responsiveness to Climate Warming: Insights from a Krummholz Treeline in Rolwaling Himal, Nepal. In: Singh, R., Schickhoff, U., Mal, S. (eds) Climate Change, Glacier Response, and Vegetation Dynamics in the Himalaya. Springer, Cham. https://doi.org/10.1007/978-3-319-28977-9_16

Download citation

Publish with us

Policies and ethics