Skip to main content

Rhizodeposits: An Essential Component for Microbial Interactions in Rhizosphere

  • Chapter
  • First Online:
Re-visiting the Rhizosphere Eco-system for Agricultural Sustainability

Part of the book series: Rhizosphere Biology ((RHBIO))

Abstract

Rhizodeposits are essential rhizosphere-associated constituents synthesized by plants that support various biological and physiochemical activities in soil. They significantly influence microbial root colonization capacity, multiplication of rhizosphere microorganisms, soil microbial activity, soil health and secretion of organic bioactive compounds. Root exudates are a group of vitally important compounds with multifarious functions and are released from the living plant roots. They are a complex group of substances secreted by plant roots consisting of low molecular and high molecular weight constituents. The root exudate composition reflects the opposing-associating trait of plants towards rhizosphere microorganisms. These rhizosphere microorganisms produce a wide range of antibiotics that provide a defence to the host plants against a number of phytopathogens. The root exudates, produced as a part of the rhizodeposition process, exert a direct impact on the biogeochemical cycling of carbon and nitrogen. They help in modulating organic matter decomposition in soil by altering the microbial communities involved in the decomposition of soil organic matter and also affect the soil nitrification process. Root exudates are well known for their activity as chemoattractant and signalling molecules for successful interactions between plant and rhizosphere microorganisms. Thus, the current chapter will elaborate on the various roles of root exudates in plant-microbe interaction and rhizosphere functioning, the mechanism of root exudates and the molecular insights of the root exudation process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akiyama K, Hayashi H (2006) Strigolactones: chemical signals for fungal symbionts and parasitic weeds in plant roots. Ann Bot 97(6):925–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allard-Massicotte R, Tessier L, Lécuyer F, Lakshmanan V, Lucier JF, Garneau D et al (2016) Bacillus subtilis early colonization of Arabidopsis thaliana roots involves multiple chemotaxis receptors. MBio 7(6):e01664-16

    Article  PubMed  PubMed Central  Google Scholar 

  • Auguy F, Abdel-Lateif K, Doumas P, Badin P, Guerin V, Bogusz D, Hocher V (2011) Activation of the isoflavonoid pathway in actinorhizal symbioses. Funct Plant Biol 38(9):690–696

    Article  CAS  PubMed  Google Scholar 

  • Ayers WA, Thornton RH (1968) Exudation of amino acids by intact and damaged roots of wheat and peas. Plant Soil 28(2):193–207

    Article  CAS  Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32(6):666–681

    Article  CAS  PubMed  Google Scholar 

  • Badri DV, Quintana N, El Kassis EG, Kim HK, Choi YH, Sugiyama A et al (2009) An ABC transporter mutation alters root exudation of phytochemicals that provoke an overhaul of natural soil microbiota. Plant Physiol 151(4):2006–2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badri DV, Zolla G, Bakker MG, Manter DK, Vivanco JM (2013) Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior. New Phytol 198(1):264–273

    Article  CAS  PubMed  Google Scholar 

  • Bagnarol E, Popovici J, Alloisio N, Maréchal J, Pujic P, Normand P, Fernandez MP (2007) Differential Frankia protein patterns induced by phenolic extracts from Myricaceae seeds. Physiol Plant 130(3):380–390

    Article  CAS  Google Scholar 

  • Bakker PA, Berendsen RL, Doornbos RF, Wintermans PC, Pieterse CM (2013) The rhizosphere revisited: root microbiomics. Front Plant Sci 4:165

    Article  PubMed  PubMed Central  Google Scholar 

  • Baudoin E, Benizri E, Guckert A (2003) Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biol Biochem 35(9):1183–1192

    Article  CAS  Google Scholar 

  • Bekkara F, Jay M, Viricel MR, Rome S (1998) Distribution of phenolic compounds within seed and seedlings of two Vicia faba cvs differing in their seed tannin content, and study of their seed and root phenolic exudations. Plant Soil 203(1):27–36

    Article  Google Scholar 

  • Besnard J, Pratelli R, Zhao C, Sonawala U, Collakova E, Pilot G et al (2016) UMAMIT14 is an amino acid exporter involved in phloem unloading in Arabidopsis roots. J Exp Bot 67(22):6385–6397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bezzate S, Aymerich S, Chambert R, Czarnes S, Berge O, Heulin T (2000) Disruption of the Paenibacillus polymyxa levansucrase gene impairs its ability to aggregate soil in the wheat rhizosphere. Environ Microbiol 2(3):333–342

    Article  CAS  PubMed  Google Scholar 

  • Bogino PC, Oliva MD, Sorroche FG, Giordano W (2013) The role of bacterial biofilms and surface components in plant-bacterial associations. Int J Mol Dci 14(8):15838–15859

    Article  Google Scholar 

  • Bowsher AW, Evans S, Tiemann LK, Friesen ML (2018) Effects of soil nitrogen availability on rhizodeposition in plants: a review. Plant Soil 423(1–2):59–85

    Article  CAS  Google Scholar 

  • Brencic A, Winans SC (2005) Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiol Mol Biol Rev 69(1):155–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canarini A, Kaiser C, Merchant A, Richter A, Wanek W (2019) Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli. Front Plant Sci 10:157

    Article  PubMed  PubMed Central  Google Scholar 

  • Cebron A, Louvel B, Faure P, France-Lanord C, Chen Y, Murrell JC, Leyval C (2011) Root exudates modify bacterial diversity of phenanthrene degraders in PAH-polluted soil but not phenanthrene degradation rates. Environ Microbiol 13(3):722–736

    Article  CAS  PubMed  Google Scholar 

  • Chaparro JM, Badri DV, Bakker MG, Sugiyama A, Manter DK, Vivanco JM (2013) Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS One 8(2):e55731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng W, Parton WJ, Gonzalez-Meler MA, Phillips R, Asao S, McNickle GG, Brzostek E, Jastrow JD (2014) Synthesis and modeling perspectives of rhizosphere priming. New Phytol 201(1):31–44

    Article  CAS  PubMed  Google Scholar 

  • Cullimore JV, Ranjeva R, Bono JJ (2001) Perception of lipo-chitooligosaccharidic Nod factors in legumes. Trends Plant Sci 6(1):24–30

    Article  CAS  PubMed  Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. In: Food security in nutrient-stressed environments: exploiting plants’ genetic capabilities, pp 201–213

    Chapter  Google Scholar 

  • De-la-Pena C, Loyola-Vargas VM (2014) Biotic interactions in the rhizosphere: a diverse cooperative enterprise for plant productivity. Plant Physiol 166(2):701–719

    Article  PubMed  PubMed Central  Google Scholar 

  • Donnelly PK, Hegde RS, Fletcher JS (1994) Growth of PCB-degrading bacteria on compounds from photosynthetic plants. Chemosphere 28(5):981–988

    Article  Google Scholar 

  • Farrar J, Hawes M, Jones D, Lindow S (2003) How roots control the flux of carbon to the rhizosphere. Ecology 84(4):827–837

    Article  Google Scholar 

  • Feng H, Zhang N, Du W, Zhang H, Liu Y, Fu R et al (2018) Identification of chemotaxis compounds in root exudates and their sensing chemoreceptors in plant-growth-promoting rhizobacteria Bacillus amyloliquefaciens SQR9. Mol Plant-Microbe Interact 31(10):995–1005

    Article  CAS  PubMed  Google Scholar 

  • Frenzel B (1957) Zur abgabe von aminosauren und amiden an das nahrmedium durch die wurzeln von Helianthus annus. Planta 49:210–234

    Article  CAS  Google Scholar 

  • Frenzel B (1960) Aetiology of the accumulation of amino acids and amides in the root zone of Helianthus annuus L. Contribution to the clarification of problems of the rhizosphere. Planta 55:169–207

    Article  CAS  Google Scholar 

  • Gagnon H, Ibrahim RK (1998) Aldonic acids: a novel family of nod gene inducers of Mesorhizobium loti, Rhizobium lupini, and Sinorhizobium meliloti. Mol Plant-Microbe Interact 11(10):988–998

    Article  CAS  Google Scholar 

  • Grotewold E (2001) Subcellular trafficking of phytochemicals. Recent Res Dev Plant Physiol 2:31–48

    CAS  Google Scholar 

  • Haichar FEZ, Santaella C, Heulin T, Achouak W (2014) Root exudates mediated interactions belowground. Soil Biol Biochem 77:69–80

    Article  CAS  Google Scholar 

  • Haichar FE, Roncato MA, Achouak W (2012) Stable isotope probing of bacterial community structure and gene expression in the rhizosphere of Arabidopsis thaliana. FEMS Microbiol Ecol 81(2):291–302

    Article  PubMed  Google Scholar 

  • Hale MG, Foy CL, Shay FJ (1971) Factors affecting root exudation. In: Advances in agronomy. Academic Press, pp 89–109

    Google Scholar 

  • Hayat S, Faraz A, Faizan M (2017) Root exudates: composition and impact on plant–microbe interaction. Biofilms Plant Soil Health 14:179–193

    Article  Google Scholar 

  • Hennion N, Durand M, Vriet C, Doidy J, Maurousset L, Lemoine R, Pourtau N (2019) Sugars en route to the roots. Transport, metabolism and storage within plant roots and towards microorganisms of the rhizosphere. Physiol Plant 165(1):44–57

    Article  CAS  PubMed  Google Scholar 

  • Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa NK, Mori S (1999) Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol 119(2):471–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horiuchi JI, Prithiviraj B, Bais HP, Kimball BA, Vivanco JM (2005) Soil nematodes mediate positive interactions between legume plants and Rhizobium bacteria. Planta 222(5):848–857

    Article  CAS  PubMed  Google Scholar 

  • Hughes M, Donnelly C, Crozier A, Wheeler CT (1999) Effects of the exposure of roots Almus glutinosa to light on flavonoid and nodulation. Can J Bot 77:1311–1315

    CAS  Google Scholar 

  • Husain SS, McKeen WE (1963) Interactions between strawberry roots and Rhizoctonia fragariae. Phytopathology 53(5):541

    Google Scholar 

  • Joner EJ, Corgie SC, Amellal N, Leyval C (2002) Nutritional constraints to degradation of polycyclic aromatic hydrocarbons in a simulated rhizosphere. Soil Biol Biochem 34(6):859–864

    Article  CAS  Google Scholar 

  • Jones PM, George AM (2002) Mechanism of ABC transporters: a molecular dynamics simulation of a well characterized nucleotide-binding subunit. Proc Natl Acad Sci 99(20):12639–12644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163(3):459–480

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi Y, Ohyama Y, Kobayashi Y, Ito H, Iuchi S, Fujita M et al (2014) STOP2 activates transcription of several genes for Al-and low pH-tolerance that are regulated by STOP1 in Arabidopsis. Mol Plant 7(2):311–322

    Article  CAS  PubMed  Google Scholar 

  • Lanoue A, Burlat V, Henkes GJ, Koch I, Schurr U, Röse US (2010) De novo biosynthesis of defense root exudates in response to Fusarium attack in barley. New Phytol 185(2):577–588

    Article  CAS  PubMed  Google Scholar 

  • Le Strange KK, Bender GL, Djordjevic MA, Rolfe BG, Redmond JW (1990) The Rhizobium strain NGR234 nodD1 gene product responds to activation by the simple phenolic compounds vanillin and isovanillin present in wheat seedling extracts. Mol Plant-Microbe Interact 3(4):214–220

    Article  Google Scholar 

  • Liesche J, Schulz A (1930) A Phloem transport in gymnosperms: a question of pressure and resistance. Curr Opin Plant Biol 43(2018):36–42

    Google Scholar 

  • Liu J, Magalhaes JV, Shaff J, Kochian LV (2009) Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. Plant J 57(3):389–399

    Article  CAS  PubMed  Google Scholar 

  • Marschner P, Neumann G, Kania A, Weiskopf L, Lieberei R (2002) Spatial and temporal dynamics of the microbial community structure in the rhizosphere of cluster roots of white lupin (Lupinus albus L.). Plant Soil 246(2):167–174

    Article  CAS  Google Scholar 

  • Martin P (1957) Die Abgabe yon organischen Verbindungen, insbesondere yon Scopoletin, aus den keimwurzeln des Hafers. Zeitschr Bot 45:475–506

    CAS  Google Scholar 

  • Mavrodi OV, Mavrodi DV, Parejko JA, Thomashow LS, Weller DM (2012) Irrigation differentially impacts populations of indigenous antibiotic-producing Pseudomonas spp. in the rhizosphere of wheat. Appl Environ Microbiol 78(9):3214–3220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazzola M (2002) Mechanisms of natural soil suppressiveness to soilborne diseases. Antonie Van Leeuwenhoek 81(1–4):557–564

    Article  CAS  PubMed  Google Scholar 

  • McDougall BM (1968) The exudation of C14-labelled substances from roots of wheat seedlings. In: Transactions of the 9th Congress International Soil Science, pp 647–655

    Google Scholar 

  • McDougall BM, Rovira AD (1965) Carbon-14 labelled photosynthate in wheat root exudates. Nature 207(5001):1104–1105

    Article  CAS  Google Scholar 

  • Mierziak J, Kostyn K, Kulma A (2014) Flavonoids as important molecules of plant interactions with the environment. Molecules 19(10):16240–16265

    Article  PubMed  PubMed Central  Google Scholar 

  • Naim MS (1965) Development of rhizosphere and rhizoplane microflora of Aristida coerulescens in the Libyan desert. Arch Mikrobiol 50(4):321–325

    Article  Google Scholar 

  • Nardi S, Concheri G, Pizzeghello D, Sturaro A, Rella R, Parvoli G (2000) Soil organic matter mobilization by root exudates. Chemosphere 41(5):653–658

    Article  CAS  PubMed  Google Scholar 

  • Orelle C, Durmort C, Mathieu K, Duchêne B, Aros S, Fenaille F et al (2018) A multidrug ABC transporter with a taste for GTP. Sci Rep 8(1):1–4

    Article  CAS  Google Scholar 

  • Park SW, Lawrence CB, Linden JC, Vivanco JM (2002) Isolation and characterization of a novel ribosome-inactivating protein from root cultures of pokeweed and its mechanism of secretion from roots. Plant Physiol 130(1):164–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips DA, Joseph CM, Maxwell CA (1992) Trigonelline and stachydrine released from alfalfa seeds activate NodD2 protein in Rhizobium meliloti. Plant Physiol 99(4):1526–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popovici J, Walker V, Bertrand C, Bellvert F, Fernandez MP, Comte G (2011) Strain specificity in the Myricaceae–Frankia symbiosis is correlated to plant root phenolics. Funct Plant Biol 38(9):682–689

    Article  CAS  PubMed  Google Scholar 

  • Pratelli R, Voll LM, Horst RJ, Frommer WB, Pilot G (2010) Stimulation of nonselective amino acid export by glutamine dumper proteins. Plant Physiol 152(2):762–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rengel Z (2002) Genetic control of root exudation. In: Food security in nutrient-stressed environments: exploiting plants’ genetic capabilities. Springer Science & Business Media, pp 215–226

    Chapter  Google Scholar 

  • Rengel Z, Römheld V, Marschner H (1998) Uptake of zinc and iron by wheat genotypes differing in tolerance to zinc deficiency. J Plant Physiol 152(4–5):433–438

    Article  CAS  Google Scholar 

  • Rivoal J, Hanson AD (1994) Metabolic control of anaerobic glycolysis (overexpression of lactate dehydrogenase in transgenic tomato roots supports the Davies-Roberts hypothesis and points to a critical role for lactate secretion). Plant Physiol 106(3):1179–1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Römheld V (1991) The role of phytosiderophores in acquisition of iron and other micronutrients in graminaceous species: an ecological approach. In: Iron nutrition and interactions in plants. Springer, Dordrecht, pp 159–166

    Chapter  Google Scholar 

  • Römheld V, Marschner H (1990) Genotypical differences among graminaceous species in release of phytosiderophores and uptake of iron phytosiderophores. In: Genetic aspects of plant mineral nutrition. Springer, Dordrecht, pp 77–83

    Chapter  Google Scholar 

  • Rovira AD (1969) Plant root exudates. Botan Rev 35(1):35–57

    Article  CAS  Google Scholar 

  • Rudrappa T, Biedrzycki ML, Bais HP (2008) Causes and consequences of plant-associated biofilms. FEMS Microbiol Ecol 64(2):153–166

    Article  CAS  PubMed  Google Scholar 

  • Sachdev S, Singh RP (2018) Root colonization: imperative mechanism for efficient plant protection and growth. MOJ Ecol Environ Sci 3:240–242

    Google Scholar 

  • Sasse J, Martinoia E, Northen T (2018) Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci 23(1):25–41

    Article  CAS  PubMed  Google Scholar 

  • Schroth MN, Weinhold A, Hayman DS (1966) The effect of temperature on quantitative differences in exudates from germinating seeds of bean, pea, and cotton. Can J Bot 44(10):1429–1432

    Article  Google Scholar 

  • Sharma T, Dreyer I, Kochian L, Piñeros MA (2016) The ALMT family of organic acid transporters in plants and their involvement in detoxification and nutrient security. Front Plant Sci 7:1488

    Article  PubMed  PubMed Central  Google Scholar 

  • Shaw LJ, Morris P, Hooker JE (2006) Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ Microbiol 8(11):1867–1880

    Article  CAS  PubMed  Google Scholar 

  • Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30(4):205–240

    Article  CAS  PubMed  Google Scholar 

  • Steinkellner S, Lendzemo V, Langer I, Schweiger P, Khaosaad T, Toussaint JP, Vierheilig H (2007) Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions. Molecules 12(7):1290–1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subbarao GV, Wang HY, Ito O, Nakahara K, Berry WL (2007) NH +4 triggers the synthesis and release of biological nitrification inhibition compounds in Brachiaria humidicola roots. Plant Soil 290:245–257

    Article  CAS  Google Scholar 

  • Subbarao GV, Nakahara K, Ishikawa T, Ono H, Yoshida M, Yoshihashi T, Zhu Y, Zakir HAKM, Deshpande SP, Hash CT, Sahrawat KL (2013) Biological nitrification inhibition (BNI) activity in sorghum and its characterization. Plant Soil 366:243–259

    Article  CAS  Google Scholar 

  • Sun L, Kominami Y, Yoshimura K, Kitayama K (2017) Root-exudate flux variations among four co-existing canopy species in a temperate forest. Japan Ecol Res 32(3):331–339

    Article  Google Scholar 

  • Takanashi K, Shitan N, Yazaki K (2014) The multidrug and toxic compound extrusion (MATE) family in plants. Plant Biotechnol 14-0904

    Google Scholar 

  • Tiziani R, Mimmo T, Valentinuzzi F, Pii Y, Celletti S, Cesco S (2020) Root handling affects carboxylates exudation and phosphate uptake of white lupin roots. Front Plant Sci 11:584568

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsutsui T, Yamaji N, Ma JF (2011) Identification of a cis-acting element of ART1, a C2H2-type zinc-finger transcription factor for aluminum tolerance in rice. Plant Physiol 156(2):925–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Vuurde JW, Schippers B (1980) Bacterial colonization of seminal wheat roots. Soil Biol Biochem 12(6):559–565

    Article  Google Scholar 

  • von Wiren N, Mori S, Marschner H, Romheld V (1994) Iron inefficiency in maize mutant ys1 (Zea mays L. cv Yellow-Stripe) is caused by a defect in uptake of iron phytosiderophores. Plant Physiol 106(1):71–77

    Article  Google Scholar 

  • von Wirén N, Marschner H, Römheld V (1995) Uptake kinetics of iron-phytosiderophores in two maize genotypes differing in iron efficiency. Physiol Plant 93(4):611–616

    Article  Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132(1):44–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walter A, Römheld V, Marschner H, Mori S (1994) Is the release of phytosiderophores in zinc-deficient wheat plants a response to impaired iron utilization? Physiol Plant 92(3):493–500

    Article  CAS  Google Scholar 

  • Wang Q, Xiao J, Ding J, Zou T, Zhang Z, Liu Q, Yin H (2019) Differences in root exudate inputs and rhizosphere effects on soil N transformation between deciduous and evergreen trees. Plant Soil 29:1–3

    CAS  Google Scholar 

  • Watt M, Evans JR (1999) Linking development and determinacy with organic acid efflux from proteoid roots of white lupin grown with low phosphorus and ambient or elevated atmospheric CO2 concentration. Plant Physiol 120:705–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webb BA, Hildreth S, Helm RF, Scharf BE (2014) Sinorhizobium meliloti chemoreceptor McpU mediates chemotaxis toward host plant exudates through direct proline sensing. Appl Environ Microbiol 80(11):3404–3415

    Article  PubMed  PubMed Central  Google Scholar 

  • Weston LA, Ryan PR, Watt M (2012) Mechanisms for cellular transport and release of allelochemicals from plant roots into the rhizosphere. J Exp Bot 63(9):3445–3454

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Kobayashi Y, Wasaki J, Koyama H (2018) Organic acid excretion from roots: a plant mechanism for enhancing phosphorus acquisition, enhancing aluminum tolerance, and recruiting beneficial rhizobacteria. Soil Sci Plant Nutr 64(6):697–704

    Article  CAS  Google Scholar 

  • Xia JH, Roberts JK (1994) Improved cytoplasmic pH regulation, increased lactate efflux, and reduced cytoplasmic lactate levels are biochemical traits expressed in root tips of whole maize seedlings acclimated to a low-oxygen environment. Plant Physiol 105(2):651–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Wang X, Mao Z, Jiang Z, Gao Y, Chen X, Aubrey DP (2020) Root exudation rates decrease with increasing latitude in some tree species. Forests 11(10):1045

    Article  Google Scholar 

  • Yuan J, Raza W, Shen Q (2018) Root exudates dominate the colonization of pathogen and plant growth-promoting rhizobacteria. In: Root biology. Springer, Cham, pp 167–180

    Chapter  Google Scholar 

  • Yuen JP, Cassini ST, de Oliviera TT, Nagem TJ, Stacey G (1995) Xanthone induction of nod gene expression in Bradyrhizobium japonicum. Symbiosis 19:131–140

    CAS  Google Scholar 

  • Zakir HAKM, Subbarao GV, Pearse SJ, Gopalakrishnan S, Ito O, Ishikawa T, Kawano N, Nakahara K, Yoshihashi T, Ono H, Yoshida M (2008) Detection, isolation and characterization of a root-exuded compound, methyl 3-(4-hydroxyphenyl) propionate, responsible for biological nitrification inhibition by sorghum (Sorghum bicolor). New Phytol 180:442–451

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Subramanian S, Stacey G, Yu O (2009) Flavones and flavonols play distinct critical roles during nodulation of Medicago truncatula by Sinorhizobium meliloti. Plant J 57(1):171–183

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goswami, M., Deka, S. (2022). Rhizodeposits: An Essential Component for Microbial Interactions in Rhizosphere. In: Singh, U.B., Rai, J.P., Sharma, A.K. (eds) Re-visiting the Rhizosphere Eco-system for Agricultural Sustainability. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-19-4101-6_7

Download citation

Publish with us

Policies and ethics