Skip to main content

Mycorrhizosphere Revisited: Multitrophic Interactions

  • Chapter
  • First Online:
Re-visiting the Rhizosphere Eco-system for Agricultural Sustainability

Part of the book series: Rhizosphere Biology ((RHBIO))

Abstract

The soil and plant roots provide natural habitats for a diverse assemblage of microorganisms that play an important role in nutrient cycling and other ecosystem processes. The services provided by these microbial processes are important for maintaining the diversity and functioning of ecosystems worldwide. In this chapter, we examine the information available on the plant–mycorrhizal fungal interactions in soil with a focus on the mycorrhizosphere. Available evidences do indicate that the microbial populations in the mycorrhizosphere could substantially differ from those of the rhizosphere and surrounding bulk soil. Further, the various microbial interactions in the mycorrhizosphere are important for the development and health of plants both in the natural and anthropogenic ecosystems. The microorganisms solubilize or decompose the complex macromolecules in the mycorrhizosphere and make the nutrients available for plants and other microorganisms. Some of the bacteria residing in the mycorrhizosphere could also act as mycorrhiza helper bacteria and plant growth-promoting rhizobacteria with numerous functions. The carbon exuded by the plants directly into the rhizosphere and the fungi in the hyphosphere play a pivotal role in maintaining the diversity and activities of microorganisms in the mycorrhizosphere. At present we are only looking at a glimpse of the complex intricate interactions that are occurring in the mycorrhizosphere. However, evidences available so far suggest that multitrophic interactions in the mycorrhizosphere play a significant role in maintaining the health and productivity of plants and soils in sustainable natural and agroecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelhameid NM, Kenawey KM (2019) Response of barley to bio fertilization with mycorrhiza and azotobacter under supplemental irrigation conditions at the north western coast of Egypt. ASEJ 40:672–682

    Google Scholar 

  • Abhaya DB, Nikhil Sai N, Ashwin R, Bagyaraj DJ (2019) Influence of AM fungus G. mosseae and plant growth promoting rhizobacteria (PGPR) on growth of tomato seedlings raised in pro trays. J Soil Biol Ecol 39:53–63

    Google Scholar 

  • Adesemoye AO, Torbert HA, Kloepper JW (2008) Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Can J Microbiol 54:876–886

    Article  CAS  PubMed  Google Scholar 

  • Ajimuddin (2002) Productivity and quality of sweet basil (Ocimum basilicum L.) as influenced by integrated nutrient management and biofertilizers. M. Sc. Thesis, University of Agricultural Sciences GKVK, Bangalore, India

    Google Scholar 

  • Akhtar MS, Siddiqui ZA (2008) Biocontrol of a root rot disease complex of chickpea by Glomus intraradices, Rhizobium sp. and Pseudomonas striata. Crop Prot 27:410–417

    Article  Google Scholar 

  • Akköprü A, Demir S (2005) Biological control of Fusarium wilt in tomato caused by Fusarium oxysporum f. sp. lycopersici by AMF Glomus intraradices and some rhizobacteria. J Phytopathol 153:544–550

    Article  Google Scholar 

  • Aliasgharzad N, Bolandnazar SA, Neyshabouri MR, Chaparzadeh N (2009) Impact of soil sterilization and irrigation intervals on P and K acquisition by mycorrhizal onion (Allium cepa). Biologia 64:512–515

    Article  Google Scholar 

  • Amirnia R, Ghiyasi M, Moghaddam SS, Rahimi A, Damalas CA, Heydarzadeh S (2019) Nitrogen-fixing soil bacteria plus mycorrhizal fungi improve seed yield and quality traits of lentil (Lens culinaris Medik). J Soil Sci Plant Nutr 19:592–602

    Article  CAS  Google Scholar 

  • Anuroopa N, Bagyaraj DJ (2017) Inoculation with selected microbial consortia enhanced the growth and yield of Withania somnifera under polyhouse conditions. Imp J Interdiscip Res 3:127–133

    Google Scholar 

  • Anuroopa N, Bagyaraj DJ, Bagela A, Prakasa Rao EVS (2017) Inoculation with selected microbial consortia not only enhances growth and yield of Withania somnifera but also reduces fertilizer application by 25% under field conditions. Proc Natl Acad Sci India, Sect B Biol Sci 83:957–971

    Google Scholar 

  • Arpana J, Bagyaraj DJ (2007) Response of Kalmegh to an arbuscular mycorrhizal fungus and plant growth promoting rhizomicroorganisms at two levels of phosphorus fertilizer. Am Euras J Agric Environ Sci 2:33–38

    Google Scholar 

  • Arpana J, Bagyaraj DJ, Prakasa Rao EVS, Parameswaran TN, Rahiman BA (2010) Evaluation of growth, nutrition and essential oil content with microbial consortia in conjunction with different levels of chemical fertilizers in patchouli (Pogostemon cablin) under micro-plot conditions. J Soil Biol Ecol 30:56–71

    Google Scholar 

  • Azcon-Aguilar C, Barea JM (2015) Nutrient cycling in the mycorrhizosphere. J Soil Sci Plant Nutr 15:372–396

    Google Scholar 

  • Azcón-Aguilar C, Azcón R, Barea JM (1979) Endomycorrhizal fungi and Rhizobium as biological fertilizers for Medicago sativa in normal cultivation. Nature 279:325–327

    Article  Google Scholar 

  • Bagyaraj DJ (2014) Interaction between arbuscular mycorrhizal fungi and the soil organisms and their role in sustainable agriculture. In: Singh DP, Singh HB (eds) Trends in soil microbial ecology. Studium Press LLC, USA, pp 257–280

    Google Scholar 

  • Bagyaraj DJ (2018) Arbuscular mycorrhizal fungi and biological control of soil-borne plant pathogens. Kavaka 51:1–6

    Google Scholar 

  • Bagyaraj DJ, Menge JA (1978) Interaction between VA mycorrhiza and Azotobacter and their effects on rhizosphere microflora and plant growth. New Phytol 80:567–573

    Article  Google Scholar 

  • Bagyaraj DJ, Manjunath A, Patil RB (1979) Interaction between VA mycorrhiza and Rhizobium and their effects on soybean in the field. New Phytol 82:141–146

    Article  CAS  Google Scholar 

  • Bagyaraj DJ, Sharma MP, Maiti D (2015) Phosphorus nutrition of crops through arbuscular mycorrhizal fungi. Curr Sci 108:1288–1293

    CAS  Google Scholar 

  • Bao Y, Qi B, Huang W, Liu B, Li Y (2020) The fungal community in non-rhizosphere soil of Panax ginseng are driven by different cultivation modes and increased cultivation periods. Peer J 8:e9930. https://doi.org/10.7717/peerj.9930

    Article  PubMed  PubMed Central  Google Scholar 

  • Barea JM, Andrade G, Bianciotto V, Dowling D, Lohrke S, Bonfante P, O’gara F, Azcon Aguilar C (1998) Impact on arbuscular mycorrhiza formation of Pseudomonas strains used as inoculants for biocontrol of soil-borne fungal plant pathogens. Appl Environ Microbiol 64:2304–2307

    Google Scholar 

  • Barea JM, Pozo MJ, López-Ráez JA, Aroca R, Ruíz-Lozano JM, Ferrol N, Azcón R, Azcón-Aguilar C (2014) Arbuscular mycorrhizas and their significance in promoting soil-plant systems sustainability against environmental stresses. In: Gonzalez MBR, Gonzalez-Lopez J (eds) Beneficial plant-microbial interactions: ecology and applications. CRC Press, FL, USA, pp 353–387

    Google Scholar 

  • Bashan Y, Holguin G (1998) Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biol Biochem 30:1225–1228

    Article  CAS  Google Scholar 

  • Baum C, Hrynkiewicz K, SzymaÅ„ska S, Vitow N, Hoeber S, Fransson P, Weih M (2018) Mixture of Salix genotypes promotes root colonization with dark septate endophytes and changes P cycling in the mycorrhizosphere. Front Microbial 9:1012. https://doi.org/10.3389/fmicb.2018.01012

    Article  Google Scholar 

  • Benhamou N, Kloepper JW, Tuzun S (1998) Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain: ultrastructure and cytochemistry of the host response. Planta 204:153–168

    Article  CAS  Google Scholar 

  • Bhawana SP, Fulekar MH (2011) Mycorhizosphere: an ecological remediation unit. In: World Congress on Biotechnology. 21–23 March 2011. HICC, Hyderabad, India. https://doi.org/10.4172/2155-6199.1000001

    Chapter  Google Scholar 

  • Bonfante P, Anca I (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Ann Rev Microbiol 63:363–383

    Article  CAS  Google Scholar 

  • Brundrett MC, Tedersoo L (2018) Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol 220:1108–1115

    Article  PubMed  Google Scholar 

  • Cameron DD, Neal AL, van Wees SCM, Ton J (2013) Mycorrhiza-induced resistance: more than the sum of its parts? Trends Plant Sci 18:539–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chartier-Fitz Gerald V, Dames JF, Hawley G (2020) Biological control potential of ectomycorrhizal fungi against Fusarium circinatum on Pinus patula seedlings. Biocontrol Sci Tech 3:1–2

    Google Scholar 

  • Chu H, Wang C, Li Z, Wang H, Xiao Y, Chen J, Tang M (2019) The dark septate endophytes and ectomycorrhizal fungi effect on Pinus tabulaeformis Carr. seedling growth and their potential effects to pine wilt disease resistance. Forests 10(140). https://doi.org/10.3390/f10020140

  • Dagher DJ, Pitre FE, Hijri M (2020) Ectomycorrhizal fungal inoculation of Sphaerosporella brunnea significantly increased stem biomass of Salix miyabeana and decreased lead, tin, and zinc, soil concentrations during the phytoremediation of an industrial landfill. J Fungi 6:87. https://doi.org/10.3390/jof6020087

    Article  CAS  Google Scholar 

  • de Bruijn FJ (2015) Biological nitrogen fixation. In: Lugtenberg B (ed) Principles of plant-microbe interactions. Springer, Cham, Switzereland, pp 215–224

    Google Scholar 

  • Desai S, Praveen Kumar G, Amalraj LD, Bagyaraj DJ, Ashwin R (2016) Exploiting PGPR and AMF biodiversity for plant health management. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, Research perspectives, vol 1. Springer, India, pp 145–160

    Chapter  Google Scholar 

  • Desai S, Bagyaraj DJ, Ashwin R (2020) Inoculation with microbial consortium promotes growth of tomato and capsicum seedlings raised in pro trays. Proc Natl Acad Sci India, Sect B Biol Sci 90:21–28

    Article  Google Scholar 

  • Deveau A, Labbé J (2016) Mycorrhizal helper bacteria. In: Martin F (ed) Molecular mycorrhizal symbiosis. John Wiley & Sons, Inc., pp 437–450

    Chapter  Google Scholar 

  • Dickson S (2004) The Arum-Paris continuum of mycorrhizal symbioses. New Phytol 1:187–200

    Article  Google Scholar 

  • Dickson S, Smith FA, Smith SE (2007) Structural differences in arbuscular mycorrhizal symbioses: more than 100 years after Gallaud where next? Mycorrhiza 17(5):375–393. https://doi.org/10.1007/s00572-007-0130-9

    Article  CAS  PubMed  Google Scholar 

  • Duponnois R, Garbaye J (1990) Some mechanisms involved in growth simulation of ectomycorrhizal fungi by bacteria. Can J Bot 68:2148–2152

    Article  Google Scholar 

  • Edwards SG, Young JPW, Fitter AH (1998) Interactions between Pseudomonas fluorescens biocontrol agents and Glomus mosseae, an arbuscular mycorrhizal fungus, within the rhizosphere. FEMS Microbiol Lett 166:297–230

    Article  CAS  Google Scholar 

  • Ekblad A, Wallander H, Godbold DL, Cruz C, Johnson D, Baldrian P, Björk RG, Epron D, Kieliszewska-Rokicka B, Kjøller R, Kraigher H (2013) The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils: role in carbon cycling. Plant Soil 366:1–27

    Article  CAS  Google Scholar 

  • Elbl JA, Záhora JA (2014) The comparison of microbial activity in rhizosphere and non-rhizosphere soil stressed by drought. Proc MendelNet 14:234–240

    Google Scholar 

  • Farley RA, Fitter AH (1999) The responses of seven co-occurring woodland herbaceous perennials to localized nutrient-rich patches. J Ecol 87:849–859

    Article  Google Scholar 

  • Field KJ, Daniell T, Johnson D, Helgason T (2020) Mycorrhizas for a changing world: sustainability, conservation and society. Plants People Planet 2:98–103

    Article  Google Scholar 

  • Fransson P, Rosling A (2014) Fungal and bacterial community responses to Suillus variegatus extraradical mycelia and soil profile in Scots pine microcosms. Plant Soil 385:255–272

    Article  CAS  Google Scholar 

  • Frey Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36

    Article  CAS  PubMed  Google Scholar 

  • Garcia J, Kao-Kniffin J (2018) Microbial group dynamics in plant rhizospheres and their implications on nutrient cycling. Front Microbiol 9:1516. https://doi.org/10.3389/fmicb.2018.01516

    Article  PubMed  PubMed Central  Google Scholar 

  • Garg N, Bhandari P (2012) Influence of cadmium stress and arbuscular mycorrhizal fungi on nodule senescence in Cajanus cajan (L.) Millsp. Int J Phytoremediation 14:62–74

    Article  PubMed  Google Scholar 

  • Garg N, Chandel S (2015) Role of arbuscular mycorrhiza in arresting reactive oxygen species (ROS) and strengthening antioxidant defense in Cajanus cajan (L.) Millsp. nodules under salinity (NaCl) and cadmium (Cd) stress. Plant Growth Regul 75:521–534

    Article  CAS  Google Scholar 

  • Gonthier P, Giordano L, Zampieri E, Lione G, Vizzini A, Colpaert JV, Balestrini R (2019) An ectomycorrhizal symbiosis differently affects host susceptibility to two congeneric fungal pathogens. Fungal Ecol 39:250–256

    Article  Google Scholar 

  • Gorka S, Dietrich M, Mayerhofer W, Gabriel R, Wiesenbauer J, Martin V, Zheng Q, Imai B, Prommer J, Weidinger M, Schweiger P (2019) Rapid transfer of plant photosynthates to soil bacteria via ectomycorrhizal hyphae and its interaction with nitrogen availability. Front Microbiol 10:168. https://doi.org/10.3389/fmicb.2019.00168

    Article  PubMed  PubMed Central  Google Scholar 

  • Haq IU, Zhang M, Yang P, van Elsas JD (2014) The interactions of bacteria with fungi in soil: emerging concepts. Adv Appl Microbiol 89:185–215

    Article  PubMed  Google Scholar 

  • Hassani MA, Durán P, Hacquard S (2018) Microbial interactions within the plant holobiont. Microbiome 6:58. https://doi.org/10.1186/s40168-018-0445-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Hemlata C, Bagyaraj DJ (2015) Inoculation with selected microbial consortia not only enhances growth and yield of French bean but also reduces fertilizer application under field condition. Sci Hort 197:441–446

    Article  Google Scholar 

  • Hernandez Montiel LG, Rueda Puente EO, Cordoba Matson MV, Holguin Pena JR, Zulueta-Rodriguez R (2013) Mutualistic interaction of rhizobacteria with arbuscular mycorrhizal fungi and its antagonistic effect on Fusarium oxysporum in Carica papaya seedlings. Crop Prot 47:61–66

    Article  Google Scholar 

  • Hestrin R, Hammer EC, Mueller CW, Lehmann J (2019) Synergies between mycorrhizal fungi and soil microbial communities increase plant nitrogen acquisition. Commun Biol 2:1–9

    Article  CAS  Google Scholar 

  • Hiltner L (1904) Uber nevere Erfahrungen und probleme auf dem gebiet der boden bakteriologie und unter besonderer beurchsichtigung der grundungung und broche. Arbeit Deut Landw Ges Berlin 98:59–78

    Google Scholar 

  • Jansa J, Bukovská P, Gryndler M (2013) Mycorrhizal hyphae as ecological niche for highly specialized hypersymbionts–or just soil free-riders? Front Plant Sci 4:134. https://doi.org/10.3389/fpls.2013.00134

    Article  PubMed  PubMed Central  Google Scholar 

  • Janse JM (1896) Les endophytes radicaux de quelques plantes Javanaises. Ann Jard Bot Buitenzorg 14:53–212

    Google Scholar 

  • Jayanthi S, Bagyaraj DJ, Satyanarayana BN (2003) Enhanced growth and nutrition of micropropagated Ficus benjamina to Glomus mosseae co-inoculated with Trichoderma harzianum and Bacillus coagulans. World J Microbiol Biotechnol 19:69–72

    Article  Google Scholar 

  • Jeffries P, Barca JM (2012) Arbuscular Mycorrhiza: a key component of sustainable plant-soil ecosystems. In: Hock B (ed) The Mycota. Springer-Verlag, Berlín, Heidelberg, pp 51–75

    Google Scholar 

  • Johnson NC, Gehring CA (2007) Mycorrhizas: symbiotic mediators of rhizosphere and ecosystem processes. In: Cardon ZG, Whitbeck JL (eds) The Rhizosphere. Academic Press, pp 73–100

    Chapter  Google Scholar 

  • Jyothi E, Bagyaraj DJ (2017) Inoculation with microbial consortia enhances the growth, nutrition and oil concentration of Ocimum sanctum. Med Plants: Int J Phytomed Related Ind 9:237–241

    Google Scholar 

  • Jyothi E, Bagyaraj DJ (2018) Microbial consortia developed for Ocimum tenuiflorum reduces application of chemical fertilizers by 50% under field conditions. Med Plants: Int J Phytomed Rel Ind 10:138–144

    Google Scholar 

  • Karthikeyan B, Abitha B, Henry AJ, Sa T, Joe MM (2016) Interaction of rhizobacteria with arbuscular mycorrhizal fungi (AMF) and their role in stress abetment in agriculture. In: Pagano MC (ed) Recent advances on mycorrhizal fungi. Springer, Switzerland, pp 117–142

    Chapter  Google Scholar 

  • Khalediyan N, Weisany W, Schenk PM (2020) Arbuscular mycorrhizae and rhizobacteria improve growth, nutritional status and essential oil production in Ocimum basilicum and Satureja hortensis. Ind Crops Prod:113163. https://doi.org/10.1016/j.indcrop.2020.113163

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the 4th International conference on plant pathogenic bacteria. Gilbert-Clarey, Tours, France, pp 879–882

    Google Scholar 

  • Koide RT, Mosse B (2004) A history of research on arbuscular mycorrhiza. Mycorrhiza 14:145–163

    Article  PubMed  Google Scholar 

  • Kothe E, Turnau K (2018) Mycorrhizosphere communication: mycorrhizal fungi and endophytic fungus-plant interactions. Front Microbiol 9:3015. https://doi.org/10.3389/fmicb.2018.03015

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishnamoorthy R, Venkatramanan V, Senthilkumar M, Anandham R, Kumutha K, Sa T (2019) Management of heavy metal polluted soils: perspective of arbuscular mycorrhizal fungi. In: Shah S, Venkatramanan V, Prasad R (eds) . Sustainable green technologies for environmental management, Springer, Singapore, pp 67–85

    Google Scholar 

  • Kumar J, Atri NS (2018) Studies on ectomycorrhiza: an appraisal. Bot Rev 84:108–155

    Article  Google Scholar 

  • Kumar A, Sharma S, Mishra S (2016) Evaluating effect of arbuscular mycorrhizal fungal consortia and Azotobacter chroococcum in improving biomass yield of Jatropha curcas. Plant Biosyst 150:1056–1064

    Article  Google Scholar 

  • Kurth F, Zeitler K, Feldhahn L, Lasse F, Thomas RN, Tilmann W, Vaclav K, Tesfaye W, Sylvie H, Francois B, Mika TT (2013) Detection and quantification of a mycorrhization helper bacterium and a mycorrhizal fungus in plant-soil microcosms at different levels of complexity. BMC Microbiol 13:205. https://doi.org/10.1186/1471-2180-13-205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuzyakov Y (2002) Factors affecting rhizosphere priming effects. J Plant Nutr Soil Sci 165:382–396

    Article  CAS  Google Scholar 

  • Lakshmipathy R, Balakrishna AN, Bagyaraj DJ, Ashwin R (2019) Arbuscular mycorrhizal fungi for sustainable agriculture. J Soil Biol Ecol 39:132–140

    Google Scholar 

  • Lebrón L, Lodge DJ, Bayman P (2012) Differences in arbuscular mycorrhizal fungi among three coffee cultivars in Puerto Rico. Int Scholar Res Notices Agron 2012:148042. https://doi.org/10.5402/2012/148042

    Article  Google Scholar 

  • Leyva-Morales R, Gavito ME, Carrillo-Saucedo SM (2019) Morphological and physiological responses of the external mycelium of Rhizophagus intraradices to water stress. Mycorrhiza 29:141–147

    Article  PubMed  Google Scholar 

  • Li Z, Zu C, Wang C, Yang J, Yu H, Wu H (2016) Different responses of rhizosphere and non-rhizosphere soil microbial communities to consecutive Piper nigrum L. monoculture. Sci Rep 6:1–8

    Google Scholar 

  • Li J, Luo Z, Zhang C, Qu X, Chen M, Song T, Yuan J (2020) Seasonal variation in the rhizosphere and non-rhizosphere microbial community structures and functions of Camellia yuhsienensis Hu. Microorganisms 8:1385. https://doi.org/10.3390/microorganisms8091385

    Article  CAS  PubMed Central  Google Scholar 

  • Liasu MO, Shosanya O (2007) Studies of microbial development on mycorrhizosphere and rhizosphere soils of potted maize plants and the inhibitory effect of rhizobacteria isolates on two fungi. African J Biotechnol 6:504–508

    Google Scholar 

  • Lovelock CE, Wright SF, Clark DA, Ruess RW (2004) Soil stocks of glomalin produced by arbuscular mycorrhizal fungi across a tropical rain forest landscape. J Ecol 92:278–287

    Article  CAS  Google Scholar 

  • Malekian B, Parsa M, Vessal S, Khorassani R (2019) Split application of nitrogen fertilizer and inoculation with arbuscular mycorrhiza and Rhizobium ciceri improve grain quality of chickpea. Crop Forage Turfgrass Manage 5:1–9

    Article  Google Scholar 

  • Manjunath A, Bagyaraj DJ (1984) Response of pigeon pea and cowpea to dual inoculation with vesicular arbuscular mycorrhiza and Rhizobium. Trop Agric 61:48–52

    Google Scholar 

  • Manjunath A, Bagyaraj DJ, Gopala Gowda HS (1984) Dual inoculation with VA mycorrhiza and Rhizobium is beneficial to Leucaena. Plant Soil 78:445–448

    Article  Google Scholar 

  • Marschner P (2008) The role of rhizosphere microorganisms in relation to P uptake by plants. In: White PJ, Hommand JP (eds) The ecophysiology of plant-phosphorus interactions. Springer, Dordrecht, pp 165–176

    Chapter  Google Scholar 

  • Martin F, Kohler A, Murat C, Veneault-Fourrey C, Hibbett DS (2016) Unearthing the roots of ectomycorrhizal symbioses. Nat Rev Microbiol 14:760–773

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Viveros O, Jorquera MA, Crowley DE, Gajardo GM, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10:293–319

    Article  Google Scholar 

  • Marupakula S, Mahmood S, Finlay RD (2016) Analysis of single root tip microbiomes suggests that distinctive bacterial communities are selected by Pinus sylvestris roots colonized by different ectomycorrhizal fungi. Environ Microbiol 18:1470–1483

    Article  CAS  PubMed  Google Scholar 

  • Mathimaran N, Sekar J, Thimmegowda MN, Prabavathy VR, Yuvaraj P, Kathiravan R, Sivakumar MN, Manjunatha BN, Bhavitha NC, Sathish A, Shashidhar GC, Bagyaraj DJ, Ashok EG, Sigh D, Kahmen A, Boller T, Mäder P (2018) Intercropping transplanted pigeon pea with finger millet: Arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria boost yield while reducing fertilizer input. Front Sustain Food Syst 4:88. https://doi.org/10.3389/fsufs.2020.00088

    Article  Google Scholar 

  • Meena RS, Vijayakumar V, Yadav GS, Mitran T (2018) Response and interaction of Bradyrhizobium japonicum and arbuscular mycorrhizal fungi in the soybean rhizosphere. Plant Growth Regul 84:207–223

    Article  CAS  Google Scholar 

  • Mello A, Balestrini R (2018) Recent insights on biological and ecological aspects of ectomycorrhizal fungi and their interactions. Front Microbiol 9:216. https://doi.org/10.3389/fmicb.2018.00216

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng L, Zhang A, Wang F, Han X, Wang D, Li S (2015) Arbuscular mycorrhizal fungi and rhizobium facilitate nitrogen uptake and transfer in soybean/maize intercropping system. Front Plant Sci 6:339. https://doi.org/10.3389/fpls.2015.00339

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller RM, Jastrow JD (2000) Mycorrhizal fungi influence soil structure. In: Kapulnik Y. Douds Jr DD (eds.) Arbuscular mycorrhizas: physiology and function. Kluwer academic publishers, Dordrecht, The Netherlands, pp.3–18

    Google Scholar 

  • Morris JL, Puttick MN, Clark JW, Edwards D, Kenrick P, Pressel S, Wellman CH, Yang Z, Schneider H, Donoghue PCJ (2018) The timescale of early land plant evolution. Proc Natl Acad Sci U S A 115:E9512–E9513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosse B (1962) The establishment of vesicular-arbuscular mycorrhiza under aseptic conditions. J Gen Microbiol 27:509–520

    Article  CAS  PubMed  Google Scholar 

  • Newton AC, Fitt BD, Atkins SD, Walters DR, Daniell TJ (2010) Pathogenesis, parasitism and mutualism in the trophic space of microbe–plant interactions. Trends Microbiol 18:365–373

    Article  CAS  PubMed  Google Scholar 

  • Nikhil SN, Ashwin R, Harinikumar KM, Bagyaraj DJ (2020) Development of microbial consortia for growth improvement of neem. Forestist. https://doi.org/10.5152/forestist.2020.20015

  • Olahan GS, Sule IO, Garuba T, Salawu YA (2016) Rhizosphere and non-rhizosphere soil mycoflora of Corchorus olitorius (jute). Sci World J 11:23–26

    Google Scholar 

  • Olivares J, Bedmar EJ, Sanjuán J (2013) Biological nitrogen fixation in the context of global change. Mol Plant-Microbe Interact 26:486–494

    Article  CAS  PubMed  Google Scholar 

  • Osaki-Oka K, Suyama S, Sakuno E, Ushijima S, Nagasawa E, Maekawa N, Ishihara A (2019) Antifungal activity of the volatile compound isovelleral produced by ectomycorrhizal Russula fungi against plant-pathogenic fungi. J Gen Plant Pathol 85:428–435

    Article  CAS  Google Scholar 

  • Pacheco I, Ferreira R, Correia P, Carvalho L, Dias T, Cruz C (2020) Microbial consortium increases maize productivity and reduces grain phosphorus concentration under field conditions. Saudi J Biol Sci. https://doi.org/10.1016/j.sjbs.2020.09.053

  • Paul D, Lade H (2014) Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agron Sustain Dev 34:737–752

    Article  Google Scholar 

  • Paulitz TC, Linderman RG (1991) Lack of antagonism between the biocontrol agent Gliocladium virens and vesicular arbuscular mycorrhizal fungi. New Phytol 117:303–308

    Article  Google Scholar 

  • Pickles BJ, Truong C, Watts-Williams SJ, Bueno CG (2020) Mycorrhizas for a sustainable world. New Phytol 225:1065–1069

    Article  PubMed  Google Scholar 

  • Raghu HB, Ashwin R, Ravi JE, Bagyaraj DJ (2020a) Enhancing plant quality and out-planting growth of Acacia auriculiformis in dry wasteland plantations by inoculating selected microbial consortium in the nursery. Can J For Res 50:736–741

    Article  CAS  Google Scholar 

  • Raghu HB, Ashwin R, Ravi JE, Bagyaraj DJ (2020b) Microbial consortium improved growth and performance of teak (Tectona grandis L.f.) in nursery and field trials. Proc Natl Acad Sci India Sect B Biol Sci 90:903–909

    Article  CAS  Google Scholar 

  • Raklami A, Bechtaoui N, Tahiri AI, Anli M, Meddich A, Oufdou K (2019) Use of rhizobacteria and mycorrhizae consortium in the open field as a strategy for improving crop nutrition, productivity and soil fertility. Front Microbiol 10:1106. https://doi.org/10.3389/fmicb.2019.01106

    Article  PubMed  PubMed Central  Google Scholar 

  • Rambelli A (1973) The rhizosphere of mycorrhizae. In: Marks GC, Kozlowski TT (eds) Ectomycorrhizae: their ecology and physiology. Academic Press, New York, pp 299–343

    Chapter  Google Scholar 

  • Read DJ, Boyd R (1986) Water relations of mycorrhizal fungi and their host plants. In: Ayres PG, Boddy L (eds) Water, fungi and plants. Cambridge University Press, Cambridge, pp 287–303

    Google Scholar 

  • Riaz M, Kamran M, Fang Y, Wang Q, Cao H, Yang G, Deng L, Wang Y, Zhou Y, Anastopoulos I, Wang X (2020) Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: a critical review. J Hazard Mater 14:123919

    Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae, glomalin, and soil aggregation. Can J Soil Sci 84:355–363

    Article  Google Scholar 

  • Rillig MC, Wright SF, Nichols KA, Schmidt WF, Torn MS (2001) Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant Soil 233:167–177

    Article  CAS  Google Scholar 

  • Rinta-Kanto JM, Timonen S (2020) Spatial variations in bacterial and archaeal abundance and community composition in boreal forest pine mycorrhizospheres. Eur J Soil Biol 97:103168. https://doi.org/10.1016/j.ejsobi.2020.103168

    Article  CAS  Google Scholar 

  • Roesti D, Ineichen K, Braissant O, Redecker D, Wiemken A, Aragno M (2005) Bacteria associated with spores of the arbuscular mycorrhizal fungi Glomus geosporum and Glomus constrictum. Appl Environ Microbiol 71:6673–6679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan MH, Graham JH (2018) Little evidence that farmers should consider abundance or diversity of arbuscular mycorrhizal fungi when managing crops. New Phytol 220:1092–1107

    Article  PubMed  Google Scholar 

  • Sabannavar SJ, Lakshman HC (2009) Effect of rock phosphate solubilization using mycorrhizal fungi and phosphobacteria on two high yielding varieties of Sesamum indicum L. World J Agric Sci 5:470–479

    CAS  Google Scholar 

  • Shirakawa M, Uehara I, Tanaka M (2019) Mycorrhizosphere bacterial communities and their sensitivity to antibacterial activity of ectomycorrhizal fungi. Microbes Environ 34:191–198

    Article  PubMed  PubMed Central  Google Scholar 

  • Siddiqui ZA, Mahmood I (2001) Effects of rhizobacteria and root symbionts on the reproduction of Meloidogyne javanica and growth of chickpea. Bioresour Technol 79:41–45

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Parameswaran TN, Prakasa Rao EVS, Puttanna K, Kalra A, Srinivas KVNS, Bagyaraj DJ, Divya S (2009) Effect of arbuscular mycorrhizal fungi and Pseudomonas fluorescens on root-rot and wilt, growth and yield of Coleus forskohlii. Biocontrol Sci Tech 19:835–841

    Article  Google Scholar 

  • Singh PK, Singh M, Vyas D (2010) Effect of root exudates of mycorrhizal tomato plants on microconidia germination of Fusarium oxysporum f. sp. lycopersici than root exudates from nonmycorrhizal tomato plants. Arch Phytopathol Plant Protect 43:1495–1503

    Article  Google Scholar 

  • Singh RR, Meena LK, Singh P (2017) High tech nursery management in horticultural crops: a way for enhancing income. Int J Curr Microbiol App Sci 6:3162–3172

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, Cambridge

    Google Scholar 

  • Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, Bonito G, Corradi N, Grigoriev I, Gryganskyi A, James TY, O'Donnell K, Roberson RW, Taylor TN, Uehling J, Vilgalys R, White MM, Stajich JE (2016) A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108:1028–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sukeerthi D, Nikhil N, Ashwin R, Bagyaraj DJ (2020) Microbial consortium promotes growth of zinnia and balsam seedlings raised in pro trays. J Floric Landscape 6:04–08

    Article  Google Scholar 

  • Sumathi CS (2010) Development of sustainable crop improvement strategies through microbial bioinoculants application in turmeric (Curcuma longa L.) plantation. PhD Thesis, Bharathidasan University, Tiruchirappalli. Tamil Nadu, India

    Google Scholar 

  • Sumathi CS, Ramesh N, Balasubramanian V, Rajesh Kannan V (2013) Microbial bioinoculants potential on the growth improvement of Curcuma longa L. under tropical nursery conditions. In: Velu RK (ed) Microbiological research in agroecosystem management. Springer, India, pp 249–264

    Chapter  Google Scholar 

  • Thakore Y (2006) The biopesticide market for global agricultural use. Ind Biotechnol 2:194–208

    Article  Google Scholar 

  • Thilagar G, Bagyaraj DJ, Hemlata C, Anshu BR, Ashwin R (2014) Synergistic effects of arbuscular mycorrhizal fungus Glomus mosseae and plant growth promoting bacterium Bacillus sonorensis on growth, nutrient uptake and yield of chilly. J Soil Biol Ecol 34:50–59

    Google Scholar 

  • Thilagar G, Bagyaraj DJ, Podile AR, Vaikuntapu PR (2018) Bacillus sonorensis, a novel plant growth promoting rhizobacterium in improving growth, nutrition and yield of chilly (Capsicum annuum L.). Proc Natl Acad Sci India Sec B Biol Sci 88:813–818

    Article  CAS  Google Scholar 

  • Toussaint JP, Kraml M, Nell M, Smith SE, Smith FA, Steinkellner S, Schmiderer C, Vierheilig H, Novak J (2008) Effect of Glomus mosseae on concentrations of rosmarinic and caffeic acids and essential oil compounds in basil inoculated with Fusarium oxysporum f. sp. basilici. Plant Pathol 57:1109–1116

    Article  Google Scholar 

  • Ulfath Jaiba J, Balakrishna AN, Bagyaraj DJ, Arpana J (2006) Interaction between arbuscular mycorrhizal fungi and plant growth promoting rhizomicroorganisms (PGPRs) on growth and nutrition of Piper longum. J Soil Biol Ecol 26:75–84

    Google Scholar 

  • Vacheron J, Desbrosses G, Bouffaud ML, Bruno T, Moënne-Loccoz Y, Daniel M, Laurent L, Wisniewski-Dyé F, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356. https://doi.org/10.3389/fpls.2013.00356

    Article  PubMed  PubMed Central  Google Scholar 

  • Vierheilig HM, Alt-Hug R, Engel-Streitwolf P, Mader I, Weimken A (1998) Studies on the attractional effect of root exudates on hyphal growth of an arbuscular mycorrhizal fungus in a soil compartment membrane system. Plant Soil 203:137–144

    Article  CAS  Google Scholar 

  • Viollet A, Corberand T, Mougel C, Robin A, Lemanceau P, Mazurier S (2011) Fluorescent pseudomonads harboring type III secretion genes are enriched in the mycorrhizosphere of Medicago truncatula. FEMS Microbiol Ecol 75:457–467

    Article  CAS  PubMed  Google Scholar 

  • Vives-Peris V, de Ollas C, Gómez-Cadenas A, Pérez-Clemente RM (2020) Root exudates: from plant to rhizosphere and beyond. Plant Cell Rep 39:3–17

    Article  CAS  PubMed  Google Scholar 

  • Voronina EY (2009) Population of soil bacteria and micromycetes in rhizosphere, mycorhizosphere and hyphosphere of symbiotrophic basidiomycetes. Mikol Fitopatol 43:98–406

    Google Scholar 

  • Voronina E, Sidorova I (2017) Rhizosphere, mycorrhizosphere and hyphosphere as unique niches for soil-inhabiting bacteria and micromycetes. Adv PGPR Res 24:165–186

    Article  Google Scholar 

  • Voronina EY, Lysak LV, Zagryadskaya YA (2011) The quantity and structure of the saprotrophic bacterial complex of the mycorhizosphere and hyphosphere of symbiotrophic Basidiomycetes. Biol Bull 38:622–628

    Article  CAS  Google Scholar 

  • Wahid F, Fahad S, Danish S, Adnan M, Yue Z, Saud S, Siddiqui MH, Brtnicky M, Hammerschmiedt T, Datta R (2020) Sustainable management with mycorrhizae and phosphate solubilizing bacteria for enhanced phosphorus uptake in calcareous soils. Agriculture 10:334

    Article  CAS  Google Scholar 

  • Wang X, Pan Q, Chen F, Yan X, Liao H (2011) Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P. Mycorrhiza 21:173–181

    Article  PubMed  Google Scholar 

  • Warmink JA, van Elsas JD (2008) Selection of bacterial populations in the mycosphere of Laccaria proxima: is type III secretion involved? ISME J 2:887–900

    Article  CAS  PubMed  Google Scholar 

  • Wright SF, Upadhyaya A (1998) A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198:97–107

    Article  CAS  Google Scholar 

  • Xavier JJC, Germida JJ (2003) Bacteria associated with Glomus clarum spores influence mycorrhizal activity. Soil Biol Biochem 35:471–478

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Muthukumar, T., Sumathi, C.S., Rajeshkannan, V., Bagyaraj, D.J. (2022). Mycorrhizosphere Revisited: Multitrophic Interactions. In: Singh, U.B., Rai, J.P., Sharma, A.K. (eds) Re-visiting the Rhizosphere Eco-system for Agricultural Sustainability. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-19-4101-6_2

Download citation

Publish with us

Policies and ethics