Skip to main content

Molecular Markers Mediated Heat Stress Tolerance in Crop Plants

  • Chapter
  • First Online:
Thermotolerance in Crop Plants

Abstract

Plants’ developmental and growth rates can be influenced by temperature from seedling to maturity stage. Among the abiotic stress, heat stress has an impact on agronomic qualities at all phases of development; however, pre-flowering and anthesis stages are more vulnerable to high temperatures than post-flowering stages. As evident by massive yield losses in various food crops, the escalating adverse impacts of heat stress (HS) are putting the global food as well as nutritional security at great risk. In most of cereal crops, heat tolerance is a quantitative attribute that is influenced by a variety of genes and QTLs (quantitative trait loci). Attempts have been made over the last three decades to determine whether the condition under heat stress has been reviewed. Advances in molecular markers and quantitative genetics have made it possible to discover QTL that influence heat tolerance in cereal crop. Using various characteristics as indications of heat tolerance, many important QTL with significant effects on heat tolerance were discovered. There has been an increase in interest in using functional marker tools and technologies based on transcriptomics, proteomics, and metabolomics data to find and understand the molecular components of heat stress tolerance and the underlying mechanisms in recent years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdullah Z, Khan MA, Flowers TJ (2001) Causes of sterility in seed set of rice under salinity stress. J Agron Crop Sci 187:25–32

    Article  Google Scholar 

  • Abou-Elwafa SF (2016) Association mapping for drought tolerance in barley at the reproductive stage. Comptes Rendus Biol 339:51–59

    Google Scholar 

  • Ali MB, Ibrahim AMH, Malla S, Rudd J, Hays DB (2013) Family-based QTL mapping of heat stress tolerance in primitive tetraploid wheat (Triticum turgidum L.). Euphytica 192:189–203

    Article  CAS  Google Scholar 

  • Andorf C, Beavis WD, Hufford M et al (2019) Technological advances in maize breeding: past, present and future. Theor Appl Genet 132:817–849

    Article  CAS  PubMed  Google Scholar 

  • Arzani A, Ashraf M (2016) Smart engineering of genetic resources for enhanced salinity tolerance in crop plants. Crit Rev Plant Sci 35:146–189

    Article  CAS  Google Scholar 

  • Atlin GN, Cairns JE, Das B (2017) Rapid breeding and varietal replacement are critical to adaptation of cropping systems in the developing world to climate change. Global Food Secur 12:31–37

    Article  Google Scholar 

  • Awlachew ZT, Singh R, Kaur S, Bains NS, Chhuneja P (2016) Transfer and mapping of the heat tolerance component traits of Aegilops speltoides in tetraploid wheat Triticum durum. Mol Breeding 36:78

    Article  Google Scholar 

  • Bahrami F, Arzani A, Rahimmalek M (2019) Photosynthetic and yield performance of wild barley (Hordeum vulgare ssp. spontaneum) under terminal heat stress. Photosynthetica 57:9–17

    Article  CAS  Google Scholar 

  • Bailey-Serres J, Parker JE, Ainsworth EA, Oldroyd GED, Schroeder JI (2019) Genetic strategies for improving crop yield. Nature 575:109–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barakat MN, Al-Doss AA, Elshafei AA, Moustafa KA (2011) Identification of new microsatellite marker linked to the grain filling rate as indicator for heat tolerance genes in F2 wheat population. Aust J Crop Sci 5:104–110

    CAS  Google Scholar 

  • Barakat MN, Al-Doss AA, Elshafei AA, Moustafa KA (2012) Bulked segregant analysis to detect quantitative trait loci (QTL) related to heat tolerance at grain filling rate in wheat using simple sequence repeat (SSR) markers. Afr J Biotechnol 11:12436–12442

    CAS  Google Scholar 

  • Beecher FW, Mason E, Mondal S, Awika J, Hays D, Ibrahim A (2012) Identification of quantitative trait loci (QTLs) associated with maintenance of wheat (Triticum aestivum Desf) quality characteristics under heat stress conditions. Euphytica 188:361–368

    Article  CAS  Google Scholar 

  • Bennett D, Reynolds M, Mullan D, Izanloo A, Langridge P, Schnurbusch T (2012) Detection of two major grain yield QTL in bread wheat (Triticum aestivum L.) under heat, drought and high yield potential environments. Theor Appl Genet 125:1473–1485

    Article  PubMed  Google Scholar 

  • Bonneau J, Taylor J, Parent B, Bennett D, Reynolds M, Feuillet C, Langridge P, Mather D (2013) Multi-environment analysis and improved mapping of a yield-related QTL on chromosome 3B of wheat. Theor Appl Genet 126:747–761

    Article  CAS  PubMed  Google Scholar 

  • Buriro M, Oad FC, Keerio MI, Tunio S, Gandahi AW, Hassan SWU, Oad SM (2011) Wheat seed germination under the influence of temperature regimes. Sarhad J Agric 27:539–543

    Google Scholar 

  • Buu BC, Ha PTT, Tam BP, Nhien TTT, Hieu NV, Phuoc NT (2014) Quantitative trait loci associated with heat tolerance in rice (Oryza sativa L.). plant breed. Biotechnol 2:14–24

    Google Scholar 

  • Cairns JE, Prasanna BM (2018) Developing and deploying climate resilient maize varieties in the developing world. Curr Opin Plant Biol 45:226–230

    Article  PubMed  PubMed Central  Google Scholar 

  • Cairns JE, Sonder K, Zaidi PH, Verhulst N, Mahuku G, Babu R, Nair SK, Das B, Govaerts B, Vinayan MT, Rashid Z, Noor JJ, Devi P, San Vicente F, Prasanna BM (2012) Maize production in a changing climate: impacts, adaptation, and mitigation strategies. Adv Agron 114:1–58

    Article  CAS  Google Scholar 

  • Cairns JE, Hellin J, Sonder K, Araus JL, MacRobert JF, Thierfelder C, Prasanna BM (2013) Adapting maize production to climate change in sub-Saharan Africa. Food Secur 5:345–360

    Article  Google Scholar 

  • Cao L, Zhao J, Zhan X, Li D, He L, Cheng S (2003) Mapping QTLs for heat tolerance and correlation between heat tolerance and photosynthetic rate in rice. Chin J Rice Sci 17:223–227

    CAS  Google Scholar 

  • Chen Q, Yu S, Li C, Mou T (2008) Identification of QTLs for heat tolerance at flowering stage in rice. Sci Agric Sin 41:315–321

    CAS  Google Scholar 

  • Chen L, Wang Q, Tang M, Zhang X, Pan Y, Yang X, Gao G, Lv R, Tao W, Jiang L, Liang T (2021) QTL mapping and identification of candidate genes for heat tolerance at the flowering stage in Rice. Front Genet 11:621871

    Article  PubMed  PubMed Central  Google Scholar 

  • Comadran J, Thomas WTB, van Eeuwijk FA, Ceccarelli S, Grando S, Stanca AM, Pecchioni N, Akar T, Al-Yassin A, Benbelkacem A, Ouabbou W, Bort J, Romagosa I, Hackett CA, Russell JR (2009) Patterns of genetic diversity and linkage disequilibrium in a highly structured Hordeum vulgare association mapping population for the Mediterranean basin. Theor Appl Genet 119:175–187

    Article  CAS  PubMed  Google Scholar 

  • Dawood MFA, Yasser S, Moursi YS, Ahmed AA, Baenziger PS, Sallam A (2020) Investigation of heat-induced changes in the grain yield and grains metabolites, with molecular insights on the candidate genes in barley. Agronomy 10:1730

    Article  CAS  Google Scholar 

  • Dhanda SS, Munjal R (2012) Heat tolerance in relation to acquired thermo tolerance for membrane lipids in bread wheat. Field Crop Res 135:116–125

    Article  Google Scholar 

  • Ebrahim F, Arzani A, Rahimmalek M, Sun D, Peng J (2020) Salinity tolerance of wild barley Hordeum vulgare ssp. spontaneum. Plant Breed 139:304–316

    Article  CAS  Google Scholar 

  • Enders TA, St. Dennis S, Oakland J et al (2019) Classifying coldstress responses of inbred maize seedlings using RGB imaging. Plant Direct 3:e00104

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng B, Liu P, Li G, Dong ST, Wang FH, Kong LA, Zhan JW (2014) Effect of heat stress on the photosynthetic characteristics in flag leaves at the grain-filling stage of different heat-resistant winter wheat varieties. J Agro Crop Sci 200:143–155

    Article  CAS  Google Scholar 

  • Frey FP, Prester T, Lecoq P, Orlik A, Stich B (2016) First steps to understand heat tolerance of temperate maize at adult stage: identification of QTL across multiple environments with connected segregating populations. Theor Appl Genet 129:945–961

    Article  PubMed  PubMed Central  Google Scholar 

  • Frova C, Sari-Gorla M (1993) Quantitative expression of maize HSPs: genetic dissection and association with thermo tolerance. Theor Appl Genet 86:213–220

    Article  CAS  PubMed  Google Scholar 

  • Frova C, Sari-Gorla M (1994) Quantitative trait loci (QTLs) for pollen thermo tolerance detected in maize. Mol Gen Genet 245:424–430

    Article  CAS  PubMed  Google Scholar 

  • Fufa H, Baenziger PS, Beecher BS, Dweikat I, Graybosh RA, Eskridge K (2005) Comparison of phenotypic and molecular markers based classification of hard red winter wheat cultivars. Euphytica 145:133–146

    Article  CAS  Google Scholar 

  • Garg D, Sareen S, Dalal S, Tiwari R, Singh R (2012) Heat shock protein based SNP marker for terminal heat stress in wheat (Triticum aestivum L.). Aust J Crop Sci 6:1516–1521

    CAS  Google Scholar 

  • Ginzberg I, Barel G, Ophir R, Tzin E, Tanami Z, Muddarangappa T, de Jong W, Fogelman E (2011) Transcriptomic profiling of heatstress response in potato periderm. J Exp Bot 60:4411–4421

    Article  Google Scholar 

  • Gous PW, Hickey L, Christopher JT, Franckowiak J, Fox GP (2016) Discovery of QTL for stay-green and heat-stress in barley (Hordeum vulgare) grown under simulated abiotic stress conditions. Euphytica 207:305–317

    Article  CAS  Google Scholar 

  • Gui-lian Z, Li-yun C, Guo-yang X, Ying-hui X, Xin-bo C, Shun-tang Z (2009) Bulked segregant analysis to detect QTL related to heat tolerance in rice (Oryza sativa L) using SSR markers. Agric Sci China 8:482–487

    Article  Google Scholar 

  • Gupta S, Kaur S, Sehgal S, Sharma A, Chhuneja P, Bains NS (2010) Genotypic variation for cellular thermotolerance in Aegilops tauschii Coss., the D genome progenitor of wheat. Euphytica 175:373–381

    Article  Google Scholar 

  • Hansen J, Hellin J, Rosenstock T, Fisher E et al (2019) Climate risk management and rural poverty reduction. Agric Syst 172:28–46

    Article  Google Scholar 

  • Hede AR, Skoymand B, Reynolds MP, Crossa J, Vilhelmsen AL, Stolen O (1999) Evaluating genetic diversity for heat tolerance traits in Mexican wheat landraces. Genet Resour Crop Evol 46:37–45

    Article  Google Scholar 

  • Heslop-Harrison J (1961) The experimental control of sexuality and inflorescence structure in Zea mays L. Proc Linn Soc Lond 172:108–123

    Article  Google Scholar 

  • Hubner S, Hqffken M, Oren E, Haseneyer G, Stein N, Graner A, Schmid K, Fridman E (2009) Strong correlation of wild barley (Hordeum spontaneum) population structure with temperature and precipitation variation. Mol Ecol 18:1523–1536

    Article  CAS  PubMed  Google Scholar 

  • Inghelandt DV, Frey FP, Ries D, Stich B (2019) QTL mapping and genome-wide prediction of heat tolerance in multiple connected populations of temperate maize. Scientific Rep 9:14418

    Google Scholar 

  • Jagadish SVK, Craufurd PQ, Wheeler TR (2008) Phenotyping parents of mapping populations of rice for heat tolerance during anthesis. Crop Sci 48:1140–1146

    Article  Google Scholar 

  • Jagadish SVK, Cairns J, Lafitte R, Wheeler TR, Price AH, Craufurd PQ (2010a) Genetic analysis of heat tolerance at anthesis in rice. Crop Sci 50:1633–1641

    Article  CAS  Google Scholar 

  • Jagadish SVK, Muthurajan R, Oane R, Wheeler TR, Heuer S, Bennette J, Craufurd PQ (2010b) Physiological and proteomic approaches to address heat tolerance during anthesis in rice (Oryza sativa L.). J Exp Bot 61:143–156

    Article  CAS  PubMed  Google Scholar 

  • Jha UC, Bohra A, Singh NP (2014) Heat stress in crop plants: its nature, impacts and integrated breeding strategies to improve heat tolerance. Plant Breed 133:679–701

    Article  Google Scholar 

  • Jiang-lin L, Hong-yu Z, Xue-lian S, Ping-an Z, Ying-jin H (2011) Identification for heat tolerance in backcross recombinant lines and screening of backcross introgression lines with heat tolerance at milky stage in rice. Rice Sci 18:279–286

    Article  Google Scholar 

  • Kaya C, Ashraf M, Dikilitas M, Tuna AL (2013) Alleviation of salt stress-induced adverse effects on maize plants by exogenous application of indoleacetic acid (IAA) and inorganic nutrients-a field trial. Aust J Crop Sci 7:249–254

    CAS  Google Scholar 

  • Kilasi NL, Singh J, Vallejos CE, Ye C, Jagadish SVK, Kusolwa P, Rathinasabapathi B (2018) Heat stress tolerance in rice (Oryza sativa L.): identification of quantitative trait loci and candidate genes for seedling growth under heat stress. Front. Plant Sci 9:1578

    Google Scholar 

  • Kirigwi FM, Ginkel MV, Guedira GB, Gill BS, Paulsen GM, Fritz AK (2007) Markers associated with a QTL for grain yield in wheat under drought. Mol Breeding 20:401–413

    Article  CAS  Google Scholar 

  • Kobayashi A, Bao G, Ye S, Tomita K (2007) Detection of quantitative trait loci for white-back and basal-white kernels under high temperature stress in japonica rice varieties. Breed Sci 57:107–116

    Article  Google Scholar 

  • Kobayashi A, Sonoda J, Sugimoto K, Kondo M, Iwasawa N, Hayashi T, Tomita K, Yano M, Shimizu T (2013) Detection and verification of QTLs associated with heat-induced quality decline of rice (Oryza sativa L.) using recombinant inbred lines and near-isogenic lines. Breed Sci 63:339–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuang W, Xianjiang Y, Xiuqing C, Yafeng X (2012) Experimental study on water production function for waterlogging stress on corn. Process Eng 28:598–603

    Google Scholar 

  • Kumar U, Joshi AK, Kumari M, Paliwal R, Kumar S, Roder MS (2010) Identification of QTLs for stay green trait in wheat (Triticum aestivum L.) in the ‘Chirya 3’ x ‘Sonalika’ population. Euphytica 174:437–445

    Article  Google Scholar 

  • Lei D, Tan L, Liu F, Chen L, Sun C (2013) Identification of heat-sensitive QTL derived from common wild rice (Oryza rufipogon Griff). Plant Sci 201–202:121–127

    Article  PubMed  Google Scholar 

  • Lobell DB, Burke MB (2010) On the use of statistical models to predict crop yield responses to climate change. Agric Meteorol 150:1443–1452

    Article  Google Scholar 

  • Lopes MS, Reynolds MP, McIntyre CL, Mathew KL, Jalal Kamali MR, Mossad M, Feltaous Y, Tahir IS, Chatrath R, Oqbonnaya F, Baum M (2013) QTL for yield and associated traits in the Seri/Babax population grown across several environments in Mexico, in the West Asia, North Africa, and South Asia regions. Theor Appl Genet 126:971–984

    Article  PubMed  Google Scholar 

  • Madan P, Jagadish SVK, Craufurd PQ, Fitzgerald M, Lafarge T, Wheeler TR (2012) Effect of elevated CO2 and high temperature on seed-set and grain quality of rice. J Exp Bot 63:3843–3852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mangelsen E, Kilian J, Harter K, Jansson C, Wanke D, Sundberg E (2011) Transcriptome analysis of high-temperature stress in developing barley caryopses: early stress responses and effects on storage compound biosynthesis. Mol Plant 4:97–115

    Article  CAS  PubMed  Google Scholar 

  • Manigbas NL, Lambio LAF, Madrid LB, Cardenas CC (2014) Germplasm innovation of heat tolerance in rice for irrigated lowland conditions in the Philippines. Rice Sci 21:162–169

    Article  Google Scholar 

  • Mason RE, Mondal S, Beecher F, Hays D (2010) QTL associated with heat susceptibility index in wheat (Triticum aestivum L.) under short-term reproductive stage heat stress. Euphytica 174:423–436

    Article  Google Scholar 

  • Mason RE, Mondal S, Beecher F, Hays D (2011) Genetic loci linking improved heat tolerance in wheat (Triticum aestivum L) to lower leaf and spike temperatures under controlled conditions. Euphytica 180:181–194

    Article  Google Scholar 

  • Matsui T, Omasa K (2002) Rice (Oryza sativa L.) cultivars tolerant to high temperature at flowering: anther characteristic. Ann Bot 89:683–687

    Article  PubMed  PubMed Central  Google Scholar 

  • McNellie JP, Chen J, Li X, Yu J (2018) Genetic mapping of foliar and tassel heat stress tolerance in maize. Crop Sci 58:2484–2493

    Article  CAS  Google Scholar 

  • Mohammadi V, Zali AA, Bhimata AR (2008) Mapping QTLs for heat tolerance in wheat. J Agric Sci 10:261–267

    Google Scholar 

  • Mohammed KAH (2004) Improving crop varieties of spring barley for drought and heat tolerance with AB-QTL analysis. PhD Thesis. Bonn University, pp 1–139

    Google Scholar 

  • Mohammed YSA, Tahir ISA, Kamal NM, Eltayeb AE, Ali AM, Kamal NM (2014) Impact of wheat-Leymus racemosus added chromosomes on wheat adaptation and tolerance to heat stress. Breed Sci 63:450–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mondal S, Mason RE, Huggins T, Hays DB (2014) QTL on wheat (Triticum aestivum L.) chromosomes 1B, 3D and 5A are associated with constitutive production of leaf cuticular wax and may con- tribute to lower leaf temperatures under heat stress. Euphytica. https://doi.org/10.1007/s10681-014-1193-2

  • Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155:335–350

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James RA (2003) Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil 253:201–218

    Article  CAS  Google Scholar 

  • Ortiz R, Sayre KD, Govaertsa B, Gupta R, Subbarao GV, Ban T, Hodson D, Dixon JM, Monasterio JIO, Reynolds M (2008) Climate change: can wheat beat the heat? Agric Ecosyst Environ 126:46–58

    Article  Google Scholar 

  • Ottaviano E, Sari-Gorla M, Pe E, Frova C (1991) Molecular markers (RFLPs and HSPs) for the genetic dissection of thermo tolerance in maize. Theor Appl Genet 81:713–719

    Article  CAS  PubMed  Google Scholar 

  • Paliwal R, Röder MS, Kumar U, Srivastava JP, Joshi AK (2012) QTL mapping of terminal heat tolerance in hexaploid wheat (T. aestivum L.). Theor Appl Genet 125:561–575

    Google Scholar 

  • Paulsen GM (1994) High temperature responses of crop plants. In: Boote KJ, Bennett JM, Sinclair TR, Paulsen GM (eds) Physiology and determination of crop yields. Madison, WI, ASA, CSSA, SSSA, pp 364–389

    Google Scholar 

  • Pinto RS, Reynolds MP, Mathews KL, McIntyre CL, Olivares-Villegas JJ, Chapman SC (2010) Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theor Appl Genet 121:1001–1021

    Article  PubMed  PubMed Central  Google Scholar 

  • Poli Y, Basava RK, Panigrahy M, Vinukonda VP, Dokula NR, Voleti SR, Desiraju S, Neelamraju S (2013) Characterization of a Nagina22 rice mutant for heat tolerance and mapping of yield traits. Rice (NY) 6:36

    Google Scholar 

  • Pradhan GP, Prasad PVV, Fritz AK, Kirkham MB, Gill BS (2012a) High temperature tolerance in aegilops species and its potential transfer to wheat. Crop Sci 52:292–304

    Article  Google Scholar 

  • Pradhan GP, Prasad PVV, Fritz AK, Kirkham MB, Gill BS (2012b) Effects of drought and high temperature stress on synthetic hexaploid wheat. Funct Plant Biol 39:190–198

    Article  PubMed  Google Scholar 

  • Prasanna BM, Cairns JE, Zaidi PH, Beyene Y, Makumbi D, Gowda M, Magorosho C, Zaman-Allah M, Olsen M, Das A, Worku M, Gethi J, Vivek BS, Nair SN, Rashid Z, Vinayan MT, Issa AB, Vicente FS, Dhliwayo T, Zhang X (2021) Beat the stress: breeding for climate resilience in maize for the tropical rainfed environments. Theor Appl Genet 134:1729–1752

    Article  PubMed  PubMed Central  Google Scholar 

  • Raman A, Verulkar SB, Mandal N, Variar M, Shukla VD, Dwivedi JL, Singh BN, Singh ON, Swain P, Mall AK, Robin S, Chandrababu R, Jain A, Ram T, Hittalmani S, Haefele S, Piepho HP, Kumar A (2012) Drought yield index to select high yielding rice lines under different drought stress severities. Rice 5:31

    Article  PubMed  PubMed Central  Google Scholar 

  • Rattalino-Edreira JI, Otegu ME (2013) Heat stress in temperate and tropical maize hybrids: a novel approach for assessing sources of kernel loss in field conditions. Field Crop Res 142:58–67

    Article  Google Scholar 

  • Rehman AIH, Ahmad N, Hussain M, Khan MA, Farooq J, Ali MA (2009) Screening wheat germplasm for heat tolerance at terminal growth stage. Plant Omic J 2:9–19

    Google Scholar 

  • Scafaro AP, Haynes PA, Atwell BJ (2010) Physiological and molecular changes in Oryza meridionalis Ng, a heat-tolerant species of wild rice. J Exp Bot 61:191–202

    Article  CAS  PubMed  Google Scholar 

  • Sehgal SK, Kaur S, Gupta S, Sharma A, Kaur A, Bains NS (2011) A direct hybridization approach to gene transfer from Aegilops tauschii Coss. to Triticum aestivum L. Plant Breed 130:98–100

    Article  CAS  Google Scholar 

  • Shanmugavadivel PS, Amitha MSV, Prakash C, Ramkumar MK, Tiwari R, Mohapatra T, Singh NK (2017) High resolution mapping of QTLs for heat tolerance in rice using a 5K SNP Array. Rice 10:28

    Article  Google Scholar 

  • Sharma P, Sareen S, Saini M, Verma A, Tyagi BS, Sharma I (2014) Assessing genetic variation for heat tolerance in synthetic wheat lines using phenotypic data and molecular markers. Aust J Crop Sci 8:515–522

    CAS  Google Scholar 

  • Sharma P, Sareen S, Saini M, Shefali (2016) Assessing genetic variation for heat stress tolerance in Indian bread wheat genotypes using morpho-physiological traits and molecular markers. Plant Genetic Resour:1–9

    Google Scholar 

  • Shirasawa K, Sekii T, Ogihara Y, Yamada T, Shirasawa S, Kishitani S, Sasaki K, Nishimura M, Nagano K, Nishio T (2013) Identification of the chromosomal region responsible for high-temperature stress tolerance during the grain-filling period in rice. Mol Breeding 32:223–232

    Article  Google Scholar 

  • Shirdelmoghanloo H, Taylor JD, Lohraseb I, Rabie H, Brien C, Timmins A, Martin P, Mather DE, Emebiri L, Collins NC (2016) A QTL on the short arm of wheat (Triticum aestivum L.) chromosome 3B affects the stability of grain weight in plants exposed to a brief heat shock early in grain filling. BMC Plant Biol 16:100

    Google Scholar 

  • Stone PJ, Nicolas ME (1994) Wheat cultivars vary widely in their responses of grain yield and quality to short periods of post anthesis heat stress. Aust J Plant Physiol 21:887–900

    Google Scholar 

  • Tabata M, Hirabayashi H, Takeuchi Y, Ando I, Iida Y, Ohsawa R (2007) Mapping of quantitative trait loci for the occurrence of white-back kernels associated with high temperatures during the ripening period of rice (Oryza sativa L.). Breed Sci 57:47–52

    Article  Google Scholar 

  • Templer SE, Ammon A, Pscheidt D, Ciobotea O, Schuy C, McCollum C, Sonnewald U, Hanemann A, Förster J, Ordon F et al (2017) Metabolite profiling of barley flag leaves under drought and combined heat and drought stress reveals metabolic QTLs for metabolites associated with antioxidant defense. J Exp Bot 68:1697–1713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thakur P, Kumar S, Malik JA, Berger JD, Nayyar H (2010) Cold stress effects on reproductive development in grain crops: an overview. Environ Exp Bot 67:429–443

    Article  CAS  Google Scholar 

  • Tiwari C, Walwork H, Kumar U, Dhari R, Arun B, Mishra VK, Reynolds MP, Joshi AK (2013) Molecular mapping of high temperature tolerance in bread wheat adapted to the eastern Gangetic plain region of India. Field Crop Res 154:201–210

    Article  Google Scholar 

  • Tonorio FA, Ye C, Redona E, Sierra S, Laza M, Argayoso MA (2013) Screening rice genetic resource for heat tolerance. Sabrao J Breed Genet 45:371–381

    Google Scholar 

  • Ullah I (2009) Molecular genetic studies for drought tolerance in cotton. Ph.D. Thesis, Quaid-i-Azam University, Islamabad

    Google Scholar 

  • Vijayalakshmi K, Fritz AK, Paulsen GM, Bai G, Pandravada S, Gill BS (2010) Modeling and mapping QTL for senescence-related traits in winter wheat under high temperature. Mol. Breeding 26:163–175

    Article  CAS  Google Scholar 

  • Waghmare SG, Sindhumole P, Mathew D, Shylaja MR, Francies RM, Abida PS, Narayanankutty MC (2020) Identification of QTL linked to heat tolerance in rice (Oryza sativa L.) using SSR markers through bulked segregant analysis. Electron J Plant Breeding 12(1):46–53

    Google Scholar 

  • Wei H, Liu J, Wang Y, Huang N, Zhang X, Wang L, Zhang J, Tu J, Zhong X (2013) A dominant major locus in chromosome 9 of rice (Oryza sativa L) confers tolerance to 48 & #xB0;C high temperature at seedling stage. J Hered 104:287–294

    Article  CAS  PubMed  Google Scholar 

  • Weichert H, Högy P, Mora-Ramirez I, Fuchs J, Eggert K, Koehler P, Weschke W, Fangmeier A, Weber H (2017) Grain yield and quality responses of wheat expressing a barley sucrose transporter to combined climate change factors. J Exp Bot 68:5511–5525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao Y, Yi P, Luo L, Zhang G, Deng H, Dia L, Liu X, Tang W, Chen L, Wang GL (2011) Quantitative trait loci associated with seed set under high temperature stress at the flowering stage in rice (Oryza sativa L.). Euphytica 178:331–338

    Article  Google Scholar 

  • Yang J, Sears RG, Gill BS, Paulsen GM (2002) Quantitative and molecular characterization of heat tolerance in hexaploid wheat. Euphytica 126:275–282

    Article  CAS  Google Scholar 

  • Ye C, Argayoso MA, Redona ED, Sierra SN, Laza MA, Dilla CJ, Mo Y, Thomson MJ, Chin J, Delavina CB, Diaz GQ, Hernandez JE (2012) Mapping QTL for heat tolerance at flowering stage in rice using SNP markers. Plant Breed 131:33–41

    Article  CAS  Google Scholar 

  • Ying-hui X, Yi P, Li-hua L, Hua-bing D, Gui-lian Z, Wen-bang T, Li-yun C (2011) Quantitative trait loci associated with pollen fertility under high temperature stress at flowering stage in rice (Oryza sativa). Rice Sci 18:204–209

    Article  Google Scholar 

  • Younis A, Ramzan F, Ramzan Y, Zulfiqar F, Ahsan M, Lim KB (2020) Molecular markers improve abiotic stress tolerance in crops: a review. Plan Theory 9:1374

    CAS  Google Scholar 

  • Zaidi PH, Rafique S, Rai PK, Singh NN, Srinivasan G (2004) Tolerance to excess moisture in maize (Zea mays L.): susceptible crop stages and identification of tolerant genotypes. Field Crops Res 90:189–202

    Article  Google Scholar 

  • Zaidi PH, Maniselvan P, Srivastava A, Poonam Y, Singh R (2010) Genetic analysis of waterlogging tolerance in tropical maize. Maydica 55:17–26

    Google Scholar 

  • Zhai J, Mondal SK, Fischer T et al (2020) Future drought characteristics through a multi-model ensemble from CMIP6 over South Asia. Atmos Res 246:105111

    Article  Google Scholar 

  • Zhang T, Yang L, Jang KF, Huang M, Sun Q, Chen WF, Zheng JK (2008) QTL mapping for teat tolerance of the tassel period of rice. Mol Plant Breed 6:867–873

    CAS  Google Scholar 

  • Zhao L, Lei J, Huang Y, Zhu S, Chen H, Huang R, Peng Z, Tu Q, Shen X, Yan S (2016) Mapping quantitative trait loci for heat tolerance at anthesis in rice using chromosomal segment substitution lines. Breed Sci 66:358–366

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu CL, Xiao YH, Wang CM, Jiang L, Zhai HQ, Wan JM (2005) Mapping QTL for heat-tolerance at grain filling stage in rice. Rice Sci 12:33–38

    Google Scholar 

  • Zhu CL, Jiang L, Zhang WW, Wang CM, Zhai HQ, Wan JM (2006) Identifying QTLs for thermo-tolerance of amylose con- tent and gel consistency in rice. Chinese J Rice Sci 20:248–252

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shamim, M., Kumar, M., Srivastava, D. (2022). Molecular Markers Mediated Heat Stress Tolerance in Crop Plants. In: Kumar, R.R., Praveen, S., Rai, G.K. (eds) Thermotolerance in Crop Plants. Springer, Singapore. https://doi.org/10.1007/978-981-19-3800-9_2

Download citation

Publish with us

Policies and ethics