Skip to main content

Guidelines for Minimization of Uncertainties and Estimation of a Reliable Shear Wave Velocity Profile Using MASW Testing: A State-of-the-Art Review

  • Chapter
  • First Online:
Advances in Earthquake Geotechnics

Abstract

Resilience against earthquakes has become important in the current scenario, when numerous events of seismic shaking keep on occurring, especially in regions of high population. For that, reliable seismic site characterization is extremely important. The seismic surface wave methods are the commonly adopted methods for seismic site characterization and subsequent applications. After many evolvements, the multichannel analysis of surface waves (MASW) has grown to be the widely chosen surface wave method across the globe. However, the method has numerous peculiar specifications regarding its procedures of data acquisition, analysis, and interpretations. Each step in the MASW can induce notable uncertainties in the results. Even a single mistake in any of the procedures can lead to erroneous results, which are difficult to be identified even by any third party. Many such cases have been reported earlier by researchers. Such practices may foster substantial losses because ultimately the MASW results are useful for the generation of the design response spectra. Due to all these reasons, there is an alarming need for the dissemination of knowledge about the guidelines for the reliable practice of MASW testing. This paper provides a comprehensive account of the fundamentals of the MASW method, the ways to implement its three steps of data acquisition, processing, and inversion, and the ways to improve confidence in the results. It presents a detailed and comprehensive literature review on the topic, including the historical developments and theoretical basis, subsequent evolvements, current practices, and recommendations for reliable testing. The amount of references has been kept very high to facilitate a thorough understanding of the topic and draw sufficient inferences. An elaborate description of the uncertainties in the test and how to deal with them has been presented. The parameters to be set while carrying out those three steps have been discussed, and suggestions are presented. The suggestions are based on the field experiences and literature review of the research works by many prominent researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aki, K. (1957). Space and time spectra of stationary stochastic waves, with special reference to micro-tremors. Bulletin. Earthquake Research Institute, University of Tokyo, 35, 415–456.

    MathSciNet  Google Scholar 

  • Aki, K., & Richards, P. G. (1980). Quantitative seismology: Theory and methods. W. H. Freeman & Co.

    Google Scholar 

  • Anbazhagan, P., & Sitharam, T. G. (2008). Site characterization and site response studies using shear wave velocity. Journal Seismol Earthquake Engineering, 10(2), 53–67.

    Google Scholar 

  • Andrus, R. D., & Stokoe, K. H., II. (2000). Liquefaction resistance of soils from shear-wave velocity. Journal Geotech Geoenvironmental Engineering, 126(11), 1015–1025.

    Article  Google Scholar 

  • Arai, H., & Tokimatsu, K. (2005). S-wave velocity profiling by joint inversion of microtremor dispersion curve and horizontal-to-vertical (H/V) spectrum. Bulletin of the Seismological Society of America, 95(5), 1766–1778.

    Article  Google Scholar 

  • Asten, M. W., Askan, A., Ekincioglu, E. E., Sisman, F. N., & Ugurhan, B. (2014). Site characterisation in north-western Turkey based on SPAC and HVSR analysis of microtremor noise. Exploration Geophysics, 45(2), 74–85.

    Article  Google Scholar 

  • Ayolabi, E. A., & Adegbola, R. B. (2014). Application of MASW in road failure investigation. Arabian Journal of Geosciences, 7, 4335–4341.

    Article  Google Scholar 

  • Bergamo, P., Dashwood, B., Uhlemann, S., Swift, R., Chambers, J. E., Gunn, D. A., & Donohue, S. (2016). Time-lapse monitoring of climate effects on earthworks using surface waves. Geophysics, 81(2), EN1–EN15.

    Google Scholar 

  • Bettig, B., Bard, P. Y., Scherbaum, F., Riepl, J., Cotton, F., Cornou, C., & Hatzfeld, D. (2001). Analysis of dense array noise measurements using the modified spatial auto-correlation method (SPAC): Application to the Grenoble area. Bollettino Di Geofisica Teorica Ed Application, 42(3–4), 281–304.

    Google Scholar 

  • Boaga, J., Vignoli, G., & Cassiani, G. (2011). Shear wave profiles from surface wave inversion: The impact of uncertainty on seismic site response analysis. Journal of Geophysics and Engineering, 8(2), 162–174.

    Article  Google Scholar 

  • Bodet, L., Abraham, O., & Clorennec, D. (2009). Near-offset effects on Rayleigh-wave dispersion measurements: Physical modeling. Journal of Applied Geophysics, 68, 95–103.

    Article  Google Scholar 

  • Bozorgnia, Y., Abrahamson, N. A., Al, L., Ancheta, T. D., Atkinson, G. M., Baker, J. W., Baltay, A., Boore, D. M., Campbell, K. W., Chiou, B. S. J., et al. (2014). NGA-West2 research project. Earthquake Spectra, 30(3), 973–987.

    Google Scholar 

  • Caielli, G., de Franco, R., Di Fiore, V., Albarello, D., Catalano, S., Pergalani, F., Cavuoto, G., Cercato, M., Compagnoni, M., Facciorusso, J., et al. (2020). Extensive surface geophysical prospecting for seismic microzonation. Bulletin of Earthquake Engineering, 18, 5475–5502.

    Article  Google Scholar 

  • Capon, J. (1969). High-Resolution Frequency-Wavenumber Spectrum Analysis. Proceedings IEEE, 57(8), 1408–1418.

    Google Scholar 

  • Castellaro, S., & Mulargia, F. (2009). Vs30 estimates using constrained H/V measurements. Bulletin of the Seismological Society of America, 99(2A), 761–773.

    Article  Google Scholar 

  • Connolly, D. P., Kouroussis, G., Woodward, P. K., Alves Costa, P., Verlinden, O., & Forde, M. C. (2014). Field testing and analysis of high speed rail vibrations. Soil Dynamics and Earthquake Engineering, 67, 102–118.

    Article  Google Scholar 

  • Constable, S. C., Parker, R. L., & Constable, C. G. (1987). Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics, 52(3), 289–300.

    Article  Google Scholar 

  • Cornou, C., Ohrnberger, M., Boore, D. M., Kudo, K., & Bard, P.-Y. (2006a). Derivation of structural models from ambient vibration array recordings: results from an international blind test. In P. Y. Bard, E. Chaljub, C. Cornou, F. Cotton, & P. Guéguen (Eds.), Proceedings of the 3rd International Symposium on the Effects of Surface Geology on Seismic Motion; Aug 30-Sep 1; Grenoble, France; LCPC Editions.

    Google Scholar 

  • Cornou, C., Ohrnberger, M., Boore, D. M., Kudo, K., & Bard, P.-Y. (2006b). Using ambient noise array techniques for site characterisation: Results from an international benchmark. In P. Y. Bard, E. Chaljub, C. Cornou, F. Cotton, & P. Guéguen (Eds.), Proceedings of the 3rd International Symposium on the Effects of Surface Geology on Seismic Motion; Aug 30-Sep 1; Grenoble, France; LCPC Editions.

    Google Scholar 

  • Cox, B. R., & Beekman, A. N. (2011). Intramethod variability in ReMi dispersion measurements and Vs estimates at shallow bedrock sites. Journal Geotechnical Geoenvironmental Engineering, 137(4), 354–362.

    Article  Google Scholar 

  • Cox, B. R., & Teague, D. P. (2016). Layering ratios: A systematic approach to the inversion of surface wave data in the absence of a priori information. Geophysical Journal International, 207(1), 422–438.

    Article  Google Scholar 

  • Cox, B. R., & Wood, C. M. (2010). A comparison of linear-array surface wave methods at a soft soil site in the Mississippi embayment. In GeoFlorida 2010 Adv Anal Model Des, pp. 1369–1378.

    Google Scholar 

  • Cox, B. R., & Wood, C. M. (2011). Surface wave benchmarking exercise: Methodologies, results and uncertainties. In GeoRisk 2011 Risk Assess Management, Jun 26–28; Atlanta (GA), pp. 845–852.

    Google Scholar 

  • Cox, B. R., Wood, C. M., & Teague, D. P. (2014). Synthesis of the UTexas1 surface wave dataset blind-analysis study: Inter-analyst dispersion and shear wave velocity uncertainty. In Geo-Congress 2014 Geo-Characterization Model Sustain. Feb 23–26; Atlanta (GA), pp. 850–859.

    Google Scholar 

  • Crice, D. (2005). MASW, the wave of the future. Journal of Environmental and Engineering Geophysics, 10(2), 77–79.

    Article  Google Scholar 

  • Cubrinovski, M., Green, R. A., Allen, J., Ashford, S., Bowman, E., Brendon, B., Cox, B., Hutchinson, T., Kavazanjian, E., et al. (2010). Geotechnical reconnaissance of the 2010 Darfield (Canterbury) earthquake. Bulletin New Zealand Society Earthquake Engineering, 43(4), 243–320.

    Article  Google Scholar 

  • Dal Moro, G., Pipan, M., Forte, E., & Finetti, I. (2003). Determination of rayleigh wave dispersion curves for near surface applications in unconsolidated sediments. In SEG Technical Program Expanded Abstracts, pp. 1247–1250.

    Google Scholar 

  • Desai, A., & Jakka, R. S. (2017). Effect of uncertainty in soil type on seismic site response. In Proceedings Indian Geotechnial Conference 2017 (IGC-2017), GeoNEst, December 14–16, 2017, IIT Guwahati, India, pp. 1–4.

    Google Scholar 

  • Desai, A., & Jakka, R. S. (2021). Impact of A-priori Information on Data Measurement Uncertainty in MASW Testing. In Proceedings Research Conclave 2021, December 4–5, 2021, IIT Roorkee, India. IGS Local and Student Chapter Roorkee, paper no. TH-IV-31, pp. 1–4.

    Google Scholar 

  • Desai, A., Kranthikumar, A., & Jakka, R. S. (2022). Role of borehole information in minimizing uncertainties in surface wave testing. In T. G. Sitharam, S. Kolathayar, & R. S. Jakka (Eds.), Earthquake Geotechnics. Lect Notes Civ Eng. Vol. 187. Springer, Singapore, pp. 55–65.

    Google Scholar 

  • Desai, A., Roy, N., Jakka, R. S., Narayan, J. P., & Kranthikumar, A. (2019). Influence of source characteristics on the uncertainties in MASW survey. In F. Silvestri & N. Moraci (Eds.), Earthq Geotech Eng Prot Dev Environ Constr Proc 7th Int Conf Earthq Geotech Eng 2019 (pp. 2068–2075). Italy.

    Google Scholar 

  • Diaz-Segura, E. G. (2015). Effect of MASW field configuration on estimation of shear wave propagation velocity in sloped terrain. Geotechnical Letter, 5, 21–27.

    Article  Google Scholar 

  • Dunkin, J. W. (1965). Computations of modal solutions in layered elastic media at high frequencies. Bulletin of the Seismological Society of America, 55(2), 335–358.

    Article  Google Scholar 

  • Dwivedi, V. K., Dubey, R. K., Pancholi, V., Rout, M. M., Singh, P., Sairam, B., Chopra, S., & Rastogi, B. K. (2020). Multi criteria study for seismic hazard assessment of UNESCO world heritage Ahmedabad City, Gujarat. Western India. Bulletin Engineering Geology Environment, 79, 1721–1733.

    Article  Google Scholar 

  • Ebrahimian, H., Jalayer, F., Forte, G., Convertito, V., Licata, V., D’Onofrio, A., Santo, A., Silvestri, F., & Manfredi, G. (2019). Site-specific probabilistic seismic hazard analysis for the western area of Naples. Italy. Bulletin Earthquake Engineering, 17(9), 4743–4796.

    Article  Google Scholar 

  • Foti, S. (2000). Multistation methods for geotechnical characterization using surface waves. [dissertation]: Politecnico di Torino, Italy.

    Google Scholar 

  • Foti, S., Comina, C., Boiero, D., & Socco, L. V. (2009). Non-uniqueness in surface-wave inversion and consequences on seismic site response analyses. Soil Dynamics and Earthquake Engineering, 29(6), 982–993.

    Article  Google Scholar 

  • Foti, S., Hollender, F., Garofalo, F., Albarello, D., Asten, M., Bard, P. Y., Comina, C., Cornou, C., Cox, B., Di Giulio, G., et al. (2018). Guidelines for the good practice of surface wave analysis: A product of the InterPACIFIC project. Bulletin of Earthquake Engineering, 16, 2367–2420.

    Article  Google Scholar 

  • Foti, S., Lai, C., Rix, G. J., & Strobbia, C. (2014). Surface wave methods for near-surface site characterization. CRC Press.

    Book  Google Scholar 

  • Foti, S., Parolai, S., Albarello, D., & Picozzi, M. (2011a). Application of surface-wave methods for seismic site characterization. Surveys in Geophysics, 32(6), 777–825.

    Article  Google Scholar 

  • Foti, S., Parolai, S., Bergamo, P., Di, G. G., Maraschini, M., Milana, G., Picozzi, M., & Puglia, R. (2011b). Surface wave surveys for seismic site characterization of accelerometric stations in ITACA. Bulletin of Earthquake Engineering, 9, 1797–1820.

    Article  Google Scholar 

  • Foti, S., & Strobbia, C. (2002). Some notes on model parameters for surface wave data inversion. In 15th EEGS Sympsium Application Geophysics to Engineering Environmental Probl, pp. cp-191–00064.

    Google Scholar 

  • Garofalo, F., Foti, S., Hollender, F., Bard, P. Y., Cornou, C., Cox, B. R., Ohrnberger, M., Sicilia, D., Asten, M., Di Giulio, G., et al. (2016). InterPACIFIC project: Comparison of invasive and non-invasive methods for seismic site characterization. Part I: Intra-comparison of surface wave methods. Soil Dynamics and Earthquake Engineering, 82, 222–240.

    Article  Google Scholar 

  • Gilbert, F., & Backus, G. E. (1966). Propagator matrices in elastic wave and vibration problems. Geophysics, 31(2), 326–332.

    Article  Google Scholar 

  • Giulio Di, G., Savvaidis, A., Ohrnberger, M., Wathelet, M., Cornou, C., Knapmeyer-Endrun, B., Renalier, F., Theodoulidis, N., & Bard, P. Y. (2012). Exploring the model space and ranking a best class of models in surface-wave dispersion inversion: Application at European strong-motion sites. Geophysics, 77(3), B147–B166.

    Google Scholar 

  • Griffiths, S. C., Cox, B. R., Rathje, E. M., & Teague, D. P. (2016). Mapping dispersion misfit and uncertainty in vs profiles to variability in site response estimates. Journal Geotechnical Geoenvironmental Engineering, 142(11), 04016062.

    Article  Google Scholar 

  • Haghshenas, E., Bard, P. Y., Theodulidis, N., Atakan, K., Cara, F., Cornou, C., Cultrera, G., Di Giulio, G., Dimitriu, P., Fäh, D., et al. (2008). Empirical evaluation of microtremor H/V spectral ratio. Bulletin of Earthquake Engineering, 6, 75–108.

    Article  Google Scholar 

  • Haskell, N. A. (1953). The dispersion of surface waves on multilayered media. Bulletin of the Seismological Society of America, 43(1), 17–34.

    Article  MathSciNet  Google Scholar 

  • Hebeler, G. L., & Rix, G. J. (2001). Site characterization in Shelby county, Tennessee using advanced surface wave methods. MAE Center CD Release 06–02, Georgia Institute of Technology, USA.

    Google Scholar 

  • Heisey, J. S., Stokoe, K. H., II., & Meyer, A. H. (1982). Moduli of pavement systems from spectral analysis of surface waves. Transportation Research Record, 852, 22–31.

    Google Scholar 

  • Herrmann, R. B. (1994). Computer programs in seismology (Vol. IV). Louis University.

    Google Scholar 

  • Hobiger, M., Bergamo, P., Imperatori, W., Panzera, F., Lontsi, A. M., Perron, V., Michel, C., Burjánek, J., & Fäh, D. (2021). Site characterization of swiss strong-motion stations: The benefit of advanced processing algorithms. Bulletin of the Seismological Society of America, 111(4), 1713–1739.

    Article  Google Scholar 

  • Horike, M. (1985). Inversion of phase velocity of long-period microtremors to the S-wave-velocity structure down to the basement in urbanized areas. Journal of Physics of the Earth, 33, 59–96.

    Article  Google Scholar 

  • Hu, H., Senkaya, M., & Zheng, Y. (2019). A novel measurement of the surface wave dispersion with high and adjustable resolution: Multi-channel nonlinear signal comparison. Journal of Applied Geophysics, 160, 236–241.

    Article  Google Scholar 

  • Hunaidi, O. (1998). Evolution-based genetic algorithms for analysis of non-destructive surface wave tests on pavements. NDT E Int., 31(4), 273–280.

    Article  Google Scholar 

  • Ivanov, J., & Brohammer, M. (2008). Surfseis: active and passive MASW—User’s Manual Version 2.0 Supplemental.

    Google Scholar 

  • Ivanov, J., Park, C. B., Miller, R. D., & Xia, J. (2005). Analyzing and filtering surface-wave energy by muting shot gathers. Journal of Environmental and Engineering Geophysics, 10(3), 307–322.

    Article  Google Scholar 

  • Ivanov, J., Tsoflias, G., Miller, R. D., & Xia, J. (2009). Practical aspects of MASW inversion using varying density. In Proceedings Sympsium Application Geophyics to Engineering Environment Problem SAGEEP, pp. 171–177.

    Google Scholar 

  • Jakka, R. S., Roy, N., & Wason, H. R. (2014). Implications of surface wave data measurement uncertainty on seismic ground response analysis. Soil Dynamics and Earthquake Engineering, 61–62, 239–245.

    Article  Google Scholar 

  • Jeong, J.-H., & Kim, J.-H. (2012). Comparison of signal powers generated with different shapes of hammer plates. Journal of the Korean Earth Science Society, 33(5), 395–400.

    Article  Google Scholar 

  • Jiang, P., Tran, K. T., Hiltunen, D. R., & Hudyma, N. (2015). An appraisal of a new generation of surface wave techniques at a test site in Florida. In IFCEE 2015, pp. 1981–1992.

    Google Scholar 

  • Joh, S. H., Park, D. S., Magno, K., & Lee, J. H. (2019). Stress-based velocity correction for evaluating the shear-wave velocity of the earth core of a rockfill dam. Soil Dynamics and Earthquake Engineering, 126, 105785.

    Article  Google Scholar 

  • Johnson, D. H., & Dudgeon, D. E. (1993). Array signal processing. PTR Prentice Hall, Inc.

    Google Scholar 

  • Jones, R. (1958). In-situ measurement of the dynamic properties of soil by vibration methods. Geotechnique, 8(1), 1–21.

    Article  Google Scholar 

  • Kamai, R., Darvasi, Y., Peleg, Y., & Yagoda-Biran, G. (2018). Measurement and interpretation uncertainty in site response of nine seismic network stations in Israel. Seismological Research Letters, 89(5), 1796–1806.

    Article  Google Scholar 

  • Karl, J. H. (1989). An introduction to digital signal processing. Academic Press.

    MATH  Google Scholar 

  • Kausel, E., & Roesset, J. M. (1981). Stiffness matrices for layered soils. Bulletin of the Seismological Society of America, 71(6), 1743–1761.

    Article  Google Scholar 

  • Kayen, R., Asten, M. W., & Boore, D. M. (2005). The spectral analysis of surface waves measured at William Street Park , San Jose, California , using swept-sine harmonic waves. USGS Open-File Report 2005–1169.

    Google Scholar 

  • Kayen, R., Moss, R. E. S., Thompson, E. M., Seed, R. B., Cetin, K. O., Der, K. A., Tanaka, Y., & Tokimatsu, K. (2013). Shear-wave velocity–based probabilistic and deterministic assessment of seismic soil lique-faction potential. Journal Geotechnical Geoenvironmental Engineering, 139(3), 407–419.

    Article  Google Scholar 

  • Keiswetter, D., & Steeples, D. (1994). Practical modifications to improve the sledgehammer seismic source. Geophysical Research Letters, 21(20), 2203–2206.

    Article  Google Scholar 

  • Keiswetter, D. A., & Steeples, D. W. (1995). A field investigation of source parameters for the sledgehammer. Geophysics, 60(4), 1051–1057.

    Article  Google Scholar 

  • Khan, S., & Khan, M. A. (2018). Seismic microzonation of Islamabad-Rawalpindi metropolitan area. Pakistan. Pure Application Geophysics, 175, 149–164.

    Article  Google Scholar 

  • Kim, J.-H., & Lee, Y.-H. (2011). Comparison of signal powers generated with metal hammer plate and plastic hammer plate. Geophysics Geophysics Exploration, 14(4), 282–288.

    Google Scholar 

  • Kim, J. T., Kim, D. S., Park, H. J., Bang, E. S., & Kim, S. W. (2010). Evaluation of the applicability of the surface wave method to rock fill dams. Exploration Geophysics, 41(1), 9–23.

    Article  Google Scholar 

  • Knopoff, L. (1964). A matrix method for elastic wave problems. Bulletin of the Seismological Society of America, 54(1), 431–438.

    Article  Google Scholar 

  • Konno, K., & Ohmachi, T. (1998). Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bulletin of the Seismological Society of America, 88(1), 228–241.

    Article  Google Scholar 

  • Kumar, J., & Rakaraddi, P. G. (2013). Effect of source energy for SASW testing on geological sites. Geotechnical and Geological Engineering, 31, 47–66.

    Article  Google Scholar 

  • Lacoss, R. T., Kelly, E. J., & Toksoz, M. N. (1969). Estimation of seismic noise structure using arrays. Geophysics, 34(1), 21–38.

    Article  Google Scholar 

  • Lai, C. G., Foti, S., & Rix, G. J. (2005). Propagation of data uncertainty in surface wave inversion. Journal of Environmental and Engineering Geophysics, 10(2), 219–228.

    Article  Google Scholar 

  • Lei, Y., Shen, H., Xie, S., & Li, Y. (2018). Rayleigh wave dispersion curve inversion combining with GA and DSL. Journal of Seismic Exploration, 27, 151–165.

    Google Scholar 

  • Leyton, F., Leopold, A., Hurtado, G., Pastén, C., Ruiz, S., Montalva, G., & Saéz, E. (2018). Geophysical characterization of the Chilean seismological stations: First results. Seismological Research Letters, 89(2A), 519–525.

    Article  Google Scholar 

  • Li, J. (2008). Study of surface wave methods for deep shear wave velocity profiling applied to the deep sediments of the Mississippi embayment. [dissertation]: University of Missouri, USA.

    Google Scholar 

  • Li, J., & Rosenblad, B. (2011). Experimental study of near-field effects in multichannel array-based surface wave velocity measurements. Near Surface Geophysics, 9(4), 357–366.

    Article  Google Scholar 

  • Lin, C. H., & Lin, C. P. (2012). Metamorphosing the SASW method by 2D wavefield transformation. Journal Geotechnical Geoenvironmental Engineering, 138(8), 1027–1032.

    Article  Google Scholar 

  • Lin, C. P., Chang, C. C., & Chang, T. S. (2004). The use of MASW method in the assessment of soil liquefaction potential. Soil Dynamics and Earthquake Engineering, 24, 689–698.

    Article  Google Scholar 

  • Ling, S. (1993). An extended use of the spatial autocorrelation method for the estimation of geological structure using microtremors. 1993. In Proceedings of the 89th SEGJ Conference, pp. 44–48.

    Google Scholar 

  • Lomax, A., & Snieder, R. (1994). Finding sets of acceptable solutions with a genetic algorithm with application to surface wave group dispersion in Europe. Geophysical Research Letters, 21(24), 2617–2620.

    Article  Google Scholar 

  • Long, M., & Donohue, S. (2007). In situ shear wave velocity from multichannel analysis of surface waves (MASW) tests at eight Norwegian research sites. Canadian Geotechnical Journal, 44(5), 533–544.

    Article  Google Scholar 

  • Lontsi, A. M., Ohrnberger, M., & Krüger, F. (2016). Shear wave velocity profile estimation by integrated analysis of active and passive seismic data from small aperture arrays. Journal of Applied Geophysics, 130, 37–52.

    Article  Google Scholar 

  • Louie, J. N. (2001). Faster, better: Shear-wave velocity to 100 meters depth from refraction microtremor arrays. Bulletin of the Seismological Society of America, 91(2), 347–364.

    Article  Google Scholar 

  • Louie JN, Pancha A, Kissane B. 2021. Guidelines and pitfalls of refraction microtremor surveys. Journal Seismology. https://doi.org/10.1007/s10950-021-10020-5.

  • Madun, A., Jefferson, I., Foo, K. Y., Chapman, D. N., Culshaw, M. G., & Atkins, P. R. (2012). Characterization and quality control of stone columns using surface wave testing. Canadian Geotechnical Journal, 49(12), 1357–1368.

    Article  Google Scholar 

  • Mahajan, A. K., Galiana, J. J., Lindholm, C., Arora, B. R., Mundepi, A. K., Rai, N., & Chauhan, N. (2011). Characterization of the sedimentary cover at the Himalayan foothills using active and passive seismic techniques. Journal of Applied Geophysics, 73, 196–206.

    Google Scholar 

  • Mahvelati, S. (2019). Advancements in surface wave testing: Numerical, laboratory, and field investigations regarding the effects of input source and survey parameters on Rayleigh and Love waves. [dissertation]: Temple University, USA.

    Google Scholar 

  • Mahvelati, S., Coe, J. T., & Asabere, P. (2020). Field investigation on the effects of base plate material on experimental surface wave data with MASW. Journal of Environmental and Engineering Geophysics, 25(2), 255–274.

    Article  Google Scholar 

  • Maklad, M., Yokoi, T., Hayashida, T., ElGabry, M. N., Hassan, H. M., Hussein, H. M., Fattah, T. A., & Rashed, M. (2020). Site characterization in Ismailia, Egypt using seismic ambient vibration array. Engineering Geology, 279, 105874.

    Article  Google Scholar 

  • Maraschini, M., & Foti, S. (2010). A Monte Carlo multimodal inversion of surface waves. Geophysical Journal International, 182(3), 1557–1566.

    Article  Google Scholar 

  • Marosi, K. T., & Hiltunen, D. R. (2004a). Characterization of spectral analysis of surface waves shear wave velocity measurement uncertainty. Journal Geotech Geoenvironmental Engineering, 130(10), 1034–1041.

    Article  Google Scholar 

  • Marosi, K. T., & Hiltunen, D. R. (2004b). Characterization of SASW phase angle and phase velocity measurement uncertainty. Geotechnical Testing Journal, 27(2), 205–213.

    Google Scholar 

  • Martin, A., Yong, A., Stephenson, W., Boatwright, J., & Diehl, J. (2017). Geophysical characterization of seismic station sites in the United States—The importance of a flexible, multi-method approach. In 16th World Conference Earthquack Engineering. Santiago, Chile.

    Google Scholar 

  • Martínez-, P., Navarro, M., Pérez-Cuevas, J., Alcalá, F. J., García-Jerez, A., & Sandoval, S. (2014). Shear-wave velocity based seismic microzonation of Lorca city (SE Spain) from MASW analysis. Near Surface Geophysics, 12(6), 739–749.

    Google Scholar 

  • Martínez, M. D., Lana, X., Olarte, J., Badal, J., & Canas, J. A. (2000). Inversion of Rayleigh wave phase and group velocities by simulated annealing. Physics of the Earth and Planetary Interiors, 122(1–2), 3–17.

    Article  Google Scholar 

  • Mase, L. Z., Likitlersuang, S., Tobita, T., Chaiprakaikeow, S., & Soralump, S. (2020). Local site investigation of liquefied Soils Caused by Earthquake in Northern Thailand. Journal Earthquake Engineering, 24(7), 1181–1204.

    Article  Google Scholar 

  • McMechan, G. A., & Yedlin, M. J. (1981). Analysis of dispersive waves by wave-field transformation. Geophysics, 46(6), 869–874.

    Article  Google Scholar 

  • Mereu, R. F., Uffen, R. J., & Beck, A. E. (1963). The use of a coupler in the conversion of impact energy into seismic energy. Geophysics, 28(4), 531–546.

    Article  Google Scholar 

  • Michaels, P. (2011). Establishing confidence in surface wave determined soil profiles. In GeoRisk 2011 Risk Assess Management, Jun 26–28; Atlanta (GA), pp. 837–844.

    Google Scholar 

  • Michel, C., Edwards, B., Poggi, V., Burjánek, J., Roten, D., Cauzzi, C., & Fäh, D. (2014). Assessment of site effects in alpine regions through systematic site characterization of seismic stations. Bulletin of the Seismological Society of America, 104(6), 2809–2826.

    Article  Google Scholar 

  • Micromed, S. P. A. (2012). Tromino user’s manual. Micromed S.p.A., Treviso, Italy.

    Google Scholar 

  • Molnar, S., Cassidy, J. F., Castellaro, S., Cornou, C., Crow, H., Hunter, J. A., Matsushima, S., Sánchez-, F. J., & Yong, A. (2018). Application of microtremor horizontal-to-vertical spectral ratio (MHVSR) analysis for site characterization: State of the art. Surveys in Geophysics, 39, 613–631.

    Google Scholar 

  • Morton, S. L. C., Ivanov, J., & Miller, R. D. (2015). A modified F-K filter for removing the effects of higher-mode dispersion patterns from surface wave data. In 28th Sympsium Application Geophysics to Engineering Environment Problems 2015, SAGEEP 2015, pp. 445–451.

    Google Scholar 

  • Mugesh, A., Desai, A., Jakka, R. S., & Kamal. (2022). Local site effects influence on earthquake early warning parameters. In T. G. Sitharam, S. Kolathayar, R. S. Jakka (Eds.), Earthquake Geotechnics. Lect Notes Civ Eng. Vol. 187. Springer, Singapore, pp. 119–127.

    Google Scholar 

  • Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Q Reports Railway Technical Research Institute, 30(1), 25–33.

    Google Scholar 

  • Nazarian, S. (2012). Shear wave velocity profiling with surface wave methods. In Geotechnical Engineering State Art Pract Keynote Lect from GeoCongress, pp. 221–240.

    Google Scholar 

  • Nazarian, S., Stokoe, K. H., II., & Hudson, W. R. (1983). Use of spectral analysis of surface waves method for determination of moduli and thicknesses of pavement systems. Transportation Research Record, 930, 38–45.

    Google Scholar 

  • Nolet, G., & Panza, G. F. (1976). Array analysis of seismic surface waves: Limits and possibilities. Pure and Applied Geophysics, 114, 775–790.

    Article  Google Scholar 

  • Noorlandt, R., Kruiver, P. P., de Kleine, M. P. E., Karaoulis, M., de Lange, G., Di Matteo, A., von Ketelhodt, J., Ruigrok, E., Edwards, B., Rodriguez-Marek, A., et al. (2018). Characterisation of ground motion recording stations in the Groningen gas field. Journal of Seismology, 22, 605–623.

    Article  Google Scholar 

  • O’Neill, A. (2003). Full-waveform reflectivity for modelling, inversion and appraisal of seismic surface wave dispersion in shallow site investigations. [dissertation]: University of Western Australia.

    Google Scholar 

  • Odum, J. K., Stephenson, W. J., Williams, R. A., & von Hillebrandt, C. (2013). Vs30 and spectral response from collocated shallow, active, and passive-source Vs data at 27 sites in Puerto Rico. Bulletin of the Seismological Society of America, 103(5), 2709–2728.

    Google Scholar 

  • Okada, H. (2003). The microtremor survey method. Society of Exploration Geophysicists of Japan, Translated by Koya Suto, Geophysical Monograph Series, No. 12, Society of Exploration Geophysicists, Tulsa.

    Google Scholar 

  • Omar, M. N., Abbiss, C. P., & Mohd. (2011). Prediction of long-term settlement on soft clay using shear wave velocity and damping characteristics. Engineering Geology, 123(4), 259–270.

    Google Scholar 

  • Pamuk, E., Cevdet, Ö., Özyal, Ş, & Akgün, M. (2017). Soil characterization of Tınaztepe region (Izmir/Turkey) using surface wave methods and nakamura (HVSR) technique. Earthquake Engineering and Engineering Vibration, 16(2), 447–458.

    Article  Google Scholar 

  • Pancha, A., Pullammanappallil. (2011). Analysis and interpretation of the Texas A&M University benchmark data using the refraction microtremor technique. In GeoRisk 2011 Risk Assess Management, Jun 26–28; Atlanta (GA), pp. 867–874.

    Google Scholar 

  • Pandey, B., Jakka, R. S., & Kumar, A. (2016a). Influence of local site conditions on strong ground motion characteristics at Tarai region of Uttarakhand. India. Natural Hazards, 81, 1073–1089.

    Article  Google Scholar 

  • Pandey, B., Jakka, R. S., Kumar, A., & Mittal, H. (2016b). Site characterization of strong-motion recording stations of Delhi using joint inversion of phase velocity dispersion and H/V curve. Bulletin of the Seismological Society of America, 106(3), 1254–1266.

    Article  Google Scholar 

  • Panzera, F., D’Amico, S., Galea, P., Lombardo, G., Gallipoli, M. R., & Pace, S. (2013). Geophysical measurements for site response investigation: Preliminary results on the island of Malta. Boll Di Geofis Theoretical Ed Application, 54(2), 111–128.

    Google Scholar 

  • Park, C. B., & Carnevale, M. (2010). Optimum MASW survey—Revisit after a decade of use. In: GeoFlorida 2010 Advances Analysis Model Design, pp. 1303–1312.

    Google Scholar 

  • Park, C. B., Miller, R., Laflen, D., Neb, C., Ivanov, J., Bennett, B., & Geological, K. (2004). Imaging dispersion curves of passive surface waves. In Expanded Abstracts74th Annual Meeting Soc Exploration Geophysics Proceeding CD ROM.

    Google Scholar 

  • Park, C. B., Miller, R. D., & Miura, H. (2002). Optimum field parameters of an MASW survey. Proceedings Society Exploration Geophysics Japan Tokyo.

    Google Scholar 

  • Park, C. B., Miller, R. D., Ryden, N., Xia, J., & Ivanov, J. (2005). Combined use of active and passive surface waves. Journal of Environmental and Engineering Geophysics, 10(3), 323–334.

    Article  Google Scholar 

  • Park, C. B., Miller, R. D., & Xia, J. (1998). Imaging dispersion curves of surface waves on multi-channel record. In SEG Technical Program Expanded Abstracts: Society of Exploration Geophysicists.

    Google Scholar 

  • Park, C. B., Miller, R. D., & Xia, J. (1999). Multichannel analysis of surface waves. Geophysics, 64(3), 800–808.

    Article  Google Scholar 

  • Park, C. B., Miller, R. D., Xia, J., & Ivanov, J. (2007). Multichannel analysis of surface waves (MASW)—Active and passive methods. The Leading Edge, 26(1), 60–64.

    Article  Google Scholar 

  • Park, C. B., & Ryden, N. (2007). Historical overview of the surface wave method. In 20th EEGS Sympium Application Geophysics to Engineering Environmental Problem Euroupe Association Geosciences Engineering: Society of Exploration Geophysicists, pp. 897–909.

    Google Scholar 

  • Parolai, S., Picozzi, M., Richwalski, S. M., & Milkereit, C. (2005). Joint inversion of phase velocity dispersion and H/V ratio curves from seismic noise recordings using a genetic algorithm, considering higher modes. Geophysical Research Letters, 32(1), L01303.

    Article  Google Scholar 

  • Passeri, F., Comina, C., Foti, S., & Socco, L. V. (2021). The Polito Surface Wave flat-file Database (PSWD): Statistical properties of test results and some inter-method comparisons. Bulletin of Earthquake Engineering, 19(6), 2343–2370.

    Article  Google Scholar 

  • Pelekis, P. C., & Athanasopoulos, G. A. (2011). An overview of surface wave methods and a reliability study of a simplified inversion technique. Soil Dynamics and Earthquake Engineering, 31(12), 1654–1668.

    Article  Google Scholar 

  • Penumadu, D., & Park, C. B. (2005). Multichannel analysis of surface wave (MASW) method for geotechnical site characterization. In Geo-Frontiers Congress 2005 Earthquake Engineering Soil Dynamics, pp. 1–10.

    Google Scholar 

  • Peterson, J. (1993). Observations and modeling of seismic background noise. U.S. Geological Survey, Open-File Report, 93–322.

    Google Scholar 

  • Poggi, V., Fäh, D., Burjanek, J., & Giardini, D. (2012). The use of Rayleigh-wave ellipticity for site-specific hazard assessment and microzonation: Application to the city of Lucerne. Switzerland. Geophysical Journal International, 188(3), 1154–1172.

    Article  Google Scholar 

  • Rahman, M. Z., Siddiqua, S., & Kamal, A. S. M. M. (2016). Shear wave velocity estimation of the near-surface materials of Chittagong City, Bangladesh for seismic site characterization. Journal of Applied Geophysics, 134, 210–225.

    Article  Google Scholar 

  • Rahnema, H., Mirassi, S., & Dal Moro, G. (2021). Cavity effect on Rayleigh wave dispersion and P-wave refraction. Earthquake Engineering and Engineering Vibration, 20(1), 79–88.

    Article  Google Scholar 

  • Rastogi, B. K., Singh, A. P., Sairam, B., Jain, S. K., Kaneko, F., Segawa, S., & Matsuo, J. (2011). The possibility of site effects: The Anjar case, following past earthquakes in Gujarat. India. Seismological Research Letter, 82(1), 59–68.

    Article  Google Scholar 

  • Rehman, F., El-Hady, S. M., Atef, A. H., & Harbi, H. M. (2016). Multichannel analysis of surface waves (MASW) for seismic site characterization using 2D genetic algorithm at Bahrah area, Wadi Fatima. Saudi Arabia. Arab Journal Geosciences, 9, 519.

    Article  Google Scholar 

  • Richwalski, S. M., Picozzi, M., Parolai, S., Milkereit, C., Baliva, F., Albarello, D., Roy-Chowdhury, K., Van Meer, H., & Zschau, J. (2007). Rayleigh wave dispersion curves from seismological and engineering- geotechnical methods: A comparison at the Bornheim test site (Germany). Journal of Geophysics and Engineering, 4, 349–361.

    Google Scholar 

  • Rix, G. J., Hebeler, G. L., & Orozco, M. C. (2002). Near-surface Vs profing in the New Madrid seismic zone using surface-wave methods. Seismological Research Letters, 73(3), 380–392.

    Article  Google Scholar 

  • Rosenblad, B. L., & Li, J. (2009a). Comparative study of refraction microtremor (ReMi) and active source methods for developing low-frequency surface wave dispersion curves. Journal of Environmental and Engineering Geophysics, 14(3), 101–113.

    Article  Google Scholar 

  • Rosenblad, B. L., & Li, J. (2009b). Performance of active and passive methods for measuring low-frequency surface wave dispersion curves. Journal Geotechnical Geoenvironmental Engineering, 135(10), 1419–1428.

    Article  Google Scholar 

  • Rosenblad, B. L., Stokoe, K. H. II, Li, J., Wilder, B., & Menq, F.-Y. (2008). Deep shear wave velocity profiling of poorly characterized soils using the NEES low-frequency vibrator. In Geotechnical Earthquake Engineering Soil Dynamics IV, pp. 1–10.

    Google Scholar 

  • Roy, N. (2015). Uncertainty in site characterization using surface wave technique. [dissertation]: Indian Institute of Technology, Roorkee, India.

    Google Scholar 

  • Roy, N., Desai, A., & Jakka, R. S. (2020). Surface wave dispersion in a layered medium for varying subsurface scenarios. International Journal Geotechnical Earthquake Engineering, 11(2), 26–49.

    Article  Google Scholar 

  • Roy, N., & Jakka, R. S. (2017). Near-field effects on site characterization using MASW technique. Soil Dynamics and Earthquake Engineering, 97, 289–303.

    Article  Google Scholar 

  • Roy, N., & Jakka, R. S. (2018). Effect of data uncertainty and inversion non-uniqueness of surface wave tests on Vs, 30 estimation. Soil Dynamics and Earthquake Engineering, 113, 87–100.

    Article  Google Scholar 

  • Roy, N., & Jakka, R. S. (2020). Mapping surface wave dispersion uncertainty in Vs Profiles to Vs, 30 and site response analysis. Soil Dynamics and Earthquake Engineering, 138, 106298.

    Article  Google Scholar 

  • Roy, N., Jakka, R. S., & Wason, H. R. (2013). Effect of surface wave inversion non-uniqueness on 1D seismic ground response analysis. Natural Hazards, 68(2), 1141–1153.

    Article  Google Scholar 

  • Saifuddin, Y. H., & Chimoto, K. (2018). Variability of shallow soil amplification from surface-wave inversion using the Markov-chain Monte Carlo method. Soil Dynamics and Earthquake Engineering, 107, 141–151.

    Article  Google Scholar 

  • Salas‐Romero, S., Malehmir, A., Snowball, I., & Brodic, B. (2021). Geotechnical site characterization using multichannel analysis of surface waves: A case study of an area prone to quick‐clay landslides in southwest Sweden. Near Surface Geophysics, 1–17.

    Google Scholar 

  • Sambridge, M. (1999). Geophysical inversion with a neighbourhood algorithm— I. Searching a parameter space. Geophysical Journal International, 138, 479–494.

    Article  Google Scholar 

  • Sandikkaya, M. A., Yilmaz, M. T., Bakir, B. S., & Yilmaz, Ö. (2010). Site classification of Turkish national strong-motion stations. Journal of Seismology, 14, 543–563.

    Article  Google Scholar 

  • Scherbaum, F., Hinzen, K. G., & Ohrnberger, M. (2003). Determination of shallow shear wave velocity profiles in the cologne, Germany area using ambient vibrations. Geophysical Journal International, 152(3), 597–612.

    Article  Google Scholar 

  • Schmidt, R. O., & Franks, R. E. (1986). Multiple source DF signal processing: An experimental system. Adapt Antennas Wireless Communication, 34(3), 281–290.

    Google Scholar 

  • Sen, M. K., & Stoffa, P. L. (1991). Nonlinear one-dimensional seismic waveform inversion using simulated annealing. Geophysics, 56(10), 1624–1636.

    Article  Google Scholar 

  • Socco, L. V., & Boiero, D. (2008). Improved Monte Carlo inversion of surface wave data. Geophysical Prospecting, 56(3), 357–371.

    Article  Google Scholar 

  • Socco, L. V., Comina, C., & Anjom, F. K. (2017). Time-average velocity estimation through surface-wave analysis: Part 1-S-wave velocity. Geophysics, 82(3), U49–U59.

    Article  Google Scholar 

  • Socco, L. V., Foti, S., & Boiero, D. (2010). Surface-wave analysis for building near-surface velocity models—Established approaches and new perspectives. Geophysics, 75(5), 75A83–75A102.

    Google Scholar 

  • Socco, L. V., & Strobbia, C. (2004). Surface-wave method for near-surface characterization: A tutorial. Near Surface Geophysics, 2, 165–185.

    Article  Google Scholar 

  • Stanko, D., Markušić, S., Strelec, S., & Gazdek, M. (2017). HVSR analysis of seismic site effects and soil-structure resonance in Varaždin city (North Croatia). Soil Dynamics and Earthquake Engineering, 92, 666–677.

    Article  Google Scholar 

  • Stokoe, K. H., II., Cox, B. R., Clayton, P. M., & Menq, F. (2020). NHERI@ UTexas experimental facility with large-scale mobile shakers for field studies. Frontiers Built Environment, 6, 575973.

    Article  Google Scholar 

  • Stokoe, K. H. II, & Nazarian, S. (1983). Effectiveness of ground improvement from spectral analysis of surface waves. In Proceedings of the 8th European Conference on Soil Mechanics and Foundation Engineering.

    Google Scholar 

  • Stokoe, K. H. II, Nazarian, S., Rix, G. J., Sanchez-Salinero, I., Sheu, J. C., & Mok, Y. J. (1988). In situ seismic testing of hard-to-sample soils by surface wave method. In Proceedings (Earthquake Engineering and Soil Dynamics II—Recent Advances in Ground-motion Evaluation) of Geotechnical Engineering Division of the American Society of Civil Engineers (ASCE), Park City, Utah, 27–30 June 1988, Geotechnical Special Publication No. 20, pp. 264–278.

    Google Scholar 

  • Stokoe, K H. II, Rathje, E. M., Wilson, C. R., & Rosenblad, B. L. (2004). Development of the NEES large-scale mobile shakers and associated instrumentation for in situ evaluation of nonlinear characteristics and liquefaction resistance of soils. In 13th World Conference Earthquake Engeering. Vancouver, Canada.

    Google Scholar 

  • Stokoe, K. H. II, Wright, S. G., Bay, J. A., Roesset, & J. M. (1994). Characterization of geotechnical sites by SASW method. In R. D. Woods (Ed.), Geophysical characterization of sites: New York. International Science Publisher, pp. 15–26.

    Google Scholar 

  • Strobbia, C., & Foti, S. (2006). Multi-offset phase analysis of surface wave data (MOPA). Journal of Applied Geophysics, 59, 300–313.

    Article  Google Scholar 

  • Suto, K. (2013). MASW surveys in landfill sites in Australia. The Leading Edge, 32(6), 674–678.

    Article  Google Scholar 

  • Taipodia, J., Ram, B., Baglari, D., Krishna, M., & Dey, A. (2014). Geophysical investigations for identification of subsurface stratigraphy at IIT Guwahati. Indian Geotech Conf (IGC 2014) (pp. 219–226). Kakinada.

    Google Scholar 

  • Teague, D. P., & Cox, B. R. (2016). Site response implications associated with using non-unique Vs profiles from surface wave inversion in comparison with other commonly used methods of accounting for Vs uncertainty. Soil Dynamics and Earthquake Engineering, 91, 87–103.

    Article  Google Scholar 

  • SESAME team. (2004). Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations-measurements, processing and interpretations. (Deliverable No. D23.12), WP12. SESAME European research project.

    Google Scholar 

  • Thomson, W. T. (1950). Transmission of elastic waves through a stratified solid medium. Journal of Applied Physics, 21, 89–93.

    Article  MathSciNet  MATH  Google Scholar 

  • Tokimatsu, K. (1995). Geotechnical site characterization using surface waves. In Proceedings of the First International Conference on Earthquake Geotechnical Engineering, IS-Tokyo 1995, Japanese Geotechnical Society, Balkema; pp. 1333–1368.

    Google Scholar 

  • Tran, K. (2008). An appraisal of surface wave methods for soil characterization. [master's thesis]:, University of Florida.

    Google Scholar 

  • Tran, K. T., & Hiltunen, D. R. (2011). An assessment of surface wave techniques at the Texas A&M national geotechnical experimentation site. In: GeoRisk 2011 Risk Assess Manag.; Jun 26–28; Atlanta (GA), pp. 859–866.

    Google Scholar 

  • Senkaya, G., Senkaya, M., Karsli, H., & Güney, R. (2020). Integrated shallow seismic imaging of a settlement located in a historical landslide area. Bulletin of Engineering Geology and the Environment, 79, 1781–1796.

    Article  Google Scholar 

  • Vantassel, J. P., & Cox, B. R. (2021). SWinvert: A workflow for performing rigorous 1-D surface wave inversions. Geophysical Journal International, 224(2), 1141–1156.

    Article  Google Scholar 

  • Watabe, Y., & Sassa, S. (2008). Application of MASW technology to identification of tidal flat stratigraphy and its geoenvironmental interpretation. Marine Geology, 252(3–4), 79–88.

    Article  Google Scholar 

  • Wathelet, M. (2008). An improved neighborhood algorithm : Parameter conditions and dynamic scaling. Geophysical Research Letters, 35, L09301.

    Article  Google Scholar 

  • Wathelet, M., Jongmans, D., Ohrnberger, M., & Bonnefoy-Claudet, S. (2008). Array performances for ambient vibrations on a shallow structure and consequences over Vs inversion. Journal of Seismology, 12, 1–19.

    Article  Google Scholar 

  • Wong, I. G., Stokoe, K. H., II., Cox, B. R., Yuan, J., Knudsen, K. L., Terra, F., Okubo, P., & Lin, Y. C. (2011). Shear-wave velocity characterization of the USGS Hawaiian strong-motion network on the Island of Hawaii and development of an NEHRP site-class map. Bulletin of the Seismological Society of America, 101(5), 2252–2269.

    Article  Google Scholar 

  • Wood, C. M., & Cox, B. R. (2012). A comparison of MASW dispersion uncertainty and bias for impact and harmonic sources. In GeoCongress 2012 State Art Practice Geotechnical Engineering, pp. 2756–2765.

    Google Scholar 

  • Wood, C. M., Ellis, T. B., Teague, D. P., & Cox, B. R. (2014). Comprehensive analysis of the UTexas1 surface wave dataset. In Geo-Congress 2014 Geo-Characterization Model Sustain, Feb 23–26; Atlanta (GA); p. 820–829.

    Google Scholar 

  • Wood, C. M., Wotherspoon, L. M., & Cox, B. R. (2015). Influence of a-priori subsurface layering data on the development of realistic shear wave velocity profiles from surface wave inversion. In 6th International Conference Earthquake Geotechnical Engieering. Christchurch, New Zealand.

    Google Scholar 

  • Xia, K., Hilterman, F., & Hu, H. (2018). Unsupervised machine learning algorithm for detecting and outlining surface waves on seismic shot gathers. Journal of Applied Geophysics, 157, 73–86.

    Article  Google Scholar 

  • Xia, J., Miller, R. D., & Park, C. B. (1999). Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves. Geophysics, 64(3), 691–700.

    Article  Google Scholar 

  • Xu, Y., Xia, J., & Miller, R. D. (2006). Quantitative estimation of minimum offset for multichannel surface-wave survey with actively exciting source. Journal of Applied Geophysics, 59, 117–125.

    Article  Google Scholar 

  • Yamanaka, H., Chimoto, K., Ozel, O., Ozmen, O., Arslan, S., Yalcinkaya, E., Tun, M., Pekkan, E., Tsuno, S., & Kaplan, O. et al. (2020). Microtremor explorarions for shallow S-wave velocity profiles at strong motion stations in Turkey. In 17th World Conference Earthquake Engineering Sendai, Japan, pp. 1–9.

    Google Scholar 

  • Yilmaz, O. (1987). Seismic data processing. Society of Exploration Geophysics.

    Google Scholar 

  • Yokota, T., Jinguuji, M., Yamanaka, Y., & Murata, K. (2017). S-wave reflection and surface wave surveys in liquefaction affected areas: A case study of the Hinode area, Itako, Ibaraki. Japan. Exploration Geophysics, 48, 1–15.

    Article  Google Scholar 

  • Yoon, S. (2005). Array-based measurements of surface wave dispersion and attenuation using frequency-wavenumber analysis. [dissertation]: Georgia Institute of Technology, USA.

    Google Scholar 

  • Yoon, S., & Rix, G. J. (2009). Near-field effects on array-based surface wave methods with active sources. Journal Geotechnical Geoenvironmental Engineering, 135(3), 399–406.

    Article  Google Scholar 

  • Yordkayhun, S., Sujitapan, C., & Chalermyanont, T. (2015). Shear wave velocity mapping of Hat Yai district, southern Thailand: Implication for seismic site classification. Journal of Geophysics and Engineering, 12(1), 57–69.

    Article  Google Scholar 

  • Zarean, A., Mirzaei, N., & Mirzaei, M. (2015). Applying MPSO for building shear wave velocity models from microtremor Rayleigh-wave dispersion curves. Journal of Seismic Exploration, 24, 51–82.

    Google Scholar 

  • Zekkos, D., Sahadewa, A., Woods, R. D., & Stokoe, K. H., II. (2014). Development of model for shear-wave velocity of municipal solid waste. Journal Geotechnical Geoenvironmental Engineering, 140(3), 04013030.

    Article  Google Scholar 

  • Zeng, C., Xia, J., Miller, R. D., Tsoflias, G. P., & Wang, Z. (2012). Numerical investigation of MASW applications in presence of surface topography. Journal of Applied Geophysics, 84, 52–60.

    Article  Google Scholar 

  • Zhang, S. X., Chan, L. S., & Xia, J. (2004). The selection of field acquisition parameters for dispersion images from multichannel surface wave data. Pure and Applied Geophysics, 161, 185–201.

    Article  Google Scholar 

  • Zhao, D. (2011). Analysis of surface wave benchmarking data. In GeoRisk 2011 Risk Assessitance Management, Jun 26–28; Atlanta (GA), pp. 853–858.

    Google Scholar 

  • Zhao, D., & Li, V. (2010). Comparison of FK and SPAC methods in determining dispersion curves from passive surface waves. In 23rd EEGS Sympsium Application Geophysics to Engineering Environmental Problems, pp. 536–542.

    Google Scholar 

  • Zywicki, D. J. (1999). Advanced signal processing methods applied to engineering analysis of seismic surface waves. [dissertation]: Georgia Institute of Technology, USA.

    Google Scholar 

  • Zywicki, D. J. (2007). The impact of seismic wavefield and source properties on ReMi estimates. In Geo-Denver 2007 New Peaks Geotechnical, pp. 1–10.

    Google Scholar 

  • Zywicki, D. J., & Rix, G. J. (2005). Mitigation of near-field effects for seismic surface wave velocity estimation with cylindrical beamformers. Journal Geotechnical Geoenvironmental Engineering, 131(8), 970–977.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India, for providing financial support for carrying out the current research (Project Grant Code No. SB/FTP/ETA-164-2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi S. Jakka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jakka, R.S., Desai, A., Foti, S. (2023). Guidelines for Minimization of Uncertainties and Estimation of a Reliable Shear Wave Velocity Profile Using MASW Testing: A State-of-the-Art Review. In: Sitharam, T.G., Jakka, R.S., Kolathayar, S. (eds) Advances in Earthquake Geotechnics. Springer Tracts in Civil Engineering . Springer, Singapore. https://doi.org/10.1007/978-981-19-3330-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-3330-1_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-3329-5

  • Online ISBN: 978-981-19-3330-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics