Skip to main content

Biohydrogen from Pentose-Rich Lignocellulosic Biomass Hydrolysate

  • Chapter
  • First Online:
Organic Waste to Biohydrogen

Abstract

Agricultural activity produces many lignocellulosic biomass wastes, which are renewable carbon sources for biochemical processes. In dark fermentation, acidogenic bacteria use hemicellulosic waste to produce biohydrogen as an alternative source of renewable energy that minimizes environmental problems. Few studies have used hemicellulose fraction for biohydrogen production in continuous or semicontinuous reactors despite the extensive research on dark fermentation. Continuous reactors allow evaluation of the stability and performance of biohydrogen production in large-scale applications. However, the recalcitrance of molecules that make up the lignocellulosic structure hinders its bioconversion, and pretreatment methods are necessary to improve the accessibility to the lignocellulosic materials. Hydrothermal pretreatment stands out for its high efficiency and lower energy consumption, releasing pentoses from hemicellulose fraction. Depending on metabolic pathways followed by microorganisms for biohydrogen production, the yield obtained from xylose with acetic or butyric acids as the primary metabolite can reach 3.33 or 1.67 mol H2/mol pentose, respectively. The pentose-rich hemicellulose fraction of the hydrothermally pretreated sugarcane straw (C5 fraction) was used to feed a bench reactor that operated at 35 °C, in semicontinuous mode, with hydraulic retention time of 48 h, and thermally pretreated anaerobic sludge. The reactor attained maximum yield with the C5 fraction fed at 5.0 g COD/L.d (1.53 mol H2/mol total reducing sugar). This best performance may be due to the components of the C5 fraction, which acted as nutrients and buffering agents. However, analysis of the microbial community found a decrease in microbial diversity and richness throughout the reactor operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adarme OFH, Baêta BEL, Gabriel Filho JB et al (2019) Use of anaerobic co-digestion as an alternative to add value to sugarcane biorefinery wastes. Bioresour Technol 287:1–12

    Article  CAS  Google Scholar 

  • Akhtar N, Gupta K, Goyal D et al (2016) Recent advances in pretreatment technologies for efficient hydrolysis of lignocellulosic biomass. Environ Prog Sustain Energy 35:489–511

    Article  CAS  Google Scholar 

  • Arai T, Biely P, Uhliariková I et al (2019) Structural characterization of hemicellulose released from corn cob in continuous flow type hydrothermal reactor. J Biosci Bioeng 127:222–230

    Article  CAS  PubMed  Google Scholar 

  • Arreola-Vargas J, Celis LB, Buitrón G et al (2013) Hydrogen production from acid and enzymatic oat straw hydrolysates in an anaerobic sequencing batch reactor: performance and microbial population analysis. Int J Hydrog Energy 38:13884–13894

    Article  CAS  Google Scholar 

  • Arriaga S, Rosas I, Alatriste-Mondragón F et al (2011) Continuous production of hydrogen from oat straw hydrolysate in a biotrickling filter. Int J Hydrog Energy 36:3442–3449

    Article  CAS  Google Scholar 

  • Banerjee S, Mudliar S, Sen R et al (2010) Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biofuels Bioprod Biorefin 4:77–93

    Article  CAS  Google Scholar 

  • Baptista SL, Carvalho LC, Romaní A et al (2020) Development of a sustainable bioprocess based on green technologies for xylitol production from corn cob. Ind Crop Prod. https://doi.org/10.1016/j.indcrop.2020.112867

  • Barbosa FC, Martins M, Brenelli LB et al (2020) Screening of potential endoglucanases, hydrolysis conditions and different sugarcane straws pretreatments for cello-oligosaccharides production. Bioresour Technol. https://doi.org/10.1016/j.biortech.2020.123918

  • Baruah J, Nath BK, Sharma R et al (2018) Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Front Energy Res 6:1–19

    Article  Google Scholar 

  • Basak B, Jeon B-H, Kim TH et al (2020) Dark fermentative hydrogen production from pretreated lignocellulosic biomass: effects of inhibitory byproducts and recent trends in mitigation strategies. Renew Sustain Energ Rev 133:1–18

    Article  CAS  Google Scholar 

  • Batista G, Souza RBA, Pratto B et al (2019) Effect of severity factor on the hydrothermal pretreatment of sugarcane straw. Bioresour Technol 275:321–327

    Article  CAS  PubMed  Google Scholar 

  • Bhatla SC, Lal MA (2018) Plant physiology, development and metabolism. Springer Nature, Singapore

    Book  Google Scholar 

  • Bilatto S, Marconcini JM, Mattoso LHC et al (2020) Lignocellulose nanocrystals from sugarcane straw. Ind Crop Prod. https://doi.org/10.1016/j.indcrop.2020.112938

  • Bittencourt GA, Barreto ES, Brandão RL et al (2019) Fractionation of sugarcane bagasse using hydrothermal and advanced oxidative pretreatments for bioethanol and biogas production in lignocellulose biorefineries. Bioresour Technol. https://doi.org/10.1016/j.biortech.2019.121963

  • Brenelli LB, Figueiredo FL, Damasio A et al (2020) An integrated approach to obtain xylo-oligosaccharides from sugarcane straw: from lab to pilot scale. Bioresour Technol. https://doi.org/10.1016/j.biortech.2020.123637

  • Camargo JMO, Gallego-Ríos JM, Neto AMP et al (2020) Characterization of sugarcane straw and bagasse from dry cleaning system of sugarcane for cogeneration system. Renew Energy 158:500–508

    Article  CAS  Google Scholar 

  • Candido RG, Mori NR, Gonçalves AR (2019) Sugarcane straw as feedstock for 2G ethanol: evaluation of pretreatments and enzymatic hydrolysis. Ind Crop Prod. https://doi.org/10.1016/j.indcrop.2019.111845

  • Carvalho DJ, Moretti RR, Colodette JL et al (2020) Assessment of the self-sustained energy generation of an integrated first and second generation ethanol production from sugarcane through the characterization of the hydrolysis process residues. Energ Convers Manag. https://doi.org/10.1016/j.enconman.2019.112267

  • Castelló E, Ferraz-Junior ADN, Andreani C et al (2020) Stability problems in the hydrogen production by dark fermentation: possible causes and solutions. Renew Sustain Energ Rev. https://doi.org/10.1016/j.rser.2019.109602

  • Chernicharo CAL (2007) Biological wastewater treatment. Anaerobic reactors. IWA Publishing, London

    Google Scholar 

  • Crivellaro A, Büntgen U (2020) New evidence of thermally constrained plant cell wall lignification. Trends Plant Sci 25:322–324

    Article  CAS  PubMed  Google Scholar 

  • De Sá LRV, Moutta RO, Bon EPS et al (2015) Fermentative biohydrogen production using hemicellulose fractions: analytical validation for C5 and C6-sugars, acids and inhibitors by HPLC. Int J Hydrog Energy 40:13888–13900

    Article  CAS  Google Scholar 

  • De Sá LRV, Faber MO, da Silva ASA et al (2020) Biohydrogen production using xylose or xylooligosaccharides derived from sugarcane bagasse obtained by hydrothermal and acid pretreatments. Renew Energy 146:2408–2415

    Article  CAS  Google Scholar 

  • Dessì P, Porca E, Frunzo L et al (2018) Inoculum pretreatment differentially affects the active microbial community performing mesophilic and thermophilic dark fermentation of xylose. Int J Hydrog Energy 43:9233–9245

    Article  CAS  Google Scholar 

  • Eskicioglu C, Monlau F, Barakat A et al (2017) Assessment of hydrothermal pretreatment of various lignocellulosic biomass with CO2 catalyst for enhanced methane and hydrogen production. Water Res 120:32–42

    Article  CAS  PubMed  Google Scholar 

  • Etchebehere C, Castelló E, Wenzel J et al (2016) Microbial communities from 20 different hydrogen-producing reactors studied by 454 pyrosequencing. Appl Microbiol Biotechnol 100:3371–3384

    Article  CAS  PubMed  Google Scholar 

  • Garrote GDHP, Dominguez H, Parajo JC (1999) Hydrothermal processing of lignocellulosic materials. Holz als roh-und werkstoff 57:191–202

    Article  CAS  Google Scholar 

  • Garrote G, Yáñez R, Alonso JL et al (2008) Coproduction of oligosaccharides and glucose from corncobs by hydrothermal processing and enzymatic hydrolysis. Ind Eng Chem Res 47:1336–1345

    Article  CAS  Google Scholar 

  • Ghimire A, Frunzo L, Pirozzi F et al (2015) A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products. Appl Energy 144:73–95

    Article  CAS  Google Scholar 

  • Gomez-Romero J, Gonzalez-Garcia A, Chairez I et al (2014) Selective adaptation of an anaerobic microbial community: biohydrogen production by codigestion of cheese whey and vegetables fruit waste. Int J Hydrog Energy 39:12541–12550

    Article  CAS  Google Scholar 

  • Guan W, Xu G, Duan J et al (2018) Acetone-butanol-ethanol production from fermentation of hot-water-extracted hemicellulose hydrolysate of pulping woods. Ind Eng Chem Res 57:775–783

    Article  CAS  Google Scholar 

  • Haroun BM, Nakhla G, Hafez H et al (2016) Significance of acclimatization for biohydrogen production from synthetic lignocellulose hydrolysate in continuous-flow systems. Int J Hydrog Energy 41:14003–14014

    Article  CAS  Google Scholar 

  • Harrison KW, Remick R, Hoskin A et al (2010) Hydrogen production: fundamentals and case study summaries. Paper presented at the 18th World Hydrogen Energy Conference, Essen, Germany, 16–21 May 2010

    Google Scholar 

  • He L, Huang H, Lei Z et al (2014) Enhanced hydrogen production from anaerobic fermentation of rice straw pretreated by hydrothermal technology. Bioresour Technol 171:145–151

    Article  CAS  PubMed  Google Scholar 

  • Kongjan P, O-Thong S, Kotay M et al (2010) Biohydrogen production from wheat straw hydrolysate by dark fermentation using extreme thermophilic mixed culture. Biotechnol Bioeng 105:899–908

    CAS  PubMed  Google Scholar 

  • Kongjan P, Sompong O, Angelidaki I (2011) Performance and microbial community analysis of two-stage process with extreme thermophilic hydrogen and thermophilic methane production from hydrolysate in UASB reactors. Bioresour Technol 102:4028–4035

    Article  CAS  PubMed  Google Scholar 

  • Kongjan P, Inchan S, Chanthong S et al (2019) Hydrogen production from xylose by moderate thermophilic mixed cultures using granules and biofilm up-flow anaerobic reactors. Int J Hydrog Energy 44:3317–3324

    Article  CAS  Google Scholar 

  • Kotay SM, Das D (2009) Novel dark fermentation involving bioaugmentation with constructed bacterial consortium for enhanced biohydrogen production from pretreated sewage sludge. Int J Hydrog Energy 34:7489–7496

    Article  CAS  Google Scholar 

  • Kotharia R, Singha DP, Tyagi VV et al (2012) Fermentative hydrogen production – an alternative clean energy source. Renew Sustain Energ Rev 16:2337–2346

    Article  CAS  Google Scholar 

  • Kumar M, Oyedun AO, Kumar A (2018a) A review on the current status of various hydrothermal technologies on biomass feedstock. Renew Sustain Energ Rev 81:1742–1770

    Article  Google Scholar 

  • Kumar G, Shobana S, Nagarajan D et al (2018b) Biomass based hydrogen production by dark fermentation-recent trends and opportunities for greener processes. Curr Opin Biotechnol 50:136–145

    Article  CAS  PubMed  Google Scholar 

  • Lam PY, Tobimatsu Y, Takeda Y et al (2017) Disrupting flavone synthase II alters lignin and improves biomass digestibility. Plant Physiol 174:972–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambers H, Oliveira RS (2019) Plant physiological ecology. Springer Nature, Cham

    Book  Google Scholar 

  • Lertsriwong S, Glinwong C (2020) Newly-isolated hydrogen-producing bacteria and biohydrogen production by Bacillus coagulans MO11 and Clostridium beijerinckii CN on molasses and agricultural wastewater. Int J Hydrog Energy 45:26812–26821

    Article  CAS  Google Scholar 

  • Li Y, Zhang R, He Y et al (2014) Anaerobic co-digestion of chicken manure and corn stover in batch and continuously stirred tank reactor (CSTR). Bioresour Technol 156:342–347

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Hu J, Qu C et al (2019) Engineered Thermoanaerobacterium aotearoense with nfnAB knockout for improved hydrogen production from lignocellulose hydrolysates. Biotechnol Biofuels 12:1–14

    Article  Google Scholar 

  • Li H, Song W, Cheng J et al (2020) Effects of harvest month on biochemical composition of alligator weed for biohydrogen and biomethane cogeneration: identifying critical variations in microbial communities. Int J Hydrog Energy 45:4161–4173

    Article  CAS  Google Scholar 

  • Lopes HJS, Ramos LR, de Menezes CA et al (2020) Simultaneous hydrogen and ethanol production in a thermophilic AFBR: a comparative approach between cellulosic hydrolysate single fermentation and the fermentation of glucose and xylose as co-substrates. Cellulose 27:2599–2612

    Article  CAS  Google Scholar 

  • Majda M, Robert S (2018) The role of auxin in cell wall expansion. Int J Mol Sci. https://doi.org/10.3390/ijms19040951

  • Mechery J, Thomas DM, Kumar CSP et al (2021) Biohydrogen production from acidic and alkaline hydrolysates of paddy straw using locally isolated facultative bacteria through dark fermentation. Biomass Convers Biorefin 11:1263–1272

    Article  CAS  Google Scholar 

  • Menandro LMS, Cantarella H, Franco HCJ et al (2017) Comprehensive assessment of sugarcane straw: implications for biomass and bioenergy production. Biofuels Bioprod Biorefin 11:488–504

    Article  CAS  Google Scholar 

  • Mishra P, Krishnan S, Rana S et al (2019) Outlook of fermentative hydrogen production techniques: an overview of dark, photo and integrated dark-photo fermentative approach to biomass. Energy Strategy Rev 24:27–37

    Article  Google Scholar 

  • Mockaitis G, Bruant G, Guiot SR et al (2020) Acidic and thermal pre-treatments for anaerobic digestion inoculum to improve hydrogen and volatile fatty acid production using xylose as the substrate. Renew Energy 145:1388–1398

    Article  CAS  Google Scholar 

  • Mood SH, Golfeshan AH, Tabatabaei M et al (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sustain Energ Rev 17:77–93

    Article  CAS  Google Scholar 

  • Mota VT, Ferraz ADN Jr, Trably E et al (2018) Biohydrogen production at pH below 3.0: is it possible? Water Res 128:350–361

    Article  CAS  PubMed  Google Scholar 

  • Nakasu PYS, Ienczak LJ, Costa AC et al (2016) Acid post-hydrolysis of xylooligosaccharides from hydrothermal pretreatment for pentose ethanol production. Fuel 185:73–84

    Article  CAS  Google Scholar 

  • Nanda S, Mohammad J, Reddy SN et al (2014) Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Convers Biorefin 4:157–191

    Article  CAS  Google Scholar 

  • Nasr N, Gupta M, Elbeshbishy E et al (2014) Biohydrogen production from pretreated corn cobs. Int J Hydrog Energy 39:19921–19927

    Article  CAS  Google Scholar 

  • Neto AC, Guimarães MJO, Freire E (2018) Business models for commercial scale second-generation bioethanol production. J Clean Prod 184:168–178

    Article  Google Scholar 

  • Nikolaidis P, Poullikkas A (2017) A comparative overview of hydrogen production processes. Renew Sustain Energ Rev 67:597–611

    Article  CAS  Google Scholar 

  • Nissila ME, Lay C-H, Puhakka JA (2014) Dark fermentative hydrogen production from lignocellulosic hydrolyzates – a review. Biomass Bioenergy 67:145–159

    Article  CAS  Google Scholar 

  • Nobel PS (1999) Physicochemical and environmental plant physiology. Academic Press, San Diego

    Google Scholar 

  • Nualsri C, Kongjan P, Reungsang A (2016) Direct integration of CSTR-UASB reactors for two-stage hydrogen and methane production from sugarcane syrup. Int J Hydrog Energy 41:17884–17895

    Article  CAS  Google Scholar 

  • Otieno DO, Ahring BK (2012) A thermochemical pretreatment process to produce xylooligosaccharides, arabinooligosaccharides and mannooligosaccharides from lignocellulosic biomasses. Bioresour Technol 112:285–292

    Article  CAS  PubMed  Google Scholar 

  • Phuttaro C, Sawatdeenarunat C, Surendra KC et al (2019) Anaerobic digestion of hydrothermally pretreated lignocellulosic biomass: influence of pretreatment temperatures, inhibitors and soluble organics on methane yield. Bioresour Technol 284:128–138

    Article  CAS  PubMed  Google Scholar 

  • Poletto P, Pereira GN, Monteiro CRM et al (2020) Xylooligosaccharides: transforming the lignocellulosic biomasses into valuable 5-carbon sugar prebiotics. Process Biochem 91:352–363

    Article  CAS  Google Scholar 

  • Ruiz HA, Conrad M, Sun SN et al (2020) Engineering aspects of hydrothermal pretreatment: from batch to continuous operation, scale-up and pilot reactor under biorefinery concept. Bioresour Technol 299:1–16

    Article  CAS  Google Scholar 

  • Santo ME, Rezende CA, Bernardinelli OD et al (2018) Structural and compositional changes in sugarcane bagasse subjected to hydrothermal and organosolv pretreatments and their impacts on enzymatic hydrolysis. Ind Crop Prod 113:64–74

    Article  CAS  Google Scholar 

  • Santos F, Eichler P, Machado G et al (2020) By-products of the sugarcane industry. In: Santos F, Rabelo S, de Matos M et al (eds) Sugarcane biorefinery, technology and perspectives. Academic Press, London, pp 21–48

    Chapter  Google Scholar 

  • Seidl PR, Goulart AK (2016) Pretreatment processes for lignocellulosic biomass conversion to biofuels and bioproducts. Curr Opin Green Sustain Chem 2:48–53

    Article  Google Scholar 

  • Sheng H, Chen S (2020) Plant silicon-cell wall complexes: identification, model of covalent bond formation and biofunction. Plant Physiol Biochem 155:13–19

    Article  CAS  PubMed  Google Scholar 

  • Silva FG, Ferreira-Leitão VS, Cammarota MC (2019) Strategies for increasing the biohydrogen yield in anaerobic fermentation of xylose. Env Nat Resour Res 9:32–40

    Google Scholar 

  • Singhvi MS, Gokhale DV (2019) Lignocellulosic biomass: hurdles and challenges in its valorization. Appl Microbiol Biotechnol 103:9305–9320

    Article  CAS  PubMed  Google Scholar 

  • Sinha P, Pandey A (2014) Biohydrogen production from various feedstocks by Bacillus firmus NMBL-03. Int J Hydrog Energy 39:7518–7525

    Article  CAS  Google Scholar 

  • Su X, Zhao W, Xia D (2018) The diversity of hydrogen-producing bacteria and methanogens within an in situ coal seam. Biotechnol Biofuels 11:1–18

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E, Møller IM et al (2015) Plant physiology and development. Sinauer Associates Inc., Sunderland

    Google Scholar 

  • Thungklin S, Sittijunda S, Reungsang A (2018) Sequential fermentation of hydrogen and methane: from steam-exploded sugarcane bagasse hydrolysate. Int J Hydrog Energy 43:9924–9934

    Article  CAS  Google Scholar 

  • Tian S-Q, Zhao R-Y, Chen Z-C (2018) Review of the pretreatment and bioconversion of lignocellulosic biomass from wheat straw materials. Renew Sustain Energ Rev 91:483–489

    Article  CAS  Google Scholar 

  • Valdez-Vazquez I, Castillo-Rubio LG, Pérez-Rangel M et al (2019) Enhanced hydrogen production from lignocellulosic substrates via bioaugmentation with Clostridium strains. Ind Crop Prod 137:105–111

    Article  CAS  Google Scholar 

  • Veeravalli SS, Chaganti SR, Lalman JA et al (2014) Optimizing hydrogen production from a switchgrass steam exploded liquor using a mixed anaerobic culture in an upflow anaerobic sludge blanket reactor. Int J Hydrog Energy 39:3160–3175

    Google Scholar 

  • Wang J, Yin Y (2019) Progress in microbiology for fermentative hydrogen production from organic wastes. Crit Rev Environ Sci Technol 49:825–865

    Article  CAS  Google Scholar 

  • Wang S, Ma Z, Zhang T et al (2017) Optimization and modeling of biohydrogen production by mixed bacterial cultures from raw cassava starch. Front Chem Sci Eng 11:100–106

    Article  CAS  Google Scholar 

  • Wang D, Shen F, Yang G et al (2018) Can hydrothermal pretreatment improve anaerobic digestion for biogas from lignocellulosic biomass? Bioresour Technol 249:117–124

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Joshee N, Cao W et al (2019) Continuous hydrogen production by dark and photo co-fermentation using a tubular multi-cycle bio-reactor with Paulownia biomass. Cellulose 26:8429–8438

    Article  CAS  Google Scholar 

  • Wu H-C, Huang Y-C, Stracovsky L et al (2017) Pectin methylesterase is required for guard cell function in response to heat. Plant Signal Behav. https://doi.org/10.1080/15592324.2017.1338227

  • Yan YH, Li HL, Ren JL et al (2017) Xylo-sugars production by microwave-induced hydrothermal treatment of corncob: trace sodium hydroxide addition for suppression of side effects. Ind Crop Prod 101:36–45

    Article  CAS  Google Scholar 

  • Yang G, Wang J (2019) Changes in microbial community structure during dark fermentative hydrogen production. Int J Hydrog Energy 44:25542–25550

    Article  CAS  Google Scholar 

  • Yang L, Xu F, Ge X et al (2015) Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass. Renew Sustain Energ Rev 44:824–834

    Article  CAS  Google Scholar 

  • Yang G, Hu Y, Wang J (2019) Biohydrogen production from co-fermentation of fallen leaves and sewage sludge. Bioresour Technol. https://doi.org/10.1016/j.biortech.2019.121342

  • Yousefifar A, Baroutian S, Farid MM et al (2017) Fundamental mechanisms and reactions in non-catalytic subcritical hydrothermal processes: a review. Water Res 123:607–622

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Wu H (2010) Significant differences in the hydrolysis behavior of amorphous and crystalline portions within microcrystalline cellulose in hot-compressed water. Ind Eng Chem Res 49:3902–3909

    Article  CAS  Google Scholar 

  • Zech K, Oehmichen K, Grasemann E et al (2015) Technical, economic and environmental assessment of technologies for the production of biohydrogen and its distribution results of the Hy-NOW study. Int J Hydrog Energy 40:5487–5495

    Article  CAS  Google Scholar 

  • Zhang K, Ren N-Q, Wang A-J (2015) Fermentative hydrogen production from corn stover hydrolyzate by two typical seed sludges: effect of temperature. Int J Hydrog Energy 40:3838–3848

    Article  CAS  Google Scholar 

  • Zhang X, Zhang W, Lei F et al (2020) Coproduction of xylooligosaccharides and fermentable sugars from sugarcane bagasse by seawater hydrothermal pretreatment. Bioresour Technol. https://doi.org/10.1016/j.biortech.2020.123385

  • Zheng Y, Zhao J, Xu F et al (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42:35–53

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Brazilian National Council for Research and Development (CNPq), and Carlos Chagas Filho Foundation for Research Support in the State of Rio de Janeiro (FAPERJ). Authors are also thankful to the Bioethanol Laboratory of the Federal University of Rio de Janeiro for the hydrothermal pretreatment of sugarcane straw.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magali Christe Cammarota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Silva, F.G., da Silva Liduino, V., Ferreira-Leitão, V.S., Cammarota, M.C. (2022). Biohydrogen from Pentose-Rich Lignocellulosic Biomass Hydrolysate. In: Kuddus, M., Yunus, G., Ramteke, P.W., Molina, G. (eds) Organic Waste to Biohydrogen. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-19-1995-4_5

Download citation

Publish with us

Policies and ethics