Skip to main content
Log in

Biohydrogen production from pretreated lignocellulose by Clostridium thermocellum

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In consolidated bioprocessing (CBP), the difference in optimum temperature between saccharification and fermentation poses a significant technical challenge to producing bioenergy efficiently with lignocellulose. The thermophilic anaerobic strain of Clostridium thermocellum has the potential to overcome this challenge if hydrolysis and fermentation is performed at an elevated temperature. However, this strain is sensitive to structure and components of lignocellulosic materials. To understand biohydrogen production from lignocellulosic materials, C. thermocellum was examined for biohydrogen production as well as bioconversion from different cellulosic materials (Avicel, filter paper and sugarcane bagasse (SCB)). We investigated hydrolysis-inhibitory effects of the cellulosic material types on the substrate degradation and biohydrogen production of C. thermocellum 27405. Within 168 h, the substrate degradation ratios of Avicel, filter paper, and SCB were 83.01, 51.78, and 42.19%, respectively. The substrate utilization and biohydrogen production of SCB reached 81 and 89.77% those of filter paper, respectively, indicating that SCB is a feasible substrate for biohydrogen production. Additionally, optimizing fermentation conditions can improve biohydrogen production, with the optimal conditions being an inoculum size of 7%, substrate concentration of 2%, particle size of 0.074 mm, and yeast extract concentration of 1%. This research provides important clues in relation to the low-cost conversion of renewable biomass to biohydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kita, K., S. Okada, H. Sekino, K. Imou, S. Yokoyama, and T. Amano (2010) Thermal pre-treatment of wet microalgae harvest for efficient hydrocarbon recovery. Appl. Energ. 87: 2420–2423.

    Article  CAS  Google Scholar 

  2. Srirangan, K., L. Akawi, M. Moo-Young, and C. P. Chou (2012) Towards sustainable production of clean energy carriers from biomass resources. Appl. Energ. 100: 172–186.

    Article  Google Scholar 

  3. Yang, Z. M., R. B. Guo, X. H. Xu, X. L. Fan, and S. J. Luo (2011) Fermentative hydrogen production from lipid-extracted microalgal biomass residues. Appl. Energ. 88: 3468–3472.

    Article  CAS  Google Scholar 

  4. Chuang, Y. S., C. Y. Huang, C. H. Lay, C. C. Chen, B. Sen, and C. Y. Lin (2012) Fermentative bioenergy production from distillers grains using mixed microflora. Int. J. Hydrogen Energ. 37: 15547–15555.

    Article  CAS  Google Scholar 

  5. Öhgren, K., A. Rudolf, M. Galbe, and G. Zacchi (2006) Fuel ethanol production from steam-pretreated corn stover using SSF at higher dry matter content. Biomass Bioenerg. 30: 863–869.

    Article  Google Scholar 

  6. Datar, R., J. Huang, P. C. Maness, A. Mohagheghi, S. Czemik, and E. Chornet (2007) Hydrogen production from the fermentation of corn stover biomass pretreated with a steam-explosion process. Int. J. Hydrogen Energ. 32: 932–939.

    Article  CAS  Google Scholar 

  7. de Vrije, T., G. G. de Haas, G. B. Tan, E. R. P. Keijsers, and P. A. M. Claassen (2002) Pretreatment of Miscanthus for hydrogen production by Thermotoga elfii. Int. J. Hydrogen Energ. 27: 1381–1390.

    Article  CAS  Google Scholar 

  8. Sun, Y. and J. Y. Cheng (2002) Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresour. Technol. 83: 1–11.

    Article  CAS  Google Scholar 

  9. Xu, Z., Q. H. Wang, Z. H. Jiang, X. X. Yang, and Y. Z. Ji (2007) Enzymatic hydrolysis of pretreated soybean straw. Biomass Bioenerg. 31: 162–167.

    Article  CAS  Google Scholar 

  10. Zhu, Z. S., M. J. Zhu, and Z. Q. Wu (2012) Pretreatment of sugarcane bagasse with NH4OH–H2O2 and ionic liquid for efficient hydrolysis and bioethanol production. Bioresour. Technol. 119: 199–207.

    Article  CAS  Google Scholar 

  11. Lynd, L. R., P. J. Weimer, W. H. van Zyl, and I. S. Pretorius (2002) Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol.Rev. 66: 506–577.

    Article  CAS  Google Scholar 

  12. Lin, P. Y., L. M. Wang, Y. R. Wu, W. J. Ren, C. J. Hsiao, S. L. Li, and J. S. Chang (2007). Biological hydrogen production of the genus Clostridium: Metabolic study and mathematical model simulation. Int. J. Hydrogen Energ. 32: 1728–1735.

    Article  CAS  Google Scholar 

  13. Willaert, R. G. and G. V. Baron (1996) Gel entrapment and microencapsulation: Methods, applications and engineering principles. Rev. Chem. Eng. 12: 5–205.

    Article  Google Scholar 

  14. Weimer, P. J. and J. G. Zeikus (1977) Fermentation of cellulose and cellobiose by clostridium-thermocellum in absence and presence of methanobacterium-thermoautotrophicum. Appl. Environ. Microb. 33: 289–297.

    CAS  Google Scholar 

  15. Levin, D. B., R. Islam, N. Cicek, and R. Sparling (2006) Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates. Int. J. Hydrogen Energ. 31: 1496–1503.

    Article  CAS  Google Scholar 

  16. Qing, Q., B. Yang, and C. E. Wyman (2010) Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour. Technol. 101: 9624–9630.

    Article  CAS  Google Scholar 

  17. Magnusson L., R. Islam, R. Sparling, D. Levin, and Nazim Cicek (2008) Direct hydrogen production from cellulosic waste materials with a single-step dark fermentation process. Int. J. Hydrogen Energ. 33: 5398–5403

    Article  CAS  Google Scholar 

  18. Luo, G., L. Xie, Z. H. Zou, Q. Zhou, and J. Y. Wang (2010) Fermentative hydrogen production from cassava stillage by mixed anaerobic microflora: Effects of temperature and pH. Appl. Energ. 87: 3710–3717.

    Article  CAS  Google Scholar 

  19. Sun, J. X., X. Z. Yuan, X. S. Shi, C. F. Chu, R. B. Guo, and H. N. Kong (2011) Fermentation of Chlorella sp for anaerobic biohydrogen production: Influences of inoculum-substrate ratio, volatile fatty acids and NADH. Bioresour. Technol. 102: 10480–10485.

    Article  CAS  Google Scholar 

  20. Lomborg, C. J., M. H. Thomsen, E. S. Jensen, and K. H. Esbensen (2010) Power plant intake quantification of wheat straw composition for 2nd generation bioethanol optimization–A Near Infrared Spectroscopy (NIRS) feasibility study. Bioresour. Technol. 101: 1199–1205.

    Article  CAS  Google Scholar 

  21. Cheng, J. R. and M. J. Zhu (2013) A novel anaerobic co-culture system for bio-hydrogen production from sugarcane bagasse. Bioresour. Technol. 144: 623–631.

    Article  CAS  Google Scholar 

  22. Li, P. and M. J. Zhu (2011). A consolidated bio-processing of ethanol from cassava pulp accompanied by hydrogen production. Bioresour. Technol. 102: 10471–10479.

    Article  CAS  Google Scholar 

  23. Blume, L. R., E. F. Noronha, J. Leite, R. M. L. Queiroz, C. A. Ornelas Ricart, M. V. de Sousa, and C. R. Felix (2013) Characterization of Clostridium thermocellum isolates grown on cellulose and sugarcane bagasse. Bioenerg. Res. 6: 763–775.

    Article  CAS  Google Scholar 

  24. Li, S., C. F. Lai, Y. H. Cai, X. F. Yang, S. Yang, M. J. Zhu, J. F. Wang, and X. N. Wang (2010) High efficiency hydrogen production from glucose/xylose by the ldh-deleted Thermoanaerobacterium strain. Bioresour. Technol. 101: 8718–8724.

    Article  CAS  Google Scholar 

  25. Feng, X. Q., H. Wang, Y. Wang, X. F. Wang, and J. Huang (2010) Biohydrogen production from apple pomace by anaerobic fermentation with river sludge. Int. J. Hydrogen Energ. 35: 3058–3064.

    Article  CAS  Google Scholar 

  26. Chinn, M. S., S. E. Nokes, and H. J. Strobel (2008) Influence of moisture content and cultivation duration on Clostridium thermocellum 27405 end-product formation in solid substrate cultivation on Avicel. Bioresour. Technol. 99: 2664–2671.

    Article  CAS  Google Scholar 

  27. Cheng, J. R., Y. Yu, and M. J. Zhu (2014) Enhanced biodegradation of sugarcane bagasse by Clostridium thermocellum with surfactant addition. Green Chem. 16: 2689–2695.

    Article  CAS  Google Scholar 

  28. Lo, Y. C., C. Y. Huang, C. L. Cheng, C. Y. Lin, and J. S. Chang (2011) Characterization of cellulolytic enzymes and bioH2 production from anaerobic thermophilic Clostridium sp TCW1. Bioresour. Technol. 102: 8384–8392.

    Article  CAS  Google Scholar 

  29. Liu, Y., P. Yu, X. Song, Y.B. Qu (2008) Hydrogen production from cellulose by co-culture of Clostridium thermocellum JN4 and Thermoanaerobacterium thermosaccharolyticum GD17. Int. J. Hydrogen Energ. 33: 2927–2933.

    Article  CAS  Google Scholar 

  30. Khanal, S. K., W. H. Chen, L. Li, and S. W. Sung (2004) Biological hydrogen production: Effects of pH and intermediate products. Int. J. Hydrogen Energ. 29: 1123–1131.

    CAS  Google Scholar 

  31. Dabrock, B., H. Bahl, and G. Gottschalk (1992) Parameters affecting solvent production by clostridium-pasteurianum. Appl. Environ. Microb. 58: 1233–1239.

    CAS  Google Scholar 

  32. Holtzapple, M., M. Cognata, Y. Shu, and C. Hendrickson (1990) Inhibition of trichoderma-reesei cellulase by sugars and solvents. Biotechnol. Bioeng. 36: 275–287.

    Article  CAS  Google Scholar 

  33. Philippidis, G. P., T. K. Smith, and C. E. Wyman (1993) Study of the enzymatic-hydrolysis of cellulose for production of fuel ethanol by the simultaneous saccharification and fermentation process. Biotechnol. Bioeng. 41: 846–853.

    Article  CAS  Google Scholar 

  34. Dasari, R. K. and R. E. Berson (2007) The effect of particle size on hydrolysis reaction rates and rheological properties in cellulosic slurries. Appl. Biochem. Biotech. 137: 289–299.

    Google Scholar 

  35. Jin, M., V. Balan, C. Gunawan, and B.E. Dale (2011) Consolidated Bioprocessing (CBP) Performance of Clostridium phytofermentans on AFEX-Treated Corn Stover for Ethanol Production. Biotechnol. Bioeng. 108: 1290–1297.

    Article  CAS  Google Scholar 

  36. Reid, I. D. (1989) Optimization of solid-state fermentation for selective delignification of aspen wood with Phlebia tremellosa. Enz. Microb. Tech. 11: 804–809.

    Article  CAS  Google Scholar 

  37. Smith, J. S., A. J. Hillier, G. J. Lees, and G. R. Jago (1975) Nature of stimulation of growth of streptococcus-lactis by yeast extract. J. Dairy Res. 42: 123–138.

    Article  CAS  Google Scholar 

  38. Johnson, E.A., A. Madia, and A.L. Demain (1981) Chemically defined minimal medium for growth of the anaerobic cellulolytic thermophile clostridium-thermocellum. Appl. Environ. Microb. 41: 1060–1062.

    CAS  Google Scholar 

  39. Geng, A., Y. L. He, C. L. Qian, X. Yan, and Z. H. Zhou (2010) Effect of key factors on hydrogen production from cellulose in a co-culture of Clostridium thermocellum and Clostridium thermopalmarium. Bioresour. Technol. 101: 4029–4033.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Jun Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, JR., Zhu, MJ. Biohydrogen production from pretreated lignocellulose by Clostridium thermocellum . Biotechnol Bioproc E 21, 87–94 (2016). https://doi.org/10.1007/s12257-015-0642-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-015-0642-7

Keywords

Navigation