Skip to main content

Advertisement

Log in

Transient Transfection Factors for High-Level Recombinant Protein Production in Suspension Cultured Mammalian Cells

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The efficient transfection of cloned genes into mammalian cells system plays a critical role in the production of large quantities of recombinant proteins (r-proteins). In order to establish a simple and scaleable transient protein production system, we have used a cationic lipid-based transfection reagent—FreeStyle MAX to study transient transfection in serum-free suspension human embryonic kidney (HEK) 293 and Chinese hamster ovary (CHO) cells. We used quantification of green fluorescent protein (GFP) to monitor transfection efficiency and expression of a cloned human IgG antibody to monitor r-protein production. Parameters including transfection reagent concentration, DNA concentration, the time of complex formation, and the cell density at the time of transfection were analyzed and optimized. About 70% GFP-positive cells and 50–80 mg/l of secreted IgG antibody were obtained in both HEK-293 and CHO cells under optimal conditions. Scale-up of the transfection system to 1 l resulted in similar transfection efficiency and protein production. In addition, we evaluated production of therapeutic proteins such as human erythropoietin and human blood coagulation factor IX in both HEK-293 and CHO cells. Our results showed that the higher quantity of protein production was obtained by using optimal transient transfection conditions in serum-free adapted suspension mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hanning, G., & Makrides, S. C. (1998). Strategies for optimizing heterologous protein expression in Escherichia coli. Trends in Biotechnology, 16, 54–60.

    Article  Google Scholar 

  2. Baneyx, F., & Mujacic, M. (2004). Recombinant protein folding and misfolding in Escherichia coli. Nature Biotechnology, 22, 1399–1408.

    Article  PubMed  CAS  Google Scholar 

  3. Austin, A. J., Jones, C. E., & Heeke, G. V. (1998). Production of human tissue factor using the Pichia pastoris expression system. Protein Expression and Purification, 13, 136–142.

    Article  PubMed  CAS  Google Scholar 

  4. Boettner, M., Prinz, B., Holz, C., Stahl, U., & Lang, C. (2002). High-throughput screening for expression of heterologous proteins in the yeast Pichia pastoris. Journal of Biotechnology, 99, 51–62.

    Article  PubMed  CAS  Google Scholar 

  5. Holz, C., Prinz, B., Bolotina, N., Sievert, V., Bussow, K., Simon, B., Stahl, U., & Lang, C. (2003). Establishing the yeast Saccharomyces cerevisiae as a system for expression of human proteins on a proteome-scale. Journal of Structural and Functional Genomics, 4, 97–108.

    Article  PubMed  CAS  Google Scholar 

  6. Hunt, I. (2005). From gene to protein: A review of new and enabling technologies from multi-parallel protein expression. Protein Expression and Purification, 40, 1–22.

    Article  PubMed  CAS  Google Scholar 

  7. Kost, T. A., Condreay, J. P., & Jarvis, D. L. (2005). Baculovirus as versatile vector for protein expression in insect and mammalian cells. Nature Biotechnology, 23, 567–575.

    Article  PubMed  CAS  Google Scholar 

  8. Walsh, G. (2005). Current status of biopharmaceuticals: Approved products and trends in approvals. In J. Knäblein (Ed.), Modern biopharmaceuticals (pp. 1–34). Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA.

    Chapter  Google Scholar 

  9. Wurm, F. M., & Bernard, A. (1999). Large-scale transient expression in mammalian cells for recombinant protein production. Current Opinion in Biotechnology, 10, 156–159.

    Article  PubMed  CAS  Google Scholar 

  10. Wurm, F. M. (2004). Production of recombinant protein therapeutics in cultivated mammalian cells. Nature Biotechnology, 22, 1393–1398.

    Article  PubMed  CAS  Google Scholar 

  11. Blasey, H. D., Aubry, J.-P., Mazzel, G. J., & Bernard, A. R. (1996). Large-scale transient expression with COS cells. Cytotechnology, 18, 183–192.

    Article  Google Scholar 

  12. Cachianes, G., Ho, C., Weber, R. F., Williams, S. R., Goeddel, D. V., & Leung, D. W. (1993). Epstein–Barr virus-derived vectors for transient and stable expression of recombinant proteins. Biotechniques, 15, 255–259.

    PubMed  CAS  Google Scholar 

  13. Schlaeger, E., & Christensen, K. (1999). Transient gene expression in mammalian cells grown in serum-free suspension culture. Cytotechnology, 30, 71–83.

    Article  CAS  PubMed  Google Scholar 

  14. Girard, P., Porte, L., Berta, T., Jordan, M., & Wurm, F. M. (2001). Calcium phosphate transfection optimization for serum-free suspension culture. Cytotechnology, 35, 175–180.

    Article  CAS  Google Scholar 

  15. Durocher, Y., Perret, S., & Kamen, A. (2002). High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-EBNA1 cells. Nucleic Acids Research, 30, E9.

    Article  PubMed  Google Scholar 

  16. Geisse, S., & Henke, M. (2005). Large-scale transient transfection of mammalian cells: A newly emerging attractive option for recombinant protein production. Journal of Structural and Functional Genomics, 6, 165–170.

    Article  PubMed  CAS  Google Scholar 

  17. van der Pol, L., & Tramper, J. (1998). Shear sensitivity of animal cells from a culture-medium perspective. Trends in Biotechnology, 16, 323–328.

    Article  PubMed  Google Scholar 

  18. Moran, E. B., McGowan, S. T., McGuire, J. M., Frankland, J. E., Oyebade, I. A., Waller, W., Archer, L. C., Morris, L. O., Pandya, J., Nathan S. R., et al. (2000). A systematic approach to the validation of process control parameters for monoclonal antibody production I fed-batch culture of a murine myeloma. Biotechnology and Bioengineering, 69, 242–255.

    Article  PubMed  CAS  Google Scholar 

  19. Schoenherr, I., Stapp, T., & Ryll, T. (2000). A comparison of different methods to determine the end of exponential growth in CHO cell culture for optimization of scale-up. Biotechnology Progress, 16, 815–821.

    Article  PubMed  CAS  Google Scholar 

  20. Nadeau, I., Jacob, D., Perrier, M., & Kamen, A. (2000). 293SF metabolic flux analysis during cell growth and infection with an adenoviral vector Biotechnology Progress, 16, 872–884.

    Article  PubMed  CAS  Google Scholar 

  21. Hammill, L., Welles, J., & Carson, G. R. (2000). The gel mirodrop secretion assay: identification of a low productivity subpopulation arising during the production of human antibody in CHO cells. Cytotechnology, 34, 27–37.

    Article  CAS  PubMed  Google Scholar 

  22. Chu, L., & Robinson, D. K. (2001). Industrial choices for protein production by large-scale cell culture. Current Opinion in Biotechnology, 12, 180–187.

    Article  PubMed  CAS  Google Scholar 

  23. Jenkins, N., Parekh, R. B., & James, D. C. (1996). Getting the glycosylation right: Implications for the biotechnology industry. Nature Biotechnology, 14, 975–981.

    Article  PubMed  CAS  Google Scholar 

  24. Cho, M.-S., Yee, H., & Chan, S. (2002). Establishment of a human somatic hybrid cell line for recombinant protein production. Journal of Biomedical Science, 9, 631–638.

    Article  PubMed  CAS  Google Scholar 

  25. Bödecker, B. G. D., Newcomb, R., Yuan, P., Braufman, A., & Kelsey, W. (1994). Production of recombinant Factor VIII from perfusion culture: 1. Large-scale fermentation. In R. E. Spier, J. B. Griffiths, & W. Berthold (Eds.), Animal cell technology, products of today, prospects for tomorrow (pp. 580–590). Oxford, UK: Butterworth-Heinemann.

    Google Scholar 

  26. Jones, D., Kroos, N., et al. (2003). High-level expression of recombinant IgG in the human cell line PER.C6 Biotechnology Progress, 19, 163–168.

    Article  PubMed  CAS  Google Scholar 

  27. Cho, M.-S., Yee, H., Brown, C., Jeang, K.-T., & Chan, S. (2001). An oriP expression vector containing the HIV-1 Tat/TAR transactivation axis produced high levels of protein expression in mammalian cells. Cytotechnology, 37, 23–30.

    Article  CAS  PubMed  Google Scholar 

  28. Le Hir, H., Nott, A., & Moore, M. J. (2003). How introns influence and enhance eukaryotic gene expression. Trends in Biochemical Science, 28, 215–220.

    Article  CAS  Google Scholar 

  29. Makrides, S. C. (1999). Components of vectors for gene transfer and expression in mammalian cells. Protein Expression and Purification, 17, 183–202.

    Article  PubMed  CAS  Google Scholar 

  30. Sinacore, M. S., Drapeau, D., & Adamson, S. R. (2001). Adaptation of mammalian cells to growth in serum-free media. Molecular Biotechnology, 15, 249–257.

    Article  Google Scholar 

  31. Mather, J. P. (1998). Laboratory scale up of cell cultures (0.5–50 liter). Methods in Cell Biology, 57, 219–227.

    Article  PubMed  CAS  Google Scholar 

  32. Girard, P., Derouazi, M., Baumgartner, G., Bourgeois, M., Jordan, M., Jacko, B., & Wurm, F. M. (2002). 100-liter transient transfection. Cytotechnology, 38, 15–21.

    Article  CAS  PubMed  Google Scholar 

  33. Jordan, M., Köhne, C., & Wurm, F. M. (1998). Calcium-phosphate mediated DNA transfer into HEK-293 cells in suspension: Control of physicochemical parameters allows transfection in stirred media transfection and protein expression in mammalian cells. Cytotechnology, 26, 39–47.

    Article  CAS  Google Scholar 

  34. Derouazi, M., Girard, P., Van Tilborgh, F., Iglesias, K., Muller, N., Bertschinger, M., & Wurm, F. M. (2004). Serum-free large-scale transient transfection of CHO cells. Biotechnology and Bioengineering, 87, 537–545.

    Article  PubMed  CAS  Google Scholar 

  35. Tait, A. S., Brown, C. J., Galbraith, D. J., Hines, M. J., Hoare, M., Birch, J. R., & James, D. C. (2004). Transient production of recombinant proteins by Chinese hamster ovary cells using polyethyleneimine/DNA complexes in combination with microtubule disrupting anti-mitotic agents. Biotechnology and Bioengineering, 88, 707–721.

    Article  PubMed  CAS  Google Scholar 

  36. Baldi, L., Muller, N., Picasso, S., Jacquet, R., Girard, P., Thanh, H. P., Decrow, E., & Wurm, F. M. (2005). Transient gene expression in suspension HEK-293 cells: Application to large-scale protein production. Biotechnology Progress, 21, 148–153.

    Article  PubMed  CAS  Google Scholar 

  37. Boussif, O., Lezoualch, F., Zanta, M. A., Mergny, M. D., Scherman, D., Demeneix, B., & Behr, J.-P. (1995). A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. Proceedings of the National Academy of Sciences of the United States of America, 92, 7297–7301.

    Article  PubMed  CAS  Google Scholar 

  38. Akinc, A., Thomas, M., Klibanov, A. M., & Langer, R. (2004). Exploring polyethylemine-mediated DNA transfection and the proton sponge hypothesis. Journal of Gene Medicine, 7, 657–663.

    Article  CAS  Google Scholar 

  39. Backliwal, G., Hildinger, M., Hasija, V., & Wurm, F. M. (2008). High-density transfection with HEK-293 cells allows doubling of transient titers and removes need for a priori DNA complex formation with PEI. Biotechnology and Bioengineering, 99, 721–727.

    Article  PubMed  CAS  Google Scholar 

  40. Schlaeger, E.-J., Kitas, E. A., & Dorn, A. (2003). SEAP expression in transiently transfected mammalian cell grown in serum-free suspension culture Cytotechnology, 42, 47–55.

    Article  CAS  PubMed  Google Scholar 

  41. Cho, M.-S., Yee, H., Brown, C., Mei, B., Mirenda, C., & Chan, S. (2003). Versatile expression system for rapid and stable production of recombinant proteins. Biotechnology Progress, 19, 229–232.

    Article  PubMed  CAS  Google Scholar 

  42. Rosser, M. P., Xia, W., Hartsell, S., McCaman, M., Zhu, Y., Wang, S., Harvey, S., Bringmann, P., & Cobb, R. R. (2005). Transient transfection of CHO-K1-S using serum-free medium in suspension: A rapid mammalian protein expression system. Protein Expression and Purification, 40, 237–243.

    Article  PubMed  CAS  Google Scholar 

  43. Pham, P. L., Perret, S., Cass, B., Carpentier, E., St-Laurent, G., Bisson, L., Karmen, A., & Durocher, Y. (2005). Transient gene expression in HEK293 cells: Peptone addition from the start of transfection improves recombinant protein synthesis. Biotechnology and Bioengineering, 90, 332–344.

    Article  PubMed  CAS  Google Scholar 

  44. Pham, P. L., Perret, S., Doan, H. C., Cass, B., ST-Laurent, G., Kamen, A., & Durocher, Y. (2003). Large-scale transient transfection of serum-free suspension-growing HEK293 EBNA1 cells: Peptone additives improve cell growth and transfection efficiency. Biotechnology and Bioengineering, 84, 332–342.

    Article  PubMed  CAS  Google Scholar 

  45. Park, J. H., Kim, C., Kim, W. B., Kim, Y. K., Lee, S. Y., & Yang, J. M. (2000). Efficiency of promoter and cell line in high-level expression of erythropoientin. Biotechnology and Applied Biochemistry, 32, 167–172.

    Article  PubMed  CAS  Google Scholar 

  46. Wajih, N., Hutson, S. M., Owen, J., & Wallin, R. (2005). Increased production of functional recombinant human clotting factor IX by baby hamster kidney cells engineered to overexpress VKORC1, the Vitamin K 2,3-Epoxide-reducing enzyme of the Vitamin K cycle. Journal of Biological Chemistry, 280, 31603–31607.

    Article  PubMed  CAS  Google Scholar 

  47. Berkner, K. L. (1993). Expression of recombinant vitamin K-dependent proteins in mammalian cells: Factors IX and VII. Methods in Enzymology, 222, 450–477.

    PubMed  CAS  Google Scholar 

  48. Kaufman, R. J., Wasley, L. C., Furie, B. C., Furie, B., & Shoemaker, C. B. (1986). Expression, purification, and characterization of recombinant gamma-carboxylated factor IX synthesized in Chinese hamster ovary cells. Journal of Biological Chemistry, 261, 9622–9628.

    PubMed  CAS  Google Scholar 

  49. Van Craenenbroeck, K., Vanhoenacker, P., & Haegeman, G. (2000). Episomal vectors for gene expression in mammalian cells. European Journal of Biochemistry, 267, 5665–5678.

    Article  PubMed  Google Scholar 

  50. Kunaparaju, R., Liao, M., & Sunstrom N. (2005). Epi-CHO, an episomal expression system for recombinant protein production in CHO cells. Biotechnology and Bioengineering, 91, 670–677.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Antje Taliana, Dr. Yu Feng, and Marieke Svoboda of Invitrogen Co. for kindly providing EPO, Factor IX clones, vectors, and technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chaoting Liu or Henry C. Chiou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C., Dalby, B., Chen, W. et al. Transient Transfection Factors for High-Level Recombinant Protein Production in Suspension Cultured Mammalian Cells. Mol Biotechnol 39, 141–153 (2008). https://doi.org/10.1007/s12033-008-9051-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-008-9051-x

Keywords

Navigation