Skip to main content

Reversible Covalent Immobilization of Enzymes via Disulfide Bonds

  • Protocol
  • First Online:
Immobilization of Enzymes and Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1051))

Abstract

This enzyme immobilization approach involves the formation of disulfide (−S–S–) bonds with the support. Thus, enzymes bearing exposed nonessential thiol (SH) groups can be immobilized onto thiol-reactive supports provided with reactive disulfides or disulfide oxides under mild conditions. The great potential advantage of this approach is the reversibility of the bonds formed between the activated solid phase and the thiol-enzyme, because the bound protein can be released with an excess of a low-molecular-weight thiol (e.g., dithiothreitol [DTT]). This is of particular interest when the enzyme degrades much faster than the adsorbent, which can be reloaded afterwards. The possibility of reusing the polymeric support after inactivation of the enzyme may be of interest for the practical use of immobilized enzymes in large-scale processes in industry, where their use has often been hampered by the high cost of the support material. Disulfide oxides (thiolsulfinate or thiolsulfonate groups) can be introduced onto a wide variety of support materials with different degrees of porosity and with different mechanical resistances. Procedures are given for the preparation of thiol-activated solid phases and the covalent attachment of thiol-enzymes to the support material via disulfide bonds. The possibility of reusing the polymeric support is also shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Batista-Viera F, Carlsson J, Rydén L (2011) Covalent chromatography. In: Janson JC (ed) Protein purification: principles: high-resolution methods, and applications, 3rd edn. Wiley-VCH, New York, NY, pp 203–219

    Chapter  Google Scholar 

  2. Carlsson J, Axén R, Brocklehurst K, Crook E (1974) Immobilization of urease by thiol-disulphide interchange with concomitant purification. Eur J Biochem 44:189–194

    Article  PubMed  CAS  Google Scholar 

  3. Oscarsson S, Porath J (1989) Covalent chromatography and salt-promoted thiophilic adsorption. Anal Biochem 176:330–337

    Article  PubMed  CAS  Google Scholar 

  4. Carlsson J, Batista-Viera F (1991) Solid phase disulfide oxides: a new approach to reversible immobilization and covalent chromatography of thiol compounds. Biotechnol Appl Biochem 14:114–120

    CAS  Google Scholar 

  5. Batista-Viera F, Barbieri M, Ovsejevi K, Manta C, Carlsson J (1991) A new method for reversible immobilization of thiol biomolecules based on solid phase bound thiolsulfonate groups. Appl Biochem Biotechnol 31:175–195

    Article  CAS  Google Scholar 

  6. Batista-Viera F, Manta C, Carlsson J (1994) Solid-phase thiolsulfinates for the reversible immobilization of thiols. Appl Biochem Biotechnol 44:1–14

    Article  CAS  Google Scholar 

  7. Batista-Viera F, Manta C, Carlsson J (1996) Covalent binding of thiols to thiolsulfinate-containing supports. Biotechnol Appl Biochem 24:231–239

    CAS  Google Scholar 

  8. Axén R, Drevin H, Carlsson J (1975) Preparation of modified agarose gels containing thiol groups. Acta Chem Scand B29:471–474

    Article  Google Scholar 

  9. Ovsejevi K, Brena B, Batista-Viera F, Carlsson J (1995) Immobilization of E. coli β-galactosidase on thiolsulfonate agarose. Enzyme Microb Technol 17:151–156

    Article  CAS  Google Scholar 

  10. Puhl AC, Giacomini C, Irazoqui G, Batista-Viera F, Villarino A, Terenzi H (2009) Covalent immobilization of tobacco-etch-virus NIa protease: a useful tool for cleavage of the histidine tag of recombinant proteins. Biotechnol Appl Biochem 53:165–174

    Article  PubMed  CAS  Google Scholar 

  11. Ovsejevi K, Grazú V, Batista-Viera F (1998) β-galactosidase from Kluyveromices lactis immobilized on to thiolsulfinate/thiolsulfonate supports for lactose hydrolysis in milk and dairy by-products. Biotechnol Tech 12:143–148

    Article  CAS  Google Scholar 

  12. Grazú V, Ovsejevi K, Cuadra K, Betancor L, Manta C, Batista-Viera F (2003) Solid phase reducing agents as alternative for reducing disulfide bonds in proteins. Appl Biochem Biotechnol 110:23–32

    Article  PubMed  Google Scholar 

  13. Ovsejevi K, Cuadra K, Batista-Viera F (2009) Development of a continuous solid phase process for reduction and thiol-dependent immobilization of yeast β-galactosidase. J Mol Catal B Enzymatic 57:188–193

    Article  CAS  Google Scholar 

  14. Brena B, Lidholm J, Batista-Viera F, Carlsson J (1998) Selective removal of enzymes from substrate and products. An alternative to immobilization for enzymes acting on macromolecular or solid substrates. Appl Biochem Biotechnol 75:323–341

    Article  CAS  Google Scholar 

  15. Giacomini C, Irazoqui G, Batista-Viera F, Brena B (2007) Chemical thiolation strategy: a determining factor in the properties of thiol-bound biocatalysts. Biocatal Biotransform 25:373–381

    Article  CAS  Google Scholar 

  16. Carlsson J, Axén R, Unge T (1975) Reversible, covalent immobilization of enzymes by thiol-disulphide interchange. Eur J Biochem 59:567–572

    Article  PubMed  CAS  Google Scholar 

  17. Brena B, Ovsejevi K, Luna B, Batista-Viera F (1993) Thiolation and reversible immobilization of sweet potato beta-amylase on thiolsulfonate-agarose. J Mol Catal 84:381–390

    Article  CAS  Google Scholar 

  18. Díaz T, Stahl U, Batista-Viera F, Carlsson J (1995) Reversible immobilization of chemically modified pullulanase. Biotechnol Tech 9:533–538

    Article  Google Scholar 

  19. Viera SE, Batista-Viera F, Ovsejevi K (2012) Development and characterization of a solid phase biocatalyst based on cyclodextrin glucantransferase reversibly immobilized onto thiolsulfinate-agarose. Appl Biochem Biotechnol 167:164–176

    Article  PubMed  CAS  Google Scholar 

  20. Persson M, Bülow L, Mosbach K (1990) Purification and site-specific immobilization of genetically engineered glucose dehydrogenase on thiopropyl-sepharose. FEBS Lett 270:41–44

    Article  PubMed  CAS  Google Scholar 

  21. Grazú V, López-Gallego F, Montes T, Abian O, González R, Hermoso JA, García JL, Mateo C, Guisán JM (2010) Promotion of multipoint covalent immobilization through different regions of genetically modified penicillin G acylase from E. coli. Process Biochem 45:390–398

    Article  Google Scholar 

  22. Irazoqui G, Villarino A, Batista-Viera F, Brena B (2002) Generating favorable nano-environments for thermal and solvent stabilization of immobilized β-galactosidase. Biotechnol Bioeng 77:430–434

    Article  PubMed  CAS  Google Scholar 

  23. Brocklehurst K, Carlsson J, Kierstan M, Crook E (1973) Covalent chromatography. Preparation of fully active papain from dried papaya latex. Biochem J 133:573–584

    PubMed  CAS  Google Scholar 

  24. Worthington V (1993) β-galactosidase. In Worthington enzyme manual, Freehold, NJ, p 179

    Google Scholar 

  25. Ellman GL (1958) A colorimetric method for determining low concentrations of mercaptans. Arch Biochem Biophys 74:443–450

    Article  PubMed  CAS  Google Scholar 

  26. Vikmon M (1982) Rapid and simple spectrophotometric method for determination of microamounts of cyclodextrins. In: Szejtli J (ed) First symp on cyclodextrins. Reidel Publishing, Budapest, Hungary, pp 69–74

    Chapter  Google Scholar 

  27. Smith PK, Khron RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson B:J, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  PubMed  CAS  Google Scholar 

  28. MERCK Schuchardt technical information (1988) A versatile new peroxyacid. Magnesium monoperoxyphthalate MS Info 88–1

    Google Scholar 

  29. Ali M, Stevens W (1997) A facile and selective procedure for oxidation of sulfides and sulfoxides on silica gel supported magnesium monoperoxyphthalate (MMPP) in dichloromethane. Synthesis 7:764–768

    Article  Google Scholar 

  30. Costa H, Del Canto S, Ferrarotti S, Biscoglio M (2009) Structure-function relationship in cyclodextrin glycosyltransferase from Bacillus circulans DF 9R. Carbohydr Res 344:74–79

    Article  PubMed  CAS  Google Scholar 

  31. Alcalde M, Plou FJ, Andersen C, Martin MT, Pedersen S, Ballesteros A (1999) Chemical modification of lysine side chains of cyclodextrin glycosyltransferase from Thermoanaerobacter causes a shift from cyclodextrin glycosyltransferase to α-amylases specificity. FEBS Lett 445:333–337

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Ovsejevi, K., Manta, C., Batista-Viera, F. (2013). Reversible Covalent Immobilization of Enzymes via Disulfide Bonds. In: Guisan, J. (eds) Immobilization of Enzymes and Cells. Methods in Molecular Biology, vol 1051. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-550-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-550-7_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-549-1

  • Online ISBN: 978-1-62703-550-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics