Skip to main content

Genetics of Pancreatic Carcinogenesis: Current Molecular Insights from Animal Models

  • Living reference work entry
  • First Online:
Handbook of Animal Models and its Uses in Cancer Research

Abstract

Over the last many years, significant work has been dedicated to imitating the significant characteristics of pancreatic ductal adenocarcinoma (PDAC) in animals, yielding an accurate model of this lethal carcinoma. Carcinogen-treated Syrian models of hamsters create PDAC with hereditary melanomas closely resembling in humans, such as stimulation of the Kras infectious agent, and initial research in these organisms affirmed nongenetic health risks for PDAC such as gastroenteritis, overweight, and metabolic syndrome. PDAC study has recently been energized by the advancement of transgenic mouse approaches that rely on tissue-specific Kras modulation and tumor silencer gene deactivation. Amazingly, rodent PDAC develops from excretory acinar cell types instead of stromal cell lines via a phenotypic reprogramming method incited by an inflammatory response. In animal model, scientists found biological processes by which inflammatory endorses and maintains PDAC and objectives for prevention and treatment to repress PDAC in high-risk individual people. The animal model, in specific, has been beneficial in the creation of novel strategies for the early identification and intervention of progressive disease. Several methodologies to be fundamental and preclinical studies on pancreatic cancer, the findings of which could enhance it against presently debilitating illness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Addison CL (2006) Modulation of response to tumor therapies by the extracellular matrix. Future Oncol 2(3):417–429

    Article  CAS  Google Scholar 

  • Aguirre AJ, Bardeesy N, Sinha M, Lopez L, Tuveson DA, Horner J et al (2003) Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev 17:3112–3126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV et al (2013) Signatures of mutational processes in human cancer. Nature 500:415–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alisauskus R, Wong GY, Gold DV (1995) Initial studies of monoclonal antibody PAM4 targeting to xenografted orthotopic pancreatic cancer. Cancer Res 55(23 Suppl):5743s–5748s

    CAS  PubMed  Google Scholar 

  • Alves F, Contag S, Missbach M, Kaspareit J, Nebendahl K, Borchers U, Heidrich B, Streich R, Hiddemann W (2001) An orthotopic model of ductal adenocarcinoma of the pancreas in severe combined immunodeficient mice representing all steps of the metastatic cascade. Pancreas 23(3):227–235

    Article  CAS  PubMed  Google Scholar 

  • Bailey P, Chang DK, Nones K, Johns AL, Patch AM, Gingras MC et al (2016) Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531:47–52

    Article  CAS  PubMed  Google Scholar 

  • Bardi G, Parada LA, Bomme L, Pandis N, Johansson B, Willen R et al (1997) Cytogenetic findings in metastases from colorectal cancer. Int J Cancer 72:604–607

    Article  CAS  PubMed  Google Scholar 

  • Batra SK, Metzgar RS, Worlock AJ, Hollingsworth MA (1992) Expression of the human MUC1 mucin cDNA in a hamster pancreatic tumor cell line HP-1. Int J Pancreatol 12:271–283

    Article  CAS  PubMed  Google Scholar 

  • Bouvet M, Yang M, Nardin S, Wang X, Jiang P, Baranov E, Moossa AR, Hoffman RM (2000) Chronologically-specific metastatic targeting of human pancreatic tumors in orthotopic models. Clin Exp Metastasis 18(3):213–218

    Article  CAS  PubMed  Google Scholar 

  • Bouvet M, Spernyak J, Katz MH, Mazurchuk RV, Takimoto S, Bernacki R, Rustum YM, Moossa AR, Hoffman RM (2005) High correlation of whole-body red fluorescent protein imaging and magnetic resonance imaging on an orthotopic model of pancreatic cancer. Cancer Res 65(21):9829–9833

    Article  CAS  PubMed  Google Scholar 

  • Boyden S (1962) The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med 115:453–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai AQ, Landman KA, Hughes BD (2007) Multi-scale modeling of a wound-healing cell migration assay. J Theor Biol 245:576–594

    Article  PubMed  Google Scholar 

  • Capella G, Farre L, Villanueva A, Reyes G, Garci C, Tarafa G, Lluis F (1999) Orthotopic models of human pancreatic cancer. Ann N Y Acad Sci 880(1):103–109

    Article  CAS  PubMed  Google Scholar 

  • Chang BK, Gutman R (1982) Chemotherapy of pancreatic adenocarcinoma: initial report on two transplantable models in the Syrian hamster. Cancer Res 42:2666–2670

    CAS  PubMed  Google Scholar 

  • Chen WH, Horoszewicz JS, Leong SS, Shimano T, Penetrante R, Sanders WH et al (1982) Human pancreatic adenocarcinoma: in vitro and in vivo morphology of a new tumor line established from ascites. In Vitro 18:24–34

    Article  CAS  PubMed  Google Scholar 

  • Christophe J (1994) Pancreatic tumoral cell line AR42J: an amphicrine model. Am J Phys 266:G963–G971

    CAS  Google Scholar 

  • Dahiya R, Kwak KS, Byrd JC, Ho S, Yoon WH, Kim YS (1993) Mucin synthesis and secretion in various human epithelial cancer cell lines that express the MUC-1 mucin gene. Cancer Res 53:1437–1443

    CAS  PubMed  Google Scholar 

  • Deer EL, Gonzalez-Hernandez J, Coursen JD, Shea JE, Ngatia J, Scaife CL et al (2010) Phenotype and genotype of pancreatic cancer cell lines. Pancreas 39:425–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egami H, Takiyama Y, Cano M, Houser WH, Pour PM (1989) Establishment of hamster pancreatic ductal carcinoma cell line (PC-1) producing blood group-related antigens. Carcinogenesis 10:861–869

    Article  CAS  PubMed  Google Scholar 

  • Eibl G, Reber HA (2005) A xenograft nude mouse model for perineural invasion and recurrence in pancreatic cancer. Pancreas 31:258–262

    Article  PubMed  Google Scholar 

  • Ellenrieder V, Adler G, Gress TM (1999) Invasion and metastasis in pancreatic cancer. Ann Oncol 10(Suppl 4):46–50

    Article  PubMed  Google Scholar 

  • Erill N, Cuatrecasas M, Sancho FJ, Farre A, Pour PM, Lluis F et al (1996) K-ras and p53 mutations in hamster pancreatic ductal adenocarcinomas and cell lines. Am J Pathol 149:1333–1339

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fanjul M, Hollande E (1993) Morphogenesis of “duct-like” structures in three-dimensional cultures of human cancerous pancreatic duct cells (Capan-1). In Vitro Cell Dev Biol Anim 29A:574–584

    Article  CAS  PubMed  Google Scholar 

  • Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767

    Article  CAS  PubMed  Google Scholar 

  • Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386

    Article  CAS  PubMed  Google Scholar 

  • Fidler IJ (1986) Rationale and methods for the use of nude mice to study the biology and therapy of human cancer metastasis. Cancer Metastasis Rev 5(1):29–49

    Article  CAS  PubMed  Google Scholar 

  • Fogar P, Greco E, Basso D, Habeler W, Navaglia F, Zambon CF et al (2003) Suicide gene therapy with HSV-TK in pancreatic cancer has no effect in vivo in a mouse model. Eur J Surg Oncol 29:721–730

    Article  CAS  PubMed  Google Scholar 

  • Fogh J, Orfeo T, Tiso J, Sharkey FE, Fogh JM, Daniels WP (1980) Twenty-three new human tumor lines established in nude mice. Pathobiology 48(3):229–239

    Article  CAS  Google Scholar 

  • French D, Smith A, Powers MP, Wu AH (2011) KRAS mutation detection in colorectal cancer by a commercially available gene chip array compares well with sanger sequencing. Clin Chim Acta 412:1578–1581

    Article  CAS  PubMed  Google Scholar 

  • Fu XI, Guadagni F, Hoffman RM (1992) A metastatic nude-mouse model of human pancreatic cancer constructed orthotopically with histologically intact patient specimens. Proc Natl Acad Sci 89(12):5645–5649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujii H, Egami H, Chaney W, Pour P, Pelling J (2010) Pancreatic ductal adenocarcinomas induced in Syrian hamsters by N-nitrosobis(2-oxopropyl)amine contain a c-Ki-ras oncogene with a point-mutated codon. Mol Carcinog 3:296–301

    Article  Google Scholar 

  • Garofalo A, Chirivi RG, Scanziani E, Mayo JG, Vecchi A, Giavazzi R (1993) Comparative study on the metastatic behavior of human tumors in nude, beige/nude/xid and severe combined immunodeficient mice. Invasion Metastasis 13:82–91

    CAS  PubMed  Google Scholar 

  • Gingell R, Wallcave L, Nagel D (1976) Metabolism of the pancreatic carcinogens N-nitrosobis(2-oxopropyl)amine and N-nitroso-bis(2-hydroxypropyl)amine in the Syrian hamster. J Natl Cancer Inst 57(5):1175–1178

    Article  CAS  PubMed  Google Scholar 

  • Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 89:5547–5551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gower WR Jr, Risch RM, Godellas CV, Fabri PJ (1994) HPAC, a new human glucocorticoid-sensitive pancreatic ductal adenocarcinoma cell line. In Vitro Cell Dev Biol Anim 30A:151–161

    Article  CAS  PubMed  Google Scholar 

  • Grippo PJ, Sandgren EP (2005) Modeling pancreatic cancer in animals to address specific hypotheses. Pancreatic. Cancer:217–243

    Google Scholar 

  • Gurski T (1959) Experimental production of tumors of the pancreas. Vopr Onkol 5:341–348

    CAS  PubMed  Google Scholar 

  • Hayashi Y, Hasegawa T (1971) Experimental pancreatic tumor in rats after intravenous injection of 4-hydroxyaminoquinoline 1-oxide. Gan 62:329–330

    CAS  PubMed  Google Scholar 

  • Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA et al (2003) Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4:437–450

    Article  CAS  PubMed  Google Scholar 

  • Hingorani SR, Wang L, Multani AS, Combs C, Deramaudt TB, Hruban RH et al (2005) Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7:469–483

    Article  CAS  PubMed  Google Scholar 

  • Hotz HG, Reber HA, Hotz B, Yu T, Foitzik T, Buhr HJ, Cortina G, Hines OJ (2003) An orthotopic nude mouse model for evaluating pathophysiology and therapy of pancreatic cancer. Pancreas 26(4):e89–e98

    Article  PubMed  Google Scholar 

  • Hruban RH, Adsay NV, Alboressaavedra J, Compton C, Garrett ES, Goodman SN et al (2001) Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions. Am J Surg Pathol 25:579–586

    Article  CAS  PubMed  Google Scholar 

  • Hruban RH, Takaori K, Klimstra DS, Adsay NV, Alboressaavedra J, Biankin AV et al (2004) An illustrated consensus on the classification of pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms. Am J Surg Pathol 28:977

    Article  PubMed  Google Scholar 

  • Ijichi H, Chytil A, Gorska AE, Aakre ME, Fujitani Y, Fujitani S et al (2006) Aggressive pancreatic ductal adenocarcinoma in mice caused by pancreas-specific blockade of transforming growth factor-beta signaling in cooperation with active Kras expression. Genes Dev 20:3147–3160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwamura T, Katsuki T, Ide K (1987) Establishment and characterization of a human pancreatic cancer cell line (SUIT-2) producing carcinoembryonic antigen and carbohydrate antigen 19-9. Jpn J Cancer Res 78:54–62

    CAS  PubMed  Google Scholar 

  • Iwamura T, Taniguchi S, Kitamura N, Yamanari H, Kojima A, Hidaka K et al (1992) Correlation between CA19-9 production in vitro and histological grades of differentiation in vivo in clones isolated from a human pancreatic cancer cell line (SUIT-2). J Gastroenterol Hepatol 7:512–519

    Article  CAS  PubMed  Google Scholar 

  • Izeradjene K, Combs C, Best M, Gopinathan A, Wagner A, Grady WM et al (2007) Kras(G12D) and Smad4/Dpc4 haploinsufficiency cooperate to induce mucinous cystic neoplasms and invasive adenocarcinoma of the pancreas. Cancer Cell 11:229–243

    Article  CAS  PubMed  Google Scholar 

  • Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P et al (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321:1801–1806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keleg S, Büchler P, Ludwig R, Büchler MW, Friess H (2003) Invasion and metastasis in pancreatic cancer. Mol Cancer 2(1):1–7

    Article  Google Scholar 

  • Kern SE (2000) Molecular genetic alterations in ductal pancreatic adenocarcinomas. Med Clin North Am 84(691–5):xi

    Google Scholar 

  • Kim SK, MacDonald RJ (2002) Signaling and transcriptional control of pancreatic organogenesis. Curr Opin Genet Dev 12:540–547

    Article  CAS  PubMed  Google Scholar 

  • Kim YW, Kern HF, Mullins TD, Koriwchak MJ, Metzgar RS (1989) Characterization of clones of a human pancreatic adenocarcinoma cell line representing different stages of differentiation. Pancreas 4:353–362

    Article  CAS  PubMed  Google Scholar 

  • Kojima K, Vickers SM, Adsay NV, Jhala NC, Kim HG, Schoeb TR et al (2007) Inactivation of Smad4 accelerates Kras(G12D)-mediated pancreatic neoplasia. Cancer Res 67:8121–8130

    Article  CAS  PubMed  Google Scholar 

  • Kyriazis AP, Kyriazis AA, Scarpelli DG, Fogh J, Rao MS, Lepera R (1982) Human pancreatic adenocarcinoma line Capan-1 in tissue culture and the nude mouse: morphologic, biologic, and biochemical characteristics. Am J Pathol 106:250–260

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kyriazis AP, McCombs WB 3rd, Sandberg AA, Kyriazis AA, Sloane NH, Lepera R (1983) Establishment and characterization of human pancreatic adenocarcinoma cell line SW-1990 in tissue culture and the nude mouse. Cancer Res 43:4393–4401

    CAS  PubMed  Google Scholar 

  • LeDonne DM (1988) Trends in morbidity and use of health services by women veterans of Vietnam. Navy Med 79:22–25

    CAS  PubMed  Google Scholar 

  • Li K, Yau FW, Fok TF, So KW, Li CK, Yuen PM (2010) Haematopoietic stem and progenitor cells in human term and preterm neonatal blood. Vox Sang 80:162–169

    Article  Google Scholar 

  • Lieber M, Mazzetta J, Nelson-Rees W, Kaplan M, Todaro G (1975) Establishment of a continuous tumor-cell line (panc-1) from a human carcinoma of the exocrine pancreas. Int J Cancer 15:741–747

    Article  CAS  PubMed  Google Scholar 

  • Lin M, DiVito MM, Merajver SD, Boyanapalli M, van Golen KL (2005) Regulation of pancreatic cancer cell migration and invasion by RhoC GTPase and caveolin-1. Mol Cancer 4:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Longnecker DS, Lilja HS, French J, Kuhlmann E, Noll W (1979) Transplantation of azaserine-induced carcinomas of pancreas in rats. Cancer Lett 7:197–202

    Article  CAS  PubMed  Google Scholar 

  • Longnecker DS, Curphey TJ, Lilja HS, French JI, Daniel DS (1980) Carcinogenicity in rats of the nitrosourea amino acid N delta-(N-methyl-N-nitrosocarbamoyl)-L-ornithine. J Environ Pathol Toxicol 4:117–129

    CAS  PubMed  Google Scholar 

  • Longnecker DS, Memoli V, Pettengill OS (1992) Recent results in animal models of pancreatic carcinoma: histogenesis of tumors. Yale J Biol Med 65:457–464; discussion 65–9

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loukopoulos P, Kanetaka K, Takamura M, Shibata T, Sakamoto M, Hirohashi S (2004) Orthotopic transplantation models of pancreatic adenocarcinoma derived from cell lines and primary tumors and displaying varying metastatic activity. Pancreas 29(3):193–203

    Article  CAS  PubMed  Google Scholar 

  • Marincola FM, Drucker BJ, Siao DY, Hough KL, Holder WD Jr (1989) The nude mouse as a model for the study of human pancreatic cancer. J Surg Res 47(6):520–529

    Article  CAS  PubMed  Google Scholar 

  • Meijers M, Bruijntjes JP, Hendriksen EG, Woutersen RA (1989) Histogenesis of early preneoplastic lesions induced by N-nitrosobis(2-oxopropyl)amine in exocrine pancreas of hamsters. Int J Pancreatol 4:127–137

    Article  CAS  PubMed  Google Scholar 

  • Mohammad RM, Al-Katib A, Pettit GR, Vaitkevicius VK, Joshi U, Adsay V, Majumdar AP, Sarkar FH (1998) An orthotopic model of human pancreatic cancer in severe combined immunodeficient mice: potential application for preclinical studies. Clin Cancer Res 4(4):887–894

    CAS  PubMed  Google Scholar 

  • Monti P, Marchesi F, Reni M, Mercalli A, Sordi V, Zerbi A et al (2004) A comprehensive in vitro characterization of pancreatic ductal carcinoma cell line biological behavior and its correlation with the structural and genetic profile. Virchows Arch 445:236–247

    Article  CAS  PubMed  Google Scholar 

  • Moore PS, Sipos B, Orlandini S, Sorio C, Real FX, Lemoine NR et al (2001) Genetic profile of 22 pancreatic carcinoma cell lines. Analysis of K-ras, p53, p16 and DPC4/Smad4. Virchows Arch 439:798–802

    Article  CAS  PubMed  Google Scholar 

  • Morgan RT, Woods LK, Moore GE, Quinn LA, McGavran L, Gordon SG (1980) Human cell line (COLO 357) of metastatic pancreatic adenocarcinoma. Int J Cancer 25:591–598

    Article  CAS  PubMed  Google Scholar 

  • Morita Y, Moriai T, Takiyama Y, Makino I (1998) Establishment and characterization of a new hamster pancreatic cancer cell line: the biological activity and the binding characteristics of EGF or TGF-alpha. Int J Pancreatol 23:41–50

    Article  CAS  PubMed  Google Scholar 

  • Morris JP, Wang SC, Hebrok M (2010) KRAS, Hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma. Nat Rev Cancer 10:683–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okabe T, Yamaguchi N, Ohsawa N (1983) Establishment and characterization of a carcinoembryonic antigen (CEA)-producing cell line from a human carcinoma of the exocrine pancreas. Cancer 51:662–668

    Article  CAS  PubMed  Google Scholar 

  • Orban PC, Chui D, Marth JD (1992) Tissue- and site-specific DNA recombination in transgenic mice. Proc Natl Acad Sci U S A 89:6861–6865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Owens RB, Smith HS, Nelson-Rees WA, Springer EL (1976) Epithelial cell cultures from normal and cancerous human tissues. J Natl Cancer Inst 56:843–849

    Article  CAS  PubMed  Google Scholar 

  • Panayiotis L, Kengo K, Masaaki T, Tatsuhiro S, Michiie S, Setsuo H (2004) Orthotopic transplantation models of pancreatic adenocarcinoma derived from cell lines and primary tumors and displaying varying metastatic activity. Pancreas 29:193

    Article  Google Scholar 

  • Partecke LI, Sendler M, Kaeding A, Weiss FU, Mayerle J, Dummer A et al (2011) A syngeneic orthotopic murine model of pancreatic adenocarcinoma in theC57/BL6 mouse using the Panc02 and 6606PDA cell lines. Eur Surg Res 47:98–107

    Article  CAS  PubMed  Google Scholar 

  • Petrulio CA, Kim-Schulze S, Kaufman HL (2006) The tumour microenvironment and implications for cancer immunotherapy. Expert Opin Biol Ther 6(7):671–684

    Article  CAS  PubMed  Google Scholar 

  • Pour PM (1989) Experimental pancreatic cancer. Am J Surg Pathol 13(Suppl 1):96–103

    PubMed  Google Scholar 

  • Pour P, Wallcave L, Gingell R, Nagel D, Lawson T, Salmasi S et al (1979) Carcinogenic effect of N-nitroso(2-hydroxypropyl)(2-oxopropyl)amine, a postulated proximate pancreatic carcinogen in Syrian hamsters. Cancer Res 39:3828–3833

    CAS  PubMed  Google Scholar 

  • Rao MS (1987) Animal models of exocrine pancreatic carcinogenesis. Cancer Metastasis Rev 6:665–676

    Article  CAS  PubMed  Google Scholar 

  • Reddy JK, Qureshi SA (1979) Tumorigenicity of the hypolipidaemic peroxisome proliferator ethyl-alpha-p-chlorophenoxyisobutyrate (clofibrate) in rats. Br J Cancer 40:476–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy JK, Rao MS (1977) Malignant tumors in rats fed nafenopin, a hepatic peroxisome proliferator. J Natl Cancer Inst 59:1645–1650

    Article  CAS  PubMed  Google Scholar 

  • Reyes G, Villanueva A, García C, Sancho FJ, Piulats J, Lluís F, Capellá G (1996) Orthotopic xenografts of human pancreatic carcinomas acquire genetic aberrations during dissemination in nude mice. Cancer Res 56(24):5713–5719

    CAS  PubMed  Google Scholar 

  • Ryan DP, Hong TS, Bardeesy N (2014) Pancreatic adenocarcinoma. N Engl J Med 371:1039

    Article  CAS  PubMed  Google Scholar 

  • Saito S, Nishimura N, Kubota Y, Yamazaki K, Shibuya T, Sasaki H (1988) Establishment and characterization of a cultured cell line derived from nitrosamine-induced pancreatic ductal adenocarcinoma in Syrian golden hamsters. Gastroenterol Jpn 23:183–194

    Article  CAS  PubMed  Google Scholar 

  • Samnick S, Romeike BF, Kubuschok B, Hellwig D, Amon M, Feiden W, Menger MD, Kirsch CM (2004) P-[123 I] iodo-l-phenylalanine for detection of pancreatic cancer: basic investigations of the uptake characteristics in primary human pancreatic tumour cells and evaluation in in vivo models of human pancreatic adenocarcinoma. Eur J Nucl Med Mol Imaging 31(4):532–541

    Article  PubMed  Google Scholar 

  • Schmied BM, Ulrich AB, Matsuzaki H, El-Metwally TH, Ding X, Fernandes ME et al (2000) Biologic instability of pancreatic cancer xenografts in the nude mouse. Carcinogenesis 21:1121–1127

    Article  CAS  PubMed  Google Scholar 

  • Schonig K, Schwenk F, Rajewsky K, Bujard H (2002) Stringent doxycycline dependent control of CRE recombinase in vivo. Nucleic Acids Res 30:e134

    Article  PubMed  PubMed Central  Google Scholar 

  • Schoumacher RA, Ram J, Iannuzzi MC, Bradbury NA, Wallace RW, Hon CT et al (1990) A cystic fibrosis pancreatic adenocarcinoma cell line. Proc Natl Acad Sci U S A 87:4012–4016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2016 Jan) Cancer statistics, 2016. CA Cancer J Clin 66(1):7–30

    Article  PubMed  Google Scholar 

  • Sipos B, Moser S, Kalthoff H, Torok V, Lohr M, Kloppel G (2003) A comprehensive characterization of pancreatic ductal carcinoma cell lines: towards the establishment of an in vitro research platform. Virchows Arch 442:444–452

    Article  PubMed  Google Scholar 

  • Stahle M, Veit C, Bachfischer U, Schierling K, Skripczynski B, Hall A et al (2003) Mechanisms in LPA-induced tumor cell migration: critical role of phosphorylated ERK. J Cell Sci 116:3835–3846

    Article  PubMed  CAS  Google Scholar 

  • Sumi S, Beauchamp RD, Townsend CM Jr, Pour PM, Ishizuka J, Thompson JC (1994) Lovastatin inhibits pancreatic cancer growth regardless of RAS mutation. Pancreas 9:657–661

    Article  CAS  PubMed  Google Scholar 

  • Tan MH, Chu TM (1985) Characterization of the tumorigenic and metastatic properties of a human pancreatic tumor cell line (AsPC-1) implanted orthotopically into nude mice. Tumour Biol 6(1):89–98

    CAS  PubMed  Google Scholar 

  • Tan MH, Nowak NJ, Loor R, Ochi H, Sandberg AA, Lopez C et al (1986) Characterization of a new primary human pancreatic tumor line. Cancer Investig 4:15–23

    Article  CAS  Google Scholar 

  • Townsend CM Jr, Franklin RB, Gelder FB, Glass E, Thompson JC (1982) Development of a transplantable model of pancreatic duct adenocarcinoma. Surgery 92:72–78

    PubMed  Google Scholar 

  • Tsutsumi M, Kondoh S, Noguchi O, Horiguchi K, Kobayashi E, Okita S et al (1993) K-ras gene mutation in early ductal lesions induced in a rapid production model for pancreatic carcinomas in Syrian hamsters. Jpn J Cancer Res 84

    Google Scholar 

  • Vezeridis MP, Doremus CM, Tibbetts LM, Tzanakakis G, Jackson BT (1989) Invasion and metastasis following orthotopic transplantation of human pancreatic cancer in the nude mouse. J Surg Oncol 40(4):261–265

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhang Y, Yang J, Ni X, Liu S, Li Z et al (2012) Genomic sequencing of key genes in mouse pancreatic cancer cells. Curr Mol Med 12:331–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson RH, Deeds F, Cox AJ (1941) The toxicity and carcinogenic activity of 2-acetaminofluorene. Cancer Res 1:595–608

    CAS  Google Scholar 

  • Witkiewicz AK, McMillan EA, Balaji U, Baek G, Lin WC, Mansour J et al (2015) Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat Commun 6:6744

    Article  CAS  PubMed  Google Scholar 

  • Yunis AA, Arimura GK, Russin DJ (1977) Human pancreatic carcinoma (MIA PaCa-2) in continuous culture: sensitivity to asparaginase. Int J Cancer 19:128–135

    Article  CAS  PubMed  Google Scholar 

  • Zechner D, Burtin F, Amme J, Lindner T, Radecke T, Hadlich S et al (2015) Characterization of novel carcinoma cell lines for the analysis of therapeutical strategies fighting pancreatic cancer. Cell Biosci 5:51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ramakrishnan, V., Mohammed, V. (2022). Genetics of Pancreatic Carcinogenesis: Current Molecular Insights from Animal Models. In: Pathak, S., Banerjee, A., Bisgin, A. (eds) Handbook of Animal Models and its Uses in Cancer Research. Springer, Singapore. https://doi.org/10.1007/978-981-19-1282-5_28-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1282-5_28-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1282-5

  • Online ISBN: 978-981-19-1282-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics